Adds mapping:NodeId for Constraint. (#279)

Also extracted mapping::SubmapId into an id.h file.

Related to #256.

PAIR=SirVer
master
Wolfgang Hess 2017-05-11 17:17:12 +02:00 committed by GitHub
parent 32583e0c5d
commit fde9272533
15 changed files with 297 additions and 193 deletions

61
cartographer/mapping/id.h Normal file
View File

@ -0,0 +1,61 @@
/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_ID_H_
#define CARTOGRAPHER_MAPPING_ID_H_
#include <ostream>
#include <tuple>
namespace cartographer {
namespace mapping {
// Uniquely identifies a trajectory node using a combination of a unique
// trajectory ID and a zero-based index of the node inside that trajectory.
struct NodeId {
int trajectory_id;
int node_index;
bool operator<(const NodeId& other) const {
return std::forward_as_tuple(trajectory_id, node_index) <
std::forward_as_tuple(other.trajectory_id, other.node_index);
}
};
inline std::ostream& operator<<(std::ostream& os, const NodeId& v) {
return os << "(" << v.trajectory_id << ", " << v.node_index << ")";
}
// Uniquely identifies a submap using a combination of a unique trajectory ID
// and a zero-based index of the submap inside that trajectory.
struct SubmapId {
int trajectory_id;
int submap_index;
bool operator<(const SubmapId& other) const {
return std::forward_as_tuple(trajectory_id, submap_index) <
std::forward_as_tuple(other.trajectory_id, other.submap_index);
}
};
inline std::ostream& operator<<(std::ostream& os, const SubmapId& v) {
return os << "(" << v.trajectory_id << ", " << v.submap_index << ")";
}
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_ID_H_

View File

@ -98,9 +98,9 @@ proto::SparsePoseGraph SparsePoseGraph::ToProto() {
constraint.submap_id.submap_index); constraint.submap_id.submap_index);
constraint_proto->mutable_scan_id()->set_trajectory_id( constraint_proto->mutable_scan_id()->set_trajectory_id(
grouped_node_indices[constraint.j].first); constraint.node_id.trajectory_id);
constraint_proto->mutable_scan_id()->set_scan_index( constraint_proto->mutable_scan_id()->set_scan_index(
grouped_node_indices[constraint.j].second); constraint.node_id.node_index);
constraint_proto->set_tag(mapping::ToProto(constraint.tag)); constraint_proto->set_tag(mapping::ToProto(constraint.tag));
} }

View File

@ -23,6 +23,7 @@
#include <vector> #include <vector>
#include "cartographer/common/lua_parameter_dictionary.h" #include "cartographer/common/lua_parameter_dictionary.h"
#include "cartographer/mapping/id.h"
#include "cartographer/mapping/proto/sparse_pose_graph.pb.h" #include "cartographer/mapping/proto/sparse_pose_graph.pb.h"
#include "cartographer/mapping/proto/sparse_pose_graph_options.pb.h" #include "cartographer/mapping/proto/sparse_pose_graph_options.pb.h"
#include "cartographer/mapping/submaps.h" #include "cartographer/mapping/submaps.h"
@ -59,9 +60,7 @@ class SparsePoseGraph {
}; };
mapping::SubmapId submap_id; // 'i' in the paper. mapping::SubmapId submap_id; // 'i' in the paper.
mapping::NodeId node_id; // 'j' in the paper.
// Scan index.
int j;
// Pose of the scan 'j' relative to submap 'i'. // Pose of the scan 'j' relative to submap 'i'.
Pose pose; Pose pose;

View File

@ -14,18 +14,6 @@
* limitations under the License. * limitations under the License.
*/ */
// Submaps is a sequence of maps to which scans are matched and into which scans
// are inserted.
//
// Except during initialization when only a single submap exists, there are
// always two submaps into which scans are inserted: an old submap that is used
// for matching, and a new one, which will be used for matching next, that is
// being initialized.
//
// Once a certain number of scans have been inserted, the new submap is
// considered initialized: the old submap is no longer changed, the "new" submap
// is now the "old" submap and is used for scan-to-map matching. Moreover,
// a "new" submap gets inserted.
#ifndef CARTOGRAPHER_MAPPING_SUBMAPS_H_ #ifndef CARTOGRAPHER_MAPPING_SUBMAPS_H_
#define CARTOGRAPHER_MAPPING_SUBMAPS_H_ #define CARTOGRAPHER_MAPPING_SUBMAPS_H_
@ -35,6 +23,7 @@
#include "Eigen/Geometry" #include "Eigen/Geometry"
#include "cartographer/common/math.h" #include "cartographer/common/math.h"
#include "cartographer/common/port.h" #include "cartographer/common/port.h"
#include "cartographer/mapping/id.h"
#include "cartographer/mapping/probability_values.h" #include "cartographer/mapping/probability_values.h"
#include "cartographer/mapping/proto/submap_visualization.pb.h" #include "cartographer/mapping/proto/submap_visualization.pb.h"
#include "cartographer/mapping/trajectory_node.h" #include "cartographer/mapping/trajectory_node.h"
@ -63,22 +52,6 @@ inline uint8 ProbabilityToLogOddsInteger(const float probability) {
return value; return value;
} }
// Uniquely identifies a submap using a combination of a unique trajectory ID
// and a zero-based index of the submap inside that trajectory.
struct SubmapId {
int trajectory_id;
int submap_index;
bool operator<(const SubmapId& other) const {
return std::forward_as_tuple(trajectory_id, submap_index) <
std::forward_as_tuple(other.trajectory_id, other.submap_index);
}
};
inline std::ostream& operator<<(std::ostream& os, const SubmapId& v) {
return os << "(" << v.trajectory_id << ", " << v.submap_index << ")";
}
// An individual submap, which has an initial position 'origin', keeps track of // An individual submap, which has an initial position 'origin', keeps track of
// how many range data were inserted into it, and sets the // how many range data were inserted into it, and sets the
// 'finished_probability_grid' to be used for loop closing once the map no // 'finished_probability_grid' to be used for loop closing once the map no
@ -102,7 +75,18 @@ struct Submap {
const mapping_2d::ProbabilityGrid* finished_probability_grid = nullptr; const mapping_2d::ProbabilityGrid* finished_probability_grid = nullptr;
}; };
// A container of Submaps. // Submaps is a sequence of maps to which scans are matched and into which scans
// are inserted.
//
// Except during initialization when only a single submap exists, there are
// always two submaps into which scans are inserted: an old submap that is used
// for matching, and a new one, which will be used for matching next, that is
// being initialized.
//
// Once a certain number of scans have been inserted, the new submap is
// considered initialized: the old submap is no longer changed, the "new" submap
// is now the "old" submap and is used for scan-to-map matching. Moreover,
// a "new" submap gets inserted.
class Submaps { class Submaps {
public: public:
static constexpr uint8 kUnknownLogOdds = 0; static constexpr uint8 kUnknownLogOdds = 0;

