128 lines
5.2 KiB
C++
128 lines
5.2 KiB
C++
/*
|
|
* Copyright 2018 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef CARTOGRAPHER_MAPPING_POSE_GRAPH_COST_HELPERS_IMPL_H_
|
|
#define CARTOGRAPHER_MAPPING_POSE_GRAPH_COST_HELPERS_IMPL_H_
|
|
|
|
namespace cartographer {
|
|
namespace mapping {
|
|
namespace pose_graph {
|
|
|
|
template <typename T>
|
|
static std::array<T, 3> ComputeUnscaledError(
|
|
const transform::Rigid2d& relative_pose, const T* const start,
|
|
const T* const end) {
|
|
const T cos_theta_i = cos(start[2]);
|
|
const T sin_theta_i = sin(start[2]);
|
|
const T delta_x = end[0] - start[0];
|
|
const T delta_y = end[1] - start[1];
|
|
const T h[3] = {cos_theta_i * delta_x + sin_theta_i * delta_y,
|
|
-sin_theta_i * delta_x + cos_theta_i * delta_y,
|
|
end[2] - start[2]};
|
|
return {{T(relative_pose.translation().x()) - h[0],
|
|
T(relative_pose.translation().y()) - h[1],
|
|
common::NormalizeAngleDifference(
|
|
T(relative_pose.rotation().angle()) - h[2])}};
|
|
}
|
|
|
|
template <typename T>
|
|
std::array<T, 3> ScaleError(std::array<T, 3> error, T translation_weight,
|
|
T rotation_weight) {
|
|
std::array<T, 3> scaled_error(std::move(error));
|
|
scaled_error[0] *= translation_weight;
|
|
scaled_error[1] *= translation_weight;
|
|
scaled_error[2] *= rotation_weight;
|
|
return scaled_error;
|
|
}
|
|
|
|
template <typename T>
|
|
static std::array<T, 6> ComputeUnscaledError(
|
|
const transform::Rigid3d& relative_pose, const T* const start_rotation,
|
|
const T* const start_translation, const T* const end_rotation,
|
|
const T* const end_translation) {
|
|
const Eigen::Quaternion<T> R_i_inverse(start_rotation[0], -start_rotation[1],
|
|
-start_rotation[2],
|
|
-start_rotation[3]);
|
|
|
|
const Eigen::Matrix<T, 3, 1> delta(end_translation[0] - start_translation[0],
|
|
end_translation[1] - start_translation[1],
|
|
end_translation[2] - start_translation[2]);
|
|
const Eigen::Matrix<T, 3, 1> h_translation = R_i_inverse * delta;
|
|
|
|
const Eigen::Quaternion<T> h_rotation_inverse =
|
|
Eigen::Quaternion<T>(end_rotation[0], -end_rotation[1], -end_rotation[2],
|
|
-end_rotation[3]) *
|
|
Eigen::Quaternion<T>(start_rotation[0], start_rotation[1],
|
|
start_rotation[2], start_rotation[3]);
|
|
|
|
const Eigen::Matrix<T, 3, 1> angle_axis_difference =
|
|
transform::RotationQuaternionToAngleAxisVector(
|
|
h_rotation_inverse * relative_pose.rotation().cast<T>());
|
|
|
|
return {{T(relative_pose.translation().x()) - h_translation[0],
|
|
T(relative_pose.translation().y()) - h_translation[1],
|
|
T(relative_pose.translation().z()) - h_translation[2],
|
|
angle_axis_difference[0], angle_axis_difference[1],
|
|
angle_axis_difference[2]}};
|
|
}
|
|
|
|
template <typename T>
|
|
std::array<T, 6> ScaleError(std::array<T, 6> error, T translation_weight,
|
|
T rotation_weight) {
|
|
std::array<T, 6> scaled_error(std::move(error));
|
|
scaled_error[0] *= translation_weight;
|
|
scaled_error[1] *= translation_weight;
|
|
scaled_error[2] *= translation_weight;
|
|
scaled_error[3] *= rotation_weight;
|
|
scaled_error[4] *= rotation_weight;
|
|
scaled_error[5] *= rotation_weight;
|
|
return scaled_error;
|
|
}
|
|
|
|
// Eigen implementation of slerp is not compatible with Ceres on all supported
|
|
// platforms. Our own implementation is used instead.
|
|
template <typename T>
|
|
std::array<T, 4> SlerpQuaternions(const T* const start, const T* const end,
|
|
T factor) {
|
|
// Angle 'theta' is the half-angle "between" quaternions. It can be computed
|
|
// as the arccosine of their dot product.
|
|
const T cos_theta = start[0] * end[0] + start[1] * end[1] +
|
|
start[2] * end[2] + start[3] * end[3];
|
|
// Avoid using ::abs which would cast to integer.
|
|
const T abs_cos_theta = ceres::abs(cos_theta);
|
|
// If numerical error brings 'cos_theta' outside [-1 + epsilon, 1 - epsilon]
|
|
// interval, then the quaternions are likely to be collinear.
|
|
T prev_scale = T(1.) - factor;
|
|
T next_scale = factor;
|
|
if (abs_cos_theta < T(1. - 1e-5)) {
|
|
const T theta = acos(abs_cos_theta);
|
|
const T sin_theta = sin(theta);
|
|
prev_scale = sin(prev_scale * theta) / sin_theta;
|
|
next_scale = sin(next_scale * theta) / sin_theta;
|
|
}
|
|
if (cos_theta < T(0.)) next_scale = -next_scale;
|
|
return {{prev_scale * start[0] + next_scale * end[0],
|
|
prev_scale * start[1] + next_scale * end[1],
|
|
prev_scale * start[2] + next_scale * end[2],
|
|
prev_scale * start[3] + next_scale * end[3]}};
|
|
}
|
|
|
|
} // namespace pose_graph
|
|
} // namespace mapping
|
|
} // namespace cartographer
|
|
|
|
#endif // CARTOGRAPHER_MAPPING_POSE_GRAPH_COST_HELPERS_IMPL_H_
|