Speed Optimization: Move sqrt computation to hessianDiagonal storation as Luca suggested. Got same values in unit tests (TestNonlinearOptimizer).
parent
e127f07336
commit
037ed7b931
|
|
@ -23,14 +23,18 @@
|
|||
#include <gtsam/linear/Errors.h>
|
||||
|
||||
#include <boost/algorithm/string.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using boost::adaptors::map_values;
|
||||
|
||||
/* ************************************************************************* */
|
||||
LevenbergMarquardtParams::VerbosityLM LevenbergMarquardtParams::verbosityLMTranslator(const std::string &src) const {
|
||||
std::string s = src; boost::algorithm::to_upper(s);
|
||||
|
|
@ -123,6 +127,15 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem(
|
|||
// Only retrieve diagonal vector when reuse_diagonal = false
|
||||
if (params_.diagonalDamping && params_.reuse_diagonal_ == false) {
|
||||
state_.hessianDiagonal = linear.hessianDiagonal();
|
||||
BOOST_FOREACH(Vector& v, state_.hessianDiagonal | map_values)
|
||||
{
|
||||
for( size_t aa = 0 ; aa < v.size() ; aa++)
|
||||
{
|
||||
v(aa) = std::min(std::max(v(aa), min_diagonal_),
|
||||
max_diagonal_);
|
||||
v(aa) = sqrt(v(aa));
|
||||
}
|
||||
}
|
||||
}
|
||||
// for each of the variables, add a prior
|
||||
BOOST_FOREACH(const Values::KeyValuePair& key_value, state_.values) {
|
||||
|
|
@ -131,12 +144,6 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem(
|
|||
//Replace the identity matrix with diagonal of Hessian
|
||||
if (params_.diagonalDamping) {
|
||||
A.diagonal() = state_.hessianDiagonal.at(key_value.key);
|
||||
for (size_t aa = 0; aa < dim; aa++) {
|
||||
if (params_.reuse_diagonal_ == false)
|
||||
A(aa, aa) = std::min(std::max(A(aa, aa), min_diagonal_),
|
||||
max_diagonal_);
|
||||
A(aa, aa) = sqrt(A(aa, aa));
|
||||
}
|
||||
}
|
||||
Vector b = Vector::Zero(dim);
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
|
||||
|
|
|
|||
Loading…
Reference in New Issue