View File

@ -100,8 +100,11 @@ void SparsePoseGraph::AddScan(
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
trajectory_ids_.emplace(trajectory, trajectory_ids_.size()); trajectory_ids_.emplace(trajectory, trajectory_ids_.size());
const int trajectory_id = trajectory_ids_.at(trajectory); const int trajectory_id = trajectory_ids_.at(trajectory);
const int j = trajectory_nodes_.size(); const int flat_scan_index = trajectory_nodes_.size();
CHECK_LT(j, std::numeric_limits<int>::max()); CHECK_LT(flat_scan_index, std::numeric_limits<int>::max());
scan_index_to_node_id_.push_back(
mapping::NodeId{trajectory_id, num_nodes_in_trajectory_[trajectory_id]});
++num_nodes_in_trajectory_[trajectory_id];
constant_node_data_.push_back(mapping::TrajectoryNode::ConstantData{ constant_node_data_.push_back(mapping::TrajectoryNode::ConstantData{
time, range_data_in_pose, time, range_data_in_pose,
@ -135,7 +138,7 @@ void SparsePoseGraph::AddScan(
} }
AddWorkItem([=]() REQUIRES(mutex_) { AddWorkItem([=]() REQUIRES(mutex_) {
ComputeConstraintsForScan(j, matching_submap, insertion_submaps, ComputeConstraintsForScan(flat_scan_index, matching_submap, insertion_submaps,
finished_submap, pose, covariance); finished_submap, pose, covariance);
}); });
} }
@ -180,8 +183,9 @@ void SparsePoseGraph::ComputeConstraint(const int scan_index,
if (scan_trajectory_id != submap_trajectory_id && if (scan_trajectory_id != submap_trajectory_id &&
global_localization_samplers_[scan_trajectory_id]->Pulse()) { global_localization_samplers_[scan_trajectory_id]->Pulse()) {
constraint_builder_.MaybeAddGlobalConstraint( constraint_builder_.MaybeAddGlobalConstraint(
submap_id, submap_states_[submap_index].submap, scan_index, submap_id, submap_states_[submap_index].submap,
scan_trajectory_id, &trajectory_connectivity_, scan_index_to_node_id_.at(scan_index), scan_index,
&trajectory_connectivity_,
&trajectory_nodes_[scan_index].constant_data->range_data_2d.returns); &trajectory_nodes_[scan_index].constant_data->range_data_2d.returns);
} else { } else {
const bool scan_and_submap_trajectories_connected = const bool scan_and_submap_trajectories_connected =
@ -192,7 +196,8 @@ void SparsePoseGraph::ComputeConstraint(const int scan_index,
if (scan_trajectory_id == submap_trajectory_id || if (scan_trajectory_id == submap_trajectory_id ||
scan_and_submap_trajectories_connected) { scan_and_submap_trajectories_connected) {
constraint_builder_.MaybeAddConstraint( constraint_builder_.MaybeAddConstraint(
submap_id, submap_states_[submap_index].submap, scan_index, submap_id, submap_states_[submap_index].submap,
scan_index_to_node_id_.at(scan_index), scan_index,
&trajectory_nodes_[scan_index].constant_data->range_data_2d.returns, &trajectory_nodes_[scan_index].constant_data->range_data_2d.returns,
relative_pose); relative_pose);
} }
@ -243,7 +248,7 @@ void SparsePoseGraph::ComputeConstraintsForScan(
constexpr double kFakeOrientationCovariance = 1e-6; constexpr double kFakeOrientationCovariance = 1e-6;
constraints_.push_back(Constraint{ constraints_.push_back(Constraint{
submap_states_[submap_index].id, submap_states_[submap_index].id,
scan_index, scan_index_to_node_id_.at(scan_index),
{transform::Embed3D(constraint_transform), {transform::Embed3D(constraint_transform),
common::ComputeSpdMatrixSqrtInverse( common::ComputeSpdMatrixSqrtInverse(
kalman_filter::Embed3D(covariance, kFakePositionCovariance, kalman_filter::Embed3D(covariance, kFakePositionCovariance,

View File

@ -14,16 +14,6 @@
* limitations under the License. * limitations under the License.
*/ */
// Implements the loop closure method called Sparse Pose Adjustment (SPA) from
// Konolige, Kurt, et al. "Efficient sparse pose adjustment for 2d mapping."
// Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
// on (pp. 22--29). IEEE, 2010.
//
// It is extended for submapping:
// Each scan has been matched against one or more submaps (adding a constraint
// for each match), both poses of scans and of submaps are to be optimized.
// All constraints are between a submap i and a scan j.
#ifndef CARTOGRAPHER_MAPPING_2D_SPARSE_POSE_GRAPH_H_ #ifndef CARTOGRAPHER_MAPPING_2D_SPARSE_POSE_GRAPH_H_
#define CARTOGRAPHER_MAPPING_2D_SPARSE_POSE_GRAPH_H_ #define CARTOGRAPHER_MAPPING_2D_SPARSE_POSE_GRAPH_H_
@ -53,7 +43,15 @@
namespace cartographer { namespace cartographer {
namespace mapping_2d { namespace mapping_2d {
// Implements the SPA loop closure method. // Implements the loop closure method called Sparse Pose Adjustment (SPA) from
// Konolige, Kurt, et al. "Efficient sparse pose adjustment for 2d mapping."
// Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
// on (pp. 22--29). IEEE, 2010.
//
// It is extended for submapping:
// Each scan has been matched against one or more submaps (adding a constraint
// for each match), both poses of scans and of submaps are to be optimized.
// All constraints are between a submap i and a scan j.
class SparsePoseGraph : public mapping::SparsePoseGraph { class SparsePoseGraph : public mapping::SparsePoseGraph {
public: public:
SparsePoseGraph(const mapping::proto::SparsePoseGraphOptions& options, SparsePoseGraph(const mapping::proto::SparsePoseGraphOptions& options,
@ -199,6 +197,11 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
std::vector<SubmapState> submap_states_ GUARDED_BY(mutex_); std::vector<SubmapState> submap_states_ GUARDED_BY(mutex_);
std::map<int, int> num_submaps_in_trajectory_ GUARDED_BY(mutex_); std::map<int, int> num_submaps_in_trajectory_ GUARDED_BY(mutex_);
// Mapping to flat indices to aid the transition to per-trajectory data
// structures.
std::map<int, int> num_nodes_in_trajectory_ GUARDED_BY(mutex_);
std::vector<mapping::NodeId> scan_index_to_node_id_ GUARDED_BY(mutex_);
// Connectivity structure of our trajectories by IDs. // Connectivity structure of our trajectories by IDs.
std::vector<std::vector<int>> connected_components_; std::vector<std::vector<int>> connected_components_;
// Trajectory ID to connected component ID. // Trajectory ID to connected component ID.

