cartographer/cartographer/mapping/trajectory_builder.h

113 lines
4.2 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_TRAJECTORY_BUILDER_H_
#define CARTOGRAPHER_MAPPING_TRAJECTORY_BUILDER_H_
#include <functional>
#include <memory>
#include <string>
#include "cartographer/common/make_unique.h"
#include "cartographer/common/port.h"
#include "cartographer/common/time.h"
#include "cartographer/kalman_filter/pose_tracker.h"
#include "cartographer/mapping/submaps.h"
#include "cartographer/sensor/data.h"
#include "cartographer/sensor/laser.h"
#include "cartographer/sensor/point_cloud.h"
namespace cartographer {
namespace mapping {
// This interface is used for both 2D and 3D SLAM.
class TrajectoryBuilder {
public:
// Represents a newly computed pose. Each of the following steps in the pose
// estimation pipeline are provided for debugging:
//
// 1. UKF prediction
// 2. Absolute pose observation (e.g. from scan matching)
// 3. UKF estimate after integrating any measurements
//
// Finally, 'pose' is the end-user visualization of orientation and
// 'point_cloud' is the point cloud, in the local map frame.
struct PoseEstimate {
PoseEstimate() = default;
PoseEstimate(common::Time time,
const kalman_filter::PoseAndCovariance& prediction,
const kalman_filter::PoseAndCovariance& observation,
const kalman_filter::PoseAndCovariance& estimate,
const transform::Rigid3d& pose,
const sensor::PointCloud& point_cloud)
: time(time),
prediction(prediction),
observation(observation),
estimate(estimate),
pose(pose),
point_cloud(point_cloud) {}
common::Time time = common::Time::min();
kalman_filter::PoseAndCovariance prediction = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
kalman_filter::PoseAndCovariance observation = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
kalman_filter::PoseAndCovariance estimate = {
transform::Rigid3d::Identity(), kalman_filter::PoseCovariance::Zero()};
transform::Rigid3d pose = transform::Rigid3d::Identity();
sensor::PointCloud point_cloud;
};
TrajectoryBuilder() {}
virtual ~TrajectoryBuilder() {}
TrajectoryBuilder(const TrajectoryBuilder&) = delete;
TrajectoryBuilder& operator=(const TrajectoryBuilder&) = delete;
virtual const Submaps* submaps() const = 0;
virtual const PoseEstimate& pose_estimate() const = 0;
virtual void AddSensorData(const string& sensor_id,
std::unique_ptr<sensor::Data> data) = 0;
void AddRangefinderData(const string& sensor_id, common::Time time,
const Eigen::Vector3f& origin,
const sensor::PointCloud& ranges) {
AddSensorData(sensor_id,
common::make_unique<sensor::Data>(
time, sensor::Data::Rangefinder{origin, ranges}));
}
void AddImuData(const string& sensor_id, common::Time time,
const Eigen::Vector3d& linear_acceleration,
const Eigen::Vector3d& angular_velocity) {
AddSensorData(sensor_id, common::make_unique<sensor::Data>(
time, sensor::Data::Imu{linear_acceleration,
angular_velocity}));
}
void AddOdometerData(const string& sensor_id, common::Time time,
const transform::Rigid3d& odometer_pose) {
AddSensorData(sensor_id,
common::make_unique<sensor::Data>(time, odometer_pose));
}
};
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_TRAJECTORY_BUILDER_H_