diff --git a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp index 7945dd194..609738b18 100644 --- a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp +++ b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp @@ -23,14 +23,18 @@ #include #include +#include #include #include #include using namespace std; + namespace gtsam { +using boost::adaptors::map_values; + /* ************************************************************************* */ LevenbergMarquardtParams::VerbosityLM LevenbergMarquardtParams::verbosityLMTranslator(const std::string &src) const { std::string s = src; boost::algorithm::to_upper(s); @@ -123,6 +127,15 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem( // Only retrieve diagonal vector when reuse_diagonal = false if (params_.diagonalDamping && params_.reuse_diagonal_ == false) { state_.hessianDiagonal = linear.hessianDiagonal(); + BOOST_FOREACH(Vector& v, state_.hessianDiagonal | map_values) + { + for( size_t aa = 0 ; aa < v.size() ; aa++) + { + v(aa) = std::min(std::max(v(aa), min_diagonal_), + max_diagonal_); + v(aa) = sqrt(v(aa)); + } + } } // for each of the variables, add a prior BOOST_FOREACH(const Values::KeyValuePair& key_value, state_.values) { @@ -131,12 +144,6 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem( //Replace the identity matrix with diagonal of Hessian if (params_.diagonalDamping) { A.diagonal() = state_.hessianDiagonal.at(key_value.key); - for (size_t aa = 0; aa < dim; aa++) { - if (params_.reuse_diagonal_ == false) - A(aa, aa) = std::min(std::max(A(aa, aa), min_diagonal_), - max_diagonal_); - A(aa, aa) = sqrt(A(aa, aa)); - } } Vector b = Vector::Zero(dim); SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);