View File

@ -62,7 +62,8 @@ ConstraintBuilder::~ConstraintBuilder() {
void ConstraintBuilder::MaybeAddConstraint( void ConstraintBuilder::MaybeAddConstraint(
const mapping::SubmapId& submap_id, const mapping::Submap* const submap, const mapping::SubmapId& submap_id, const mapping::Submap* const submap,
const int scan_index, const sensor::PointCloud* const point_cloud, const mapping::NodeId& node_id, const int flat_scan_index,
const sensor::PointCloud* const point_cloud,
const transform::Rigid2d& initial_relative_pose) { const transform::Rigid2d& initial_relative_pose) {
if (initial_relative_pose.translation().norm() > if (initial_relative_pose.translation().norm() >
options_.max_constraint_distance()) { options_.max_constraint_distance()) {
@ -70,15 +71,14 @@ void ConstraintBuilder::MaybeAddConstraint(
} }
if (sampler_.Pulse()) { if (sampler_.Pulse()) {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_LE(scan_index, current_computation_); CHECK_LE(flat_scan_index, current_computation_);
constraints_.emplace_back(); constraints_.emplace_back();
auto* const constraint = &constraints_.back(); auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_]; ++pending_computations_[current_computation_];
const int current_computation = current_computation_; const int current_computation = current_computation_;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem( ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, submap->finished_probability_grid, [=]() EXCLUDES(mutex_) { submap_id, submap->finished_probability_grid, [=]() EXCLUDES(mutex_) {
ComputeConstraint(submap_id, submap, scan_index, ComputeConstraint(submap_id, submap, node_id,
-1, /* scan_trajectory_id */
false, /* match_full_submap */ false, /* match_full_submap */
nullptr, /* trajectory_connectivity */ nullptr, /* trajectory_connectivity */
point_cloud, initial_relative_pose, constraint); point_cloud, initial_relative_pose, constraint);
@ -89,18 +89,18 @@ void ConstraintBuilder::MaybeAddConstraint(
void ConstraintBuilder::MaybeAddGlobalConstraint( void ConstraintBuilder::MaybeAddGlobalConstraint(
const mapping::SubmapId& submap_id, const mapping::Submap* const submap, const mapping::SubmapId& submap_id, const mapping::Submap* const submap,
const int scan_index, const int scan_trajectory_id, const mapping::NodeId& node_id, const int flat_scan_index,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::PointCloud* const point_cloud) { const sensor::PointCloud* const point_cloud) {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_LE(scan_index, current_computation_); CHECK_LE(flat_scan_index, current_computation_);
constraints_.emplace_back(); constraints_.emplace_back();
auto* const constraint = &constraints_.back(); auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_]; ++pending_computations_[current_computation_];
const int current_computation = current_computation_; const int current_computation = current_computation_;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem( ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, submap->finished_probability_grid, [=]() EXCLUDES(mutex_) { submap_id, submap->finished_probability_grid, [=]() EXCLUDES(mutex_) {
ComputeConstraint(submap_id, submap, scan_index, scan_trajectory_id, ComputeConstraint(submap_id, submap, node_id,
true, /* match_full_submap */ true, /* match_full_submap */
trajectory_connectivity, point_cloud, trajectory_connectivity, point_cloud,
transform::Rigid2d::Identity(), constraint); transform::Rigid2d::Identity(), constraint);
@ -108,9 +108,9 @@ void ConstraintBuilder::MaybeAddGlobalConstraint(
}); });
} }
void ConstraintBuilder::NotifyEndOfScan(const int scan_index) { void ConstraintBuilder::NotifyEndOfScan(const int flat_scan_index) {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_EQ(current_computation_, scan_index); CHECK_EQ(current_computation_, flat_scan_index);
++current_computation_; ++current_computation_;
} }
@ -166,7 +166,7 @@ ConstraintBuilder::GetSubmapScanMatcher(const mapping::SubmapId& submap_id) {
void ConstraintBuilder::ComputeConstraint( void ConstraintBuilder::ComputeConstraint(
const mapping::SubmapId& submap_id, const mapping::Submap* const submap, const mapping::SubmapId& submap_id, const mapping::Submap* const submap,
const int scan_index, const int scan_trajectory_id, bool match_full_submap, const mapping::NodeId& node_id, bool match_full_submap,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::PointCloud* const point_cloud, const sensor::PointCloud* const point_cloud,
const transform::Rigid2d& initial_relative_pose, const transform::Rigid2d& initial_relative_pose,
@ -191,9 +191,9 @@ void ConstraintBuilder::ComputeConstraint(
filtered_point_cloud, options_.global_localization_min_score(), filtered_point_cloud, options_.global_localization_min_score(),
&score, &pose_estimate)) { &score, &pose_estimate)) {
CHECK_GT(score, options_.global_localization_min_score()); CHECK_GT(score, options_.global_localization_min_score());
CHECK_GE(scan_trajectory_id, 0); CHECK_GE(node_id.trajectory_id, 0);
CHECK_GE(submap_id.trajectory_id, 0); CHECK_GE(submap_id.trajectory_id, 0);
trajectory_connectivity->Connect(scan_trajectory_id, trajectory_connectivity->Connect(node_id.trajectory_id,
submap_id.trajectory_id); submap_id.trajectory_id);
} else { } else {
return; return;
@ -229,7 +229,7 @@ void ConstraintBuilder::ComputeConstraint(
constexpr double kFakeOrientationCovariance = 1e-6; constexpr double kFakeOrientationCovariance = 1e-6;
constraint->reset(new Constraint{ constraint->reset(new Constraint{
submap_id, submap_id,
scan_index, node_id,
{transform::Embed3D(constraint_transform), {transform::Embed3D(constraint_transform),
common::ComputeSpdMatrixSqrtInverse( common::ComputeSpdMatrixSqrtInverse(
kalman_filter::Embed3D(covariance, kFakePositionCovariance, kalman_filter::Embed3D(covariance, kFakePositionCovariance,
@ -241,9 +241,9 @@ void ConstraintBuilder::ComputeConstraint(
const transform::Rigid2d difference = const transform::Rigid2d difference =
initial_pose.inverse() * pose_estimate; initial_pose.inverse() * pose_estimate;
std::ostringstream info; std::ostringstream info;
info << "Scan index " << scan_index << " with " info << "Node " << node_id << " with " << filtered_point_cloud.size()
<< filtered_point_cloud.size() << " points on submap " << submap_id << " points on submap " << submap_id << " differs by translation "
<< " differs by translation " << std::fixed << std::setprecision(2) << std::fixed << std::setprecision(2)
<< difference.translation().norm() << " rotation " << difference.translation().norm() << " rotation "
<< std::setprecision(3) << std::abs(difference.normalized_angle()) << std::setprecision(3) << std::abs(difference.normalized_angle())
<< " with score " << std::setprecision(1) << 100. * score << " with score " << std::setprecision(1) << 100. * score

