256 lines
10 KiB
C++
256 lines
10 KiB
C++
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping_3d/sparse_pose_graph/optimization_problem.h"
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "Eigen/Core"
|
|
#include "cartographer/common/ceres_solver_options.h"
|
|
#include "cartographer/common/make_unique.h"
|
|
#include "cartographer/common/math.h"
|
|
#include "cartographer/common/time.h"
|
|
#include "cartographer/mapping_3d/acceleration_cost_function.h"
|
|
#include "cartographer/mapping_3d/ceres_pose.h"
|
|
#include "cartographer/mapping_3d/imu_integration.h"
|
|
#include "cartographer/mapping_3d/rotation_cost_function.h"
|
|
#include "cartographer/mapping_3d/sparse_pose_graph/spa_cost_function.h"
|
|
#include "cartographer/transform/transform.h"
|
|
#include "ceres/ceres.h"
|
|
#include "ceres/jet.h"
|
|
#include "ceres/rotation.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping_3d {
|
|
namespace sparse_pose_graph {
|
|
|
|
namespace {
|
|
|
|
struct ConstantYawQuaternionPlus {
|
|
template <typename T>
|
|
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
|
|
const T delta_norm =
|
|
ceres::sqrt(common::Pow2(delta[0]) + common::Pow2(delta[1]));
|
|
const T sin_delta_over_delta =
|
|
delta_norm < 1e-6 ? T(1.) : ceres::sin(delta_norm) / delta_norm;
|
|
T q_delta[4];
|
|
q_delta[0] = delta_norm < 1e-6 ? T(1.) : ceres::cos(delta_norm);
|
|
q_delta[1] = sin_delta_over_delta * delta[0];
|
|
q_delta[2] = sin_delta_over_delta * delta[1];
|
|
q_delta[3] = T(0.);
|
|
// We apply the 'delta' which is interpreted as an angle-axis rotation
|
|
// vector in the xy-plane of the submap frame. This way we can align to
|
|
// gravity because rotations around the z-axis in the submap frame do not
|
|
// change gravity alignment, while disallowing random rotations of the map
|
|
// that have nothing to do with gravity alignment (i.e. we disallow steps
|
|
// just changing "yaw" of the complete map).
|
|
ceres::QuaternionProduct(x, q_delta, x_plus_delta);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
OptimizationProblem::OptimizationProblem(
|
|
const mapping::sparse_pose_graph::proto::OptimizationProblemOptions&
|
|
options,
|
|
FixZ fix_z)
|
|
: options_(options), fix_z_(fix_z) {}
|
|
|
|
OptimizationProblem::~OptimizationProblem() {}
|
|
|
|
void OptimizationProblem::AddImuData(const mapping::Submaps* const trajectory,
|
|
const common::Time time,
|
|
const Eigen::Vector3d& linear_acceleration,
|
|
const Eigen::Vector3d& angular_velocity) {
|
|
imu_data_[trajectory].push_back(
|
|
ImuData{time, linear_acceleration, angular_velocity});
|
|
}
|
|
|
|
void OptimizationProblem::AddTrajectoryNode(
|
|
const mapping::Submaps* const trajectory, const common::Time time,
|
|
const transform::Rigid3d& point_cloud_pose) {
|
|
node_data_.push_back(NodeData{trajectory, time, point_cloud_pose});
|
|
}
|
|
|
|
void OptimizationProblem::SetMaxNumIterations(const int32 max_num_iterations) {
|
|
options_.mutable_ceres_solver_options()->set_max_num_iterations(
|
|
max_num_iterations);
|
|
}
|
|
|
|
void OptimizationProblem::Solve(
|
|
const std::vector<Constraint>& constraints,
|
|
const transform::Rigid3d& submap_0_transform,
|
|
std::vector<transform::Rigid3d>* const submap_transforms) {
|
|
if (node_data_.empty()) {
|
|
// Nothing to optimize.
|
|
return;
|
|
}
|
|
|
|
// Compute the indices of consecutive nodes for each trajectory.
|
|
std::map<const mapping::Submaps*, std::vector<size_t>> nodes_per_trajectory;
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
nodes_per_trajectory[node_data_[j].trajectory].push_back(j);
|
|
}
|
|
|
|
ceres::Problem::Options problem_options;
|
|
ceres::Problem problem(problem_options);
|
|
|
|
const auto translation_parameterization =
|
|
[this]() -> std::unique_ptr<ceres::LocalParameterization> {
|
|
return fix_z_ == FixZ::kYes
|
|
? common::make_unique<ceres::SubsetParameterization>(
|
|
3, std::vector<int>{2})
|
|
: nullptr;
|
|
};
|
|
|
|
// Set the starting point.
|
|
std::deque<CeresPose> C_submaps;
|
|
std::deque<CeresPose> C_point_clouds;
|
|
// Tie the first submap to the origin.
|
|
CHECK(!submap_transforms->empty());
|
|
C_submaps.emplace_back(
|
|
transform::Rigid3d::Identity(), translation_parameterization(),
|
|
common::make_unique<ceres::AutoDiffLocalParameterization<
|
|
ConstantYawQuaternionPlus, 4, 2>>(),
|
|
&problem);
|
|
problem.SetParameterBlockConstant(C_submaps.back().translation());
|
|
|
|
for (size_t i = 1; i != submap_transforms->size(); ++i) {
|
|
C_submaps.emplace_back(
|
|
(*submap_transforms)[i], translation_parameterization(),
|
|
common::make_unique<ceres::QuaternionParameterization>(), &problem);
|
|
}
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
C_point_clouds.emplace_back(
|
|
node_data_[j].point_cloud_pose, translation_parameterization(),
|
|
common::make_unique<ceres::QuaternionParameterization>(), &problem);
|
|
}
|
|
|
|
// Add cost functions for the loop closing constraints.