View File

@ -72,33 +72,37 @@ class ConstraintBuilder {
ConstraintBuilder& operator=(const ConstraintBuilder&) = delete; ConstraintBuilder& operator=(const ConstraintBuilder&) = delete;
// Schedules exploring a new constraint between 'submap' identified by // Schedules exploring a new constraint between 'submap' identified by
// 'submap_id', and the 'point_cloud' for 'scan_index'. // 'submap_id', and the 'point_cloud' for 'flat_scan_index'.
// The 'initial_pose' is relative to the 'submap'. // The 'initial_pose' is relative to the 'submap'.
// //
// The pointees of 'submap' and 'point_cloud' must stay valid until all // The pointees of 'submap' and 'point_cloud' must stay valid until all
// computations are finished. // computations are finished.
void MaybeAddConstraint(const mapping::SubmapId& submap_id, void MaybeAddConstraint(const mapping::SubmapId& submap_id,
const mapping::Submap* submap, int scan_index, const mapping::Submap* submap,
const mapping::NodeId& node_id,
const int flat_scan_index,
const sensor::PointCloud* point_cloud, const sensor::PointCloud* point_cloud,
const transform::Rigid2d& initial_relative_pose); const transform::Rigid2d& initial_relative_pose);
// Schedules exploring a new constraint between 'submap' identified by // Schedules exploring a new constraint between 'submap' identified by
// 'submap_id' and the 'point_cloud' for 'scan_index'. This performs // 'submap_id' and the 'point_cloud' for 'flat_scan_index'. This performs
// full-submap matching. // full-submap matching.
// //
// The scan at 'scan_index' should be from trajectory 'scan_trajectory_id'. // The scan at 'flat_scan_index' should be from trajectory
// The 'trajectory_connectivity' is updated if the full-submap match succeeds. // 'node_id.trajectory_id'. The 'trajectory_connectivity' is updated if the
// full-submap match succeeds.
// //
// The pointees of 'submap' and 'point_cloud' must stay valid until all // The pointees of 'submap' and 'point_cloud' must stay valid until all
// computations are finished. // computations are finished.
void MaybeAddGlobalConstraint( void MaybeAddGlobalConstraint(
const mapping::SubmapId& submap_id, const mapping::Submap* submap, const mapping::SubmapId& submap_id, const mapping::Submap* submap,
int scan_index, int scan_trajectory_id, const mapping::NodeId& node_id, const int flat_scan_index,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::PointCloud* point_cloud); const sensor::PointCloud* point_cloud);
// Must be called after all computations related to 'scan_index' are added. // Must be called after all computations related to 'flat_scan_index' are
void NotifyEndOfScan(const int scan_index); // added.
void NotifyEndOfScan(const int flat_scan_index);
// Registers the 'callback' to be called with the results, after all // Registers the 'callback' to be called with the results, after all
// computations triggered by MaybeAddConstraint() have finished. // computations triggered by MaybeAddConstraint() have finished.
@ -132,12 +136,12 @@ class ConstraintBuilder {
// Runs in a background thread and does computations for an additional // Runs in a background thread and does computations for an additional
// constraint, assuming 'submap' and 'point_cloud' do not change anymore. // constraint, assuming 'submap' and 'point_cloud' do not change anymore.
// If 'match_full_submap' is true, and global localization succeeds, will // If 'match_full_submap' is true, and global localization succeeds, will
// connect 'scan_trajectory_id' and 'submap_id.trajectory_id' in // connect 'node_id.trajectory_id' and 'submap_id.trajectory_id' in
// 'trajectory_connectivity'. // 'trajectory_connectivity'.
// As output, it may create a new Constraint in 'constraint'. // As output, it may create a new Constraint in 'constraint'.
void ComputeConstraint( void ComputeConstraint(
const mapping::SubmapId& submap_id, const mapping::Submap* submap, const mapping::SubmapId& submap_id, const mapping::Submap* submap,
int scan_index, int scan_trajectory_id, bool match_full_submap, const mapping::NodeId& node_id, bool match_full_submap,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::PointCloud* point_cloud, const sensor::PointCloud* point_cloud,
const transform::Rigid2d& initial_relative_pose, const transform::Rigid2d& initial_relative_pose,

View File

@ -98,13 +98,20 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
return; return;
} }
// Compute the indices of consecutive nodes for each trajectory.
std::vector<std::vector<size_t>> nodes_per_trajectory(submap_data_.size());
for (size_t j = 0; j != node_data_.size(); ++j) {
nodes_per_trajectory.at(node_data_[j].trajectory_id).push_back(j);
}
ceres::Problem::Options problem_options; ceres::Problem::Options problem_options;
ceres::Problem problem(problem_options); ceres::Problem problem(problem_options);
// Set the starting point. // Set the starting point.
// TODO(hrapp): Move ceres data into SubmapData. // TODO(hrapp): Move ceres data into SubmapData.
std::vector<std::deque<std::array<double, 3>>> C_submaps(submap_data_.size()); std::vector<std::deque<std::array<double, 3>>> C_submaps(submap_data_.size());
std::vector<std::array<double, 3>> C_point_clouds(node_data_.size()); std::vector<std::deque<std::array<double, 3>>> C_nodes(
nodes_per_trajectory.size());
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size(); for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) { ++trajectory_id) {
for (size_t submap_index = 0; for (size_t submap_index = 0;
@ -123,15 +130,21 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
} }
} }
} }
for (size_t j = 0; j != node_data_.size(); ++j) { for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
C_point_clouds[j] = FromPose(node_data_[j].point_cloud_pose); ++trajectory_id) {
problem.AddParameterBlock(C_point_clouds[j].data(), 3); C_nodes[trajectory_id].resize(nodes_per_trajectory[trajectory_id].size());
for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
C_nodes[trajectory_id][node_index] =
FromPose(node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose);
problem.AddParameterBlock(C_nodes[trajectory_id][node_index].data(), 3);
}
} }
// Add cost functions for intra- and inter-submap constraints. // Add cost functions for intra- and inter-submap constraints.
for (const Constraint& constraint : constraints) { for (const Constraint& constraint : constraints) {
CHECK_GE(constraint.j, 0);
CHECK_LT(constraint.j, node_data_.size());
problem.AddResidualBlock( problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 3, 3, 3>( new ceres::AutoDiffCostFunction<SpaCostFunction, 3, 3, 3>(
new SpaCostFunction(constraint.pose)), new SpaCostFunction(constraint.pose)),
@ -142,7 +155,9 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
C_submaps.at(constraint.submap_id.trajectory_id) C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index) .at(constraint.submap_id.submap_index)
.data(), .data(),
C_point_clouds[constraint.j].data()); C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.data());
} }
// Add penalties for changes between consecutive scans. // Add penalties for changes between consecutive scans.
@ -151,32 +166,32 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
options_.consecutive_scan_translation_penalty_factor(), options_.consecutive_scan_translation_penalty_factor(),
options_.consecutive_scan_rotation_penalty_factor()); options_.consecutive_scan_rotation_penalty_factor());
// The poses in 'node_data_' are interleaved from multiple trajectories for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
// (although the points from a given trajectory are in time order). ++trajectory_id) {
// 'last_pose_indices[trajectory_id]' is the index of the most-recent pose on if (nodes_per_trajectory[trajectory_id].empty()) {
// 'trajectory_id'. continue;
std::map<int, int> last_pose_indices; }
for (size_t node_index = 1;
for (size_t j = 0; j != node_data_.size(); ++j) { node_index != nodes_per_trajectory[trajectory_id].size();
const int trajectory_id = node_data_[j].trajectory_id; ++node_index) {
// This pose has a predecessor.
if (last_pose_indices.count(trajectory_id) != 0) {
const int last_pose_index = last_pose_indices[trajectory_id];
constexpr double kUnusedPositionPenalty = 1.; constexpr double kUnusedPositionPenalty = 1.;
constexpr double kUnusedOrientationPenalty = 1.; constexpr double kUnusedOrientationPenalty = 1.;
problem.AddResidualBlock( problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 3, 3, 3>( new ceres::AutoDiffCostFunction<
new SpaCostFunction(Constraint::Pose{ SpaCostFunction, 3, 3, 3>(new SpaCostFunction(Constraint::Pose{
transform::Embed3D(node_data_[last_pose_index] transform::Embed3D(
node_data_[nodes_per_trajectory[trajectory_id]
[node_index - 1]]
.initial_point_cloud_pose.inverse() * .initial_point_cloud_pose.inverse() *
node_data_[j].initial_point_cloud_pose), node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.initial_point_cloud_pose),
kalman_filter::Embed3D(consecutive_pose_change_penalty_matrix, kalman_filter::Embed3D(consecutive_pose_change_penalty_matrix,
kUnusedPositionPenalty, kUnusedPositionPenalty,
kUnusedOrientationPenalty)})), kUnusedOrientationPenalty)})),
nullptr /* loss function */, C_point_clouds[last_pose_index].data(), nullptr /* loss function */,
C_point_clouds[j].data()); C_nodes[trajectory_id][node_index - 1].data(),
C_nodes[trajectory_id][node_index].data());
} }
last_pose_indices[trajectory_id] = j;
} }
// Solve. // Solve.
@ -198,9 +213,14 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
ToPose(C_submaps[trajectory_id][submap_index]); ToPose(C_submaps[trajectory_id][submap_index]);
} }
} }
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
for (size_t j = 0; j != node_data_.size(); ++j) { ++trajectory_id) {
node_data_[j].point_cloud_pose = ToPose(C_point_clouds[j]); for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose = ToPose(C_nodes[trajectory_id][node_index]);
}
} }
} }

View File

@ -98,8 +98,11 @@ void SparsePoseGraph::AddScan(
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
trajectory_ids_.emplace(trajectory, trajectory_ids_.size()); trajectory_ids_.emplace(trajectory, trajectory_ids_.size());
const int trajectory_id = trajectory_ids_.at(trajectory); const int trajectory_id = trajectory_ids_.at(trajectory);
const int j = trajectory_nodes_.size(); const int flat_scan_index = trajectory_nodes_.size();
CHECK_LT(j, std::numeric_limits<int>::max()); CHECK_LT(flat_scan_index, std::numeric_limits<int>::max());
scan_index_to_node_id_.push_back(
mapping::NodeId{trajectory_id, num_nodes_in_trajectory_[trajectory_id]});
++num_nodes_in_trajectory_[trajectory_id];
constant_node_data_.push_back(mapping::TrajectoryNode::ConstantData{ constant_node_data_.push_back(mapping::TrajectoryNode::ConstantData{
time, sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}}, time, sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}},
@ -130,7 +133,7 @@ void SparsePoseGraph::AddScan(
} }
AddWorkItem([=]() REQUIRES(mutex_) { AddWorkItem([=]() REQUIRES(mutex_) {
ComputeConstraintsForScan(j, matching_submap, insertion_submaps, ComputeConstraintsForScan(flat_scan_index, matching_submap, insertion_submaps,
finished_submap, pose, covariance); finished_submap, pose, covariance);
}); });
} }
@ -180,8 +183,9 @@ void SparsePoseGraph::ComputeConstraint(const int scan_index,
if (scan_trajectory_id != submap_trajectory_id && if (scan_trajectory_id != submap_trajectory_id &&
global_localization_samplers_[scan_trajectory_id]->Pulse()) { global_localization_samplers_[scan_trajectory_id]->Pulse()) {
constraint_builder_.MaybeAddGlobalConstraint( constraint_builder_.MaybeAddGlobalConstraint(
submap_id, submap_states_[submap_index].submap, scan_index, submap_id, submap_states_[submap_index].submap,
scan_trajectory_id, &trajectory_connectivity_, trajectory_nodes_); scan_index_to_node_id_.at(scan_index), scan_index,
&trajectory_connectivity_, trajectory_nodes_);
} else { } else {
const bool scan_and_submap_trajectories_connected = const bool scan_and_submap_trajectories_connected =
reverse_connected_components_.count(scan_trajectory_id) > 0 && reverse_connected_components_.count(scan_trajectory_id) > 0 &&
@ -191,8 +195,9 @@ void SparsePoseGraph::ComputeConstraint(const int scan_index,
if (scan_trajectory_id == submap_trajectory_id || if (scan_trajectory_id == submap_trajectory_id ||
scan_and_submap_trajectories_connected) { scan_and_submap_trajectories_connected) {
constraint_builder_.MaybeAddConstraint( constraint_builder_.MaybeAddConstraint(
submap_id, submap_states_[submap_index].submap, scan_index, submap_id, submap_states_[submap_index].submap,
trajectory_nodes_, relative_pose); scan_index_to_node_id_.at(scan_index), scan_index, trajectory_nodes_,
relative_pose);
} }
} }
} }
@ -238,7 +243,7 @@ void SparsePoseGraph::ComputeConstraintsForScan(
submap->local_pose().inverse() * pose; submap->local_pose().inverse() * pose;
constraints_.push_back( constraints_.push_back(
Constraint{submap_states_[submap_index].id, Constraint{submap_states_[submap_index].id,
scan_index, scan_index_to_node_id_.at(scan_index),
{constraint_transform, {constraint_transform,
common::ComputeSpdMatrixSqrtInverse( common::ComputeSpdMatrixSqrtInverse(
covariance, options_.constraint_builder_options() covariance, options_.constraint_builder_options()

View File

@ -14,16 +14,6 @@
* limitations under the License. * limitations under the License.
*/ */
// Implements the loop closure method called Sparse Pose Adjustment (SPA) from
// Konolige, Kurt, et al. "Efficient sparse pose adjustment for 2d mapping."
// Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
// on (pp. 22--29). IEEE, 2010.
//
// It is extended for submapping in 3D:
// Each scan has been matched against one or more submaps (adding a constraint
// for each match), both poses of scans and of submaps are to be optimized.
// All constraints are between a submap i and a scan j.
#ifndef CARTOGRAPHER_MAPPING_3D_SPARSE_POSE_GRAPH_H_ #ifndef CARTOGRAPHER_MAPPING_3D_SPARSE_POSE_GRAPH_H_
#define CARTOGRAPHER_MAPPING_3D_SPARSE_POSE_GRAPH_H_ #define CARTOGRAPHER_MAPPING_3D_SPARSE_POSE_GRAPH_H_
@ -53,7 +43,15 @@
namespace cartographer { namespace cartographer {
namespace mapping_3d { namespace mapping_3d {
// Implements the SPA loop closure method. // Implements the loop closure method called Sparse Pose Adjustment (SPA) from
// Konolige, Kurt, et al. "Efficient sparse pose adjustment for 2d mapping."
// Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
// on (pp. 22--29). IEEE, 2010.
//
// It is extended for submapping in 3D:
// Each scan has been matched against one or more submaps (adding a constraint
// for each match), both poses of scans and of submaps are to be optimized.
// All constraints are between a submap i and a scan j.
class SparsePoseGraph : public mapping::SparsePoseGraph { class SparsePoseGraph : public mapping::SparsePoseGraph {
public: public:
SparsePoseGraph(const mapping::proto::SparsePoseGraphOptions& options, SparsePoseGraph(const mapping::proto::SparsePoseGraphOptions& options,
@ -199,6 +197,11 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
std::vector<SubmapState> submap_states_ GUARDED_BY(mutex_); std::vector<SubmapState> submap_states_ GUARDED_BY(mutex_);
std::map<int, int> num_submaps_in_trajectory_ GUARDED_BY(mutex_); std::map<int, int> num_submaps_in_trajectory_ GUARDED_BY(mutex_);
// Mapping to flat indices to aid the transition to per-trajectory data
// structures.
std::map<int, int> num_nodes_in_trajectory_ GUARDED_BY(mutex_);
std::vector<mapping::NodeId> scan_index_to_node_id_ GUARDED_BY(mutex_);
// Connectivity structure of our trajectories by IDs. // Connectivity structure of our trajectories by IDs.
std::vector<std::vector<int>> connected_components_; std::vector<std::vector<int>> connected_components_;
// Trajectory ID to connected component ID. // Trajectory ID to connected component ID.