|
|
for (const Constraint& constraint : constraints) {
|
|
CHECK_GE(constraint.i, 0);
|
|
CHECK_LT(constraint.i, submap_transforms->size());
|
|
CHECK_GE(constraint.j, 0);
|
|
CHECK_LT(constraint.j, node_data_.size());
|
|
problem.AddResidualBlock(
|
|
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
|
|
new SpaCostFunction(constraint.pose)),
|
|
new ceres::HuberLoss(options_.huber_scale()),
|
|
C_submaps[constraint.i].rotation(),
|
|
C_submaps[constraint.i].translation(),
|
|
C_point_clouds[constraint.j].rotation(),
|
|
C_point_clouds[constraint.j].translation());
|
|
}
|
|
|
|
// Add constraints based on IMU observations of angular velocities and
|
|
// linear acceleration.
|
|
for (const auto& trajectory_nodes_pair : nodes_per_trajectory) {
|
|
const mapping::Submaps* const trajectory = trajectory_nodes_pair.first;
|
|
const std::vector<size_t>& node_indices = trajectory_nodes_pair.second;
|
|
const std::deque<ImuData>& imu_data = imu_data_.at(trajectory);
|
|
CHECK(!node_indices.empty());
|
|
CHECK(!imu_data.empty());
|
|
|
|
// Skip IMU data before the first node of this trajectory.
|
|
auto it = imu_data.cbegin();
|
|
while ((it + 1) != imu_data.cend() &&
|
|
(it + 1)->time <= node_data_[node_indices[0]].time) {
|
|
++it;
|
|
}
|
|
|
|
for (size_t j = 1; j < node_indices.size(); ++j) {
|
|
auto it2 = it;
|
|
const IntegrateImuResult<double> result =
|
|
IntegrateImu(imu_data, node_data_[node_indices[j - 1]].time,
|
|
node_data_[node_indices[j]].time, &it);
|
|
if (j + 1 < node_indices.size()) {
|
|
const common::Time first_time = node_data_[node_indices[j - 1]].time;
|
|
const common::Time second_time = node_data_[node_indices[j]].time;
|
|
const common::Time third_time = node_data_[node_indices[j + 1]].time;
|
|
const common::Duration first_duration = second_time - first_time;
|
|
const common::Duration second_duration = third_time - second_time;
|
|
const common::Time first_center = first_time + first_duration / 2;
|
|
const common::Time second_center = second_time + second_duration / 2;
|
|
const IntegrateImuResult<double> result_to_first_center =
|
|
IntegrateImu(imu_data, first_time, first_center, &it2);
|
|
const IntegrateImuResult<double> result_center_to_center =
|
|
IntegrateImu(imu_data, first_center, second_center, &it2);
|
|
// 'delta_velocity' is the change in velocity from the point in time
|
|
// halfway between the first and second poses to halfway between second
|
|
// and third pose. It is computed from IMU data and still contains a
|
|
// delta due to gravity. The orientation of this vector is in the IMU
|
|
// frame at the second pose.
|
|
const Eigen::Vector3d delta_velocity =
|
|
(result.delta_rotation.inverse() *
|
|
result_to_first_center.delta_rotation) *
|
|
result_center_to_center.delta_velocity;
|
|
problem.AddResidualBlock(
|
|
new ceres::AutoDiffCostFunction<AccelerationCostFunction, 3, 4, 3,
|
|
3, 3, 1>(
|
|
new AccelerationCostFunction(
|
|
options_.acceleration_weight(), delta_velocity,
|
|
common::ToSeconds(first_duration),
|
|
common::ToSeconds(second_duration))),
|
|
nullptr, C_point_clouds[node_indices[j]].rotation(),
|
|
C_point_clouds[node_indices[j - 1]].translation(),
|
|
C_point_clouds[node_indices[j]].translation(),
|
|
C_point_clouds[node_indices[j + 1]].translation(),
|
|
&gravity_constant_);
|
|
}
|
|
problem.AddResidualBlock(
|
|
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4>(
|
|
new RotationCostFunction(options_.rotation_weight(),
|
|
result.delta_rotation)),
|
|
nullptr, C_point_clouds[node_indices[j - 1]].rotation(),
|
|
C_point_clouds[node_indices[j]].rotation());
|
|
}
|
|
}
|
|
|
|
// Solve.
|
|
ceres::Solver::Summary summary;
|
|
ceres::Solver::Options ceres_solver_options =
|
|
common::CreateCeresSolverOptions(options_.ceres_solver_options());
|
|
ceres::Solve(ceres_solver_options, &problem, &summary);
|
|
|
|
if (options_.log_solver_summary()) {
|
|
LOG(INFO) << summary.FullReport();
|
|
LOG(INFO) << "Gravity was: " << gravity_constant_;
|
|
}
|
|
|
|
// Store the result.
|
|
for (size_t i = 0; i != submap_transforms->size(); ++i) {
|
|
(*submap_transforms)[i] = C_submaps[i].ToRigid();
|
|
}
|
|
for (size_t j = 0; j != node_data_.size(); ++j) {
|
|
node_data_[j].point_cloud_pose = C_point_clouds[j].ToRigid();
|
|
}
|
|
}
|
|
|
|
const std::vector<NodeData>& OptimizationProblem::node_data() const {
|
|
return node_data_;
|
|
}
|
|
|
|
} // namespace sparse_pose_graph
|
|
} // namespace mapping_3d
|
|
} // namespace cartographer
|