View File

@ -43,14 +43,14 @@ namespace {
std::vector<mapping::TrajectoryNode> ComputeSubmapNodes( std::vector<mapping::TrajectoryNode> ComputeSubmapNodes(
const std::vector<mapping::TrajectoryNode>& trajectory_nodes, const std::vector<mapping::TrajectoryNode>& trajectory_nodes,
const Submap* const submap, int scan_index, const Submap* const submap, const int flat_scan_index,
const transform::Rigid3d& initial_relative_pose) { const transform::Rigid3d& initial_relative_pose) {
std::vector<mapping::TrajectoryNode> submap_nodes; std::vector<mapping::TrajectoryNode> submap_nodes;
for (const int node_index : submap->trajectory_node_indices) { for (const int node_index : submap->trajectory_node_indices) {
submap_nodes.push_back(mapping::TrajectoryNode{ submap_nodes.push_back(mapping::TrajectoryNode{
trajectory_nodes[node_index].constant_data, trajectory_nodes[node_index].constant_data,
transform::Rigid3d(initial_relative_pose * transform::Rigid3d(initial_relative_pose *
trajectory_nodes[scan_index].pose.inverse() * trajectory_nodes[flat_scan_index].pose.inverse() *
trajectory_nodes[node_index].pose)}); trajectory_nodes[node_index].pose)});
} }
return submap_nodes; return submap_nodes;
@ -77,7 +77,7 @@ ConstraintBuilder::~ConstraintBuilder() {
void ConstraintBuilder::MaybeAddConstraint( void ConstraintBuilder::MaybeAddConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap, const mapping::SubmapId& submap_id, const Submap* const submap,
const int scan_index, const mapping::NodeId& node_id, const int flat_scan_index,
const std::vector<mapping::TrajectoryNode>& trajectory_nodes, const std::vector<mapping::TrajectoryNode>& trajectory_nodes,
const transform::Rigid3d& initial_relative_pose) { const transform::Rigid3d& initial_relative_pose) {
if (initial_relative_pose.translation().norm() > if (initial_relative_pose.translation().norm() >
@ -86,20 +86,19 @@ void ConstraintBuilder::MaybeAddConstraint(
} }
if (sampler_.Pulse()) { if (sampler_.Pulse()) {
const auto submap_nodes = ComputeSubmapNodes( const auto submap_nodes = ComputeSubmapNodes(
trajectory_nodes, submap, scan_index, initial_relative_pose); trajectory_nodes, submap, flat_scan_index, initial_relative_pose);
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_LE(scan_index, current_computation_); CHECK_LE(flat_scan_index, current_computation_);
constraints_.emplace_back(); constraints_.emplace_back();
auto* const constraint = &constraints_.back(); auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_]; ++pending_computations_[current_computation_];
const int current_computation = current_computation_; const int current_computation = current_computation_;
const auto* const point_cloud = const auto* const point_cloud =
&trajectory_nodes[scan_index].constant_data->range_data_3d.returns; &trajectory_nodes[flat_scan_index].constant_data->range_data_3d.returns;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem( ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, submap_nodes, &submap->high_resolution_hybrid_grid, submap_id, submap_nodes, &submap->high_resolution_hybrid_grid,
[=]() EXCLUDES(mutex_) { [=]() EXCLUDES(mutex_) {
ComputeConstraint(submap_id, submap, scan_index, ComputeConstraint(submap_id, submap, node_id,
-1, /* scan_trajectory_id */
false, /* match_full_submap */ false, /* match_full_submap */
nullptr, /* trajectory_connectivity */ nullptr, /* trajectory_connectivity */
point_cloud, initial_relative_pose, constraint); point_cloud, initial_relative_pose, constraint);
@ -110,23 +109,24 @@ void ConstraintBuilder::MaybeAddConstraint(
void ConstraintBuilder::MaybeAddGlobalConstraint( void ConstraintBuilder::MaybeAddGlobalConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap, const mapping::SubmapId& submap_id, const Submap* const submap,
const int scan_index, const int scan_trajectory_id, const mapping::NodeId& node_id, const int flat_scan_index,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const std::vector<mapping::TrajectoryNode>& trajectory_nodes) { const std::vector<mapping::TrajectoryNode>& trajectory_nodes) {
const auto submap_nodes = ComputeSubmapNodes( const auto submap_nodes =
trajectory_nodes, submap, scan_index, transform::Rigid3d::Identity()); ComputeSubmapNodes(trajectory_nodes, submap, flat_scan_index,
transform::Rigid3d::Identity());
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_LE(scan_index, current_computation_); CHECK_LE(flat_scan_index, current_computation_);
constraints_.emplace_back(); constraints_.emplace_back();
auto* const constraint = &constraints_.back(); auto* const constraint = &constraints_.back();
++pending_computations_[current_computation_]; ++pending_computations_[current_computation_];
const int current_computation = current_computation_; const int current_computation = current_computation_;
const auto* const point_cloud = const auto* const point_cloud =
&trajectory_nodes[scan_index].constant_data->range_data_3d.returns; &trajectory_nodes[flat_scan_index].constant_data->range_data_3d.returns;
ScheduleSubmapScanMatcherConstructionAndQueueWorkItem( ScheduleSubmapScanMatcherConstructionAndQueueWorkItem(
submap_id, submap_nodes, &submap->high_resolution_hybrid_grid, submap_id, submap_nodes, &submap->high_resolution_hybrid_grid,
[=]() EXCLUDES(mutex_) { [=]() EXCLUDES(mutex_) {
ComputeConstraint(submap_id, submap, scan_index, scan_trajectory_id, ComputeConstraint(submap_id, submap, node_id,
true, /* match_full_submap */ true, /* match_full_submap */
trajectory_connectivity, point_cloud, trajectory_connectivity, point_cloud,
transform::Rigid3d::Identity(), constraint); transform::Rigid3d::Identity(), constraint);
@ -134,9 +134,9 @@ void ConstraintBuilder::MaybeAddGlobalConstraint(
}); });
} }
void ConstraintBuilder::NotifyEndOfScan(const int scan_index) { void ConstraintBuilder::NotifyEndOfScan(const int flat_scan_index) {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
CHECK_EQ(current_computation_, scan_index); CHECK_EQ(current_computation_, flat_scan_index);
++current_computation_; ++current_computation_;
} }
@ -197,7 +197,7 @@ ConstraintBuilder::GetSubmapScanMatcher(const mapping::SubmapId& submap_id) {
void ConstraintBuilder::ComputeConstraint( void ConstraintBuilder::ComputeConstraint(
const mapping::SubmapId& submap_id, const Submap* const submap, const mapping::SubmapId& submap_id, const Submap* const submap,
const int scan_index, const int scan_trajectory_id, bool match_full_submap, const mapping::NodeId& node_id, bool match_full_submap,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::CompressedPointCloud* const compressed_point_cloud, const sensor::CompressedPointCloud* const compressed_point_cloud,
const transform::Rigid3d& initial_relative_pose, const transform::Rigid3d& initial_relative_pose,
@ -223,9 +223,9 @@ void ConstraintBuilder::ComputeConstraint(
initial_pose.rotation(), filtered_point_cloud, point_cloud, initial_pose.rotation(), filtered_point_cloud, point_cloud,
options_.global_localization_min_score(), &score, &pose_estimate)) { options_.global_localization_min_score(), &score, &pose_estimate)) {
CHECK_GT(score, options_.global_localization_min_score()); CHECK_GT(score, options_.global_localization_min_score());
CHECK_GE(scan_trajectory_id, 0); CHECK_GE(node_id.trajectory_id, 0);
CHECK_GE(submap_id.trajectory_id, 0); CHECK_GE(submap_id.trajectory_id, 0);
trajectory_connectivity->Connect(scan_trajectory_id, trajectory_connectivity->Connect(node_id.trajectory_id,
submap_id.trajectory_id); submap_id.trajectory_id);
} else { } else {
return; return;
@ -258,7 +258,7 @@ void ConstraintBuilder::ComputeConstraint(
submap->local_pose().inverse() * pose_estimate; submap->local_pose().inverse() * pose_estimate;
constraint->reset(new OptimizationProblem::Constraint{ constraint->reset(new OptimizationProblem::Constraint{
submap_id, submap_id,
scan_index, node_id,
{constraint_transform, {constraint_transform,
1. / std::sqrt(options_.lower_covariance_eigenvalue_bound()) * 1. / std::sqrt(options_.lower_covariance_eigenvalue_bound()) *
kalman_filter::PoseCovariance::Identity()}, kalman_filter::PoseCovariance::Identity()},
@ -268,9 +268,9 @@ void ConstraintBuilder::ComputeConstraint(
const transform::Rigid3d difference = const transform::Rigid3d difference =
initial_pose.inverse() * pose_estimate; initial_pose.inverse() * pose_estimate;
std::ostringstream info; std::ostringstream info;
info << "Scan index " << scan_index << " with " info << "Node " << node_id << " with " << filtered_point_cloud.size()
<< filtered_point_cloud.size() << " points on submap " << submap_id << " points on submap " << submap_id << " differs by translation "
<< " differs by translation " << std::fixed << std::setprecision(2) << std::fixed << std::setprecision(2)
<< difference.translation().norm() << " rotation " << difference.translation().norm() << " rotation "
<< std::setprecision(3) << transform::GetAngle(difference) << std::setprecision(3) << transform::GetAngle(difference)
<< " with score " << std::setprecision(1) << 100. * score << "%."; << " with score " << std::setprecision(1) << 100. * score << "%.";

View File

@ -69,32 +69,34 @@ class ConstraintBuilder {
// Schedules exploring a new constraint between 'submap' identified by // Schedules exploring a new constraint between 'submap' identified by
// 'submap_id', and the 'range_data_3d.returns' in 'trajectory_nodes' for // 'submap_id', and the 'range_data_3d.returns' in 'trajectory_nodes' for
// 'scan_index'. The 'initial_relative_pose' is relative to the 'submap'. // 'flat_scan_index'. The 'initial_relative_pose' is relative to the 'submap'.
// //
// The pointees of 'submap' and 'range_data_3d.returns' must stay valid until // The pointees of 'submap' and 'range_data_3d.returns' must stay valid until
// all computations are finished. // all computations are finished.
void MaybeAddConstraint( void MaybeAddConstraint(
const mapping::SubmapId& submap_id, const Submap* submap, int scan_index, const mapping::SubmapId& submap_id, const Submap* submap,
const mapping::NodeId& node_id, int flat_scan_index,
const std::vector<mapping::TrajectoryNode>& trajectory_nodes, const std::vector<mapping::TrajectoryNode>& trajectory_nodes,
const transform::Rigid3d& initial_relative_pose); const transform::Rigid3d& initial_relative_pose);
// Schedules exploring a new constraint between 'submap' identified by // Schedules exploring a new constraint between 'submap' identified by
// 'submap_id' and the 'range_data_3d.returns' in 'trajectory_nodes' for // 'submap_id' and the 'range_data_3d.returns' in 'trajectory_nodes' for
// 'scan_index'. This performs full-submap matching. // 'flat_scan_index'. This performs full-submap matching.
// //
// The scan at 'scan_index' should be from trajectory 'scan_trajectory_id'. // The scan at 'flat_scan_index' should be from 'node_id.trajectory_id'.
// The 'trajectory_connectivity' is updated if the full-submap match succeeds. // The 'trajectory_connectivity' is updated if the full-submap match succeeds.
// //
// The pointees of 'submap' and 'range_data_3d.returns' must stay valid until // The pointees of 'submap' and 'range_data_3d.returns' must stay valid until
// all computations are finished. // all computations are finished.
void MaybeAddGlobalConstraint( void MaybeAddGlobalConstraint(
const mapping::SubmapId& submap_id, const Submap* submap, int scan_index, const mapping::SubmapId& submap_id, const Submap* submap,
int scan_trajectory_id, const mapping::NodeId& node_id, int flat_scan_index,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const std::vector<mapping::TrajectoryNode>& trajectory_nodes); const std::vector<mapping::TrajectoryNode>& trajectory_nodes);
// Must be called after all computations related to 'scan_index' are added. // Must be called after all computations related to 'flat_scan_index' are
void NotifyEndOfScan(int scan_index); // added.
void NotifyEndOfScan(int flat_scan_index);
// Registers the 'callback' to be called with the results, after all // Registers the 'callback' to be called with the results, after all
// computations triggered by MaybeAddConstraint() have finished. // computations triggered by MaybeAddConstraint() have finished.
@ -135,8 +137,8 @@ class ConstraintBuilder {
// 'trajectory_connectivity'. // 'trajectory_connectivity'.
// As output, it may create a new Constraint in 'constraint'. // As output, it may create a new Constraint in 'constraint'.
void ComputeConstraint( void ComputeConstraint(
const mapping::SubmapId& submap_id, const Submap* submap, int scan_index, const mapping::SubmapId& submap_id, const Submap* submap,
int scan_trajectory_id, bool match_full_submap, const mapping::NodeId& node_id, bool match_full_submap,
mapping::TrajectoryConnectivity* trajectory_connectivity, mapping::TrajectoryConnectivity* trajectory_connectivity,
const sensor::CompressedPointCloud* const compressed_point_cloud, const sensor::CompressedPointCloud* const compressed_point_cloud,
const transform::Rigid3d& initial_relative_pose, const transform::Rigid3d& initial_relative_pose,

View File

@ -136,7 +136,7 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
CHECK(!submap_data_[0].empty()); CHECK(!submap_data_[0].empty());
// TODO(hrapp): Move ceres data into SubmapData. // TODO(hrapp): Move ceres data into SubmapData.
std::vector<std::deque<CeresPose>> C_submaps(submap_data_.size()); std::vector<std::deque<CeresPose>> C_submaps(submap_data_.size());
std::deque<CeresPose> C_point_clouds; std::vector<std::deque<CeresPose>> C_nodes(nodes_per_trajectory.size());
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size(); for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) { ++trajectory_id) {
for (size_t submap_index = 0; for (size_t submap_index = 0;
@ -158,16 +158,21 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
} }
} }
} }
for (size_t j = 0; j != node_data_.size(); ++j) { for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
C_point_clouds.emplace_back( ++trajectory_id) {
node_data_[j].point_cloud_pose, translation_parameterization(), for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
C_nodes[trajectory_id].emplace_back(
node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose,
translation_parameterization(),
common::make_unique<ceres::QuaternionParameterization>(), &problem); common::make_unique<ceres::QuaternionParameterization>(), &problem);
} }
}
// Add cost functions for intra- and inter-submap constraints. // Add cost functions for intra- and inter-submap constraints.
for (const Constraint& constraint : constraints) { for (const Constraint& constraint : constraints) {
CHECK_GE(constraint.j, 0);
CHECK_LT(constraint.j, node_data_.size());
problem.AddResidualBlock( problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>( new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(constraint.pose)), new SpaCostFunction(constraint.pose)),
@ -181,36 +186,44 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
C_submaps.at(constraint.submap_id.trajectory_id) C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index) .at(constraint.submap_id.submap_index)
.translation(), .translation(),
C_point_clouds[constraint.j].rotation(), C_nodes.at(constraint.node_id.trajectory_id)
C_point_clouds[constraint.j].translation()); .at(constraint.node_id.node_index)
.rotation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.translation());
} }
// Add constraints based on IMU observations of angular velocities and // Add constraints based on IMU observations of angular velocities and
// linear acceleration. // linear acceleration.
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size(); for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
++trajectory_id) { ++trajectory_id) {
const std::vector<size_t>& node_indices = const std::vector<size_t>& flat_indices =
nodes_per_trajectory[trajectory_id]; nodes_per_trajectory[trajectory_id];
const std::deque<ImuData>& imu_data = imu_data_.at(trajectory_id); const std::deque<ImuData>& imu_data = imu_data_.at(trajectory_id);
CHECK(!node_indices.empty()); CHECK(!flat_indices.empty());
CHECK(!imu_data.empty()); CHECK(!imu_data.empty());
// Skip IMU data before the first node of this trajectory. // Skip IMU data before the first node of this trajectory.
auto it = imu_data.cbegin(); auto it = imu_data.cbegin();
while ((it + 1) != imu_data.cend() && while ((it + 1) != imu_data.cend() &&
(it + 1)->time <= node_data_[node_indices[0]].time) { (it + 1)->time <= node_data_[flat_indices[0]].time) {
++it; ++it;
} }
for (size_t j = 1; j < node_indices.size(); ++j) { for (size_t node_index = 1; node_index < flat_indices.size();
++node_index) {
auto it2 = it; auto it2 = it;
const IntegrateImuResult<double> result = const IntegrateImuResult<double> result =
IntegrateImu(imu_data, node_data_[node_indices[j - 1]].time, IntegrateImu(imu_data, node_data_[flat_indices[node_index - 1]].time,
node_data_[node_indices[j]].time, &it); node_data_[flat_indices[node_index]].time, &it);
if (j + 1 < node_indices.size()) { if (node_index + 1 < flat_indices.size()) {
const common::Time first_time = node_data_[node_indices[j - 1]].time; const common::Time first_time =
const common::Time second_time = node_data_[node_indices[j]].time; node_data_[flat_indices[node_index - 1]].time;
const common::Time third_time = node_data_[node_indices[j + 1]].time; const common::Time second_time =
node_data_[flat_indices[node_index]].time;
const common::Time third_time =
node_data_[flat_indices[node_index + 1]].time;
const common::Duration first_duration = second_time - first_time; const common::Duration first_duration = second_time - first_time;
const common::Duration second_duration = third_time - second_time; const common::Duration second_duration = third_time - second_time;
const common::Time first_center = first_time + first_duration / 2; const common::Time first_center = first_time + first_duration / 2;
@ -235,18 +248,18 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
options_.acceleration_weight(), delta_velocity, options_.acceleration_weight(), delta_velocity,
common::ToSeconds(first_duration), common::ToSeconds(first_duration),
common::ToSeconds(second_duration))), common::ToSeconds(second_duration))),
nullptr, C_point_clouds[node_indices[j]].rotation(), nullptr, C_nodes[trajectory_id].at(node_index).rotation(),
C_point_clouds[node_indices[j - 1]].translation(), C_nodes[trajectory_id].at(node_index - 1).translation(),
C_point_clouds[node_indices[j]].translation(), C_nodes[trajectory_id].at(node_index).translation(),
C_point_clouds[node_indices[j + 1]].translation(), C_nodes[trajectory_id].at(node_index + 1).translation(),
&gravity_constant_); &gravity_constant_);
} }
problem.AddResidualBlock( problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4>( new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4>(
new RotationCostFunction(options_.rotation_weight(), new RotationCostFunction(options_.rotation_weight(),
result.delta_rotation)), result.delta_rotation)),
nullptr, C_point_clouds[node_indices[j - 1]].rotation(), nullptr, C_nodes[trajectory_id].at(node_index - 1).rotation(),
C_point_clouds[node_indices[j]].rotation()); C_nodes[trajectory_id].at(node_index).rotation());
} }
} }
@ -270,9 +283,14 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
C_submaps[trajectory_id][submap_index].ToRigid(); C_submaps[trajectory_id][submap_index].ToRigid();
} }
} }
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
for (size_t j = 0; j != node_data_.size(); ++j) { ++trajectory_id) {
node_data_[j].point_cloud_pose = C_point_clouds[j].ToRigid(); for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose = C_nodes[trajectory_id][node_index].ToRigid();
}
} }
} }

View File

@ -132,13 +132,13 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
std::vector<OptimizationProblem::Constraint> constraints; std::vector<OptimizationProblem::Constraint> constraints;
for (int j = 0; j != kNumNodes; ++j) { for (int j = 0; j != kNumNodes; ++j) {
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 0}, j, mapping::SubmapId{0, 0}, mapping::NodeId{0, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
AddNoise(test_data[j].ground_truth_pose, test_data[j].noise), AddNoise(test_data[j].ground_truth_pose, test_data[j].noise),
Eigen::Matrix<double, 6, 6>::Identity()}}); Eigen::Matrix<double, 6, 6>::Identity()}});
// We add an additional independent, but equally noisy observation. // We add an additional independent, but equally noisy observation.
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 1}, j, mapping::SubmapId{0, 1}, mapping::NodeId{0, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
AddNoise(test_data[j].ground_truth_pose, AddNoise(test_data[j].ground_truth_pose,
RandomYawOnlyTransform(0.2, 0.3)), RandomYawOnlyTransform(0.2, 0.3)),
@ -146,7 +146,7 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
// We add very noisy data with high covariance (i.e. small Lambda) to verify // We add very noisy data with high covariance (i.e. small Lambda) to verify
// it is mostly ignored. // it is mostly ignored.
constraints.push_back(OptimizationProblem::Constraint{ constraints.push_back(OptimizationProblem::Constraint{
mapping::SubmapId{0, 2}, j, mapping::SubmapId{0, 2}, mapping::NodeId{0, j},
OptimizationProblem::Constraint::Pose{ OptimizationProblem::Constraint::Pose{
kSubmap2Transform.inverse() * test_data[j].ground_truth_pose * kSubmap2Transform.inverse() * test_data[j].ground_truth_pose *
RandomTransform(1e3, 3.), RandomTransform(1e3, 3.),