cartographer/cartographer/mapping_3d/sparse_pose_graph/optimization_problem.cc

309 lines
12 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping_3d/sparse_pose_graph/optimization_problem.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "Eigen/Core"
#include "cartographer/common/ceres_solver_options.h"
#include "cartographer/common/make_unique.h"
#include "cartographer/common/math.h"
#include "cartographer/common/time.h"
#include "cartographer/mapping_3d/acceleration_cost_function.h"
#include "cartographer/mapping_3d/ceres_pose.h"
#include "cartographer/mapping_3d/rotation_cost_function.h"
#include "cartographer/mapping_3d/sparse_pose_graph/spa_cost_function.h"
#include "cartographer/transform/transform.h"
#include "ceres/ceres.h"
#include "ceres/jet.h"
#include "ceres/rotation.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping_3d {
namespace sparse_pose_graph {
namespace {
struct ConstantYawQuaternionPlus {
template <typename T>
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
const T delta_norm =
ceres::sqrt(common::Pow2(delta[0]) + common::Pow2(delta[1]));
const T sin_delta_over_delta =
delta_norm < 1e-6 ? T(1.) : ceres::sin(delta_norm) / delta_norm;
T q_delta[4];
q_delta[0] = delta_norm < 1e-6 ? T(1.) : ceres::cos(delta_norm);
q_delta[1] = sin_delta_over_delta * delta[0];
q_delta[2] = sin_delta_over_delta * delta[1];
q_delta[3] = T(0.);
// We apply the 'delta' which is interpreted as an angle-axis rotation
// vector in the xy-plane of the submap frame. This way we can align to
// gravity because rotations around the z-axis in the submap frame do not
// change gravity alignment, while disallowing random rotations of the map
// that have nothing to do with gravity alignment (i.e. we disallow steps
// just changing "yaw" of the complete map).
ceres::QuaternionProduct(x, q_delta, x_plus_delta);
return true;
}
};
} // namespace
OptimizationProblem::OptimizationProblem(
const mapping::sparse_pose_graph::proto::OptimizationProblemOptions&
options,
FixZ fix_z)
: options_(options), fix_z_(fix_z) {}
OptimizationProblem::~OptimizationProblem() {}
void OptimizationProblem::AddImuData(const int trajectory_id,
const common::Time time,
const Eigen::Vector3d& linear_acceleration,
const Eigen::Vector3d& angular_velocity) {
CHECK_GE(trajectory_id, 0);
imu_data_.resize(
std::max(submap_data_.size(), static_cast<size_t>(trajectory_id) + 1));
imu_data_[trajectory_id].push_back(
ImuData{time, linear_acceleration, angular_velocity});
}
void OptimizationProblem::AddTrajectoryNode(
const int trajectory_id, const common::Time time,
const transform::Rigid3d& point_cloud_pose) {
node_data_.push_back(NodeData{trajectory_id, time, point_cloud_pose});
}
void OptimizationProblem::AddSubmap(const int trajectory_id,
const transform::Rigid3d& submap_pose) {
CHECK_GE(trajectory_id, 0);
submap_data_.resize(
std::max(submap_data_.size(), static_cast<size_t>(trajectory_id) + 1));
submap_data_[trajectory_id].push_back(SubmapData{submap_pose});
}
void OptimizationProblem::SetMaxNumIterations(const int32 max_num_iterations) {
options_.mutable_ceres_solver_options()->set_max_num_iterations(
max_num_iterations);
}
void OptimizationProblem::Solve(const std::vector<Constraint>& constraints) {
if (node_data_.empty()) {
// Nothing to optimize.
return;
}
// Compute the indices of consecutive nodes for each trajectory.
std::vector<std::vector<size_t>> nodes_per_trajectory(submap_data_.size());
for (size_t j = 0; j != node_data_.size(); ++j) {
nodes_per_trajectory.at(node_data_[j].trajectory_id).push_back(j);
}
ceres::Problem::Options problem_options;
ceres::Problem problem(problem_options);
const auto translation_parameterization =
[this]() -> std::unique_ptr<ceres::LocalParameterization> {
return fix_z_ == FixZ::kYes
? common::make_unique<ceres::SubsetParameterization>(
3, std::vector<int>{2})
: nullptr;
};
// Set the starting point.
CHECK(!submap_data_.empty());
CHECK(!submap_data_[0].empty());
// TODO(hrapp): Move ceres data into SubmapData.
std::vector<std::deque<CeresPose>> C_submaps(submap_data_.size());
std::vector<std::deque<CeresPose>> C_nodes(nodes_per_trajectory.size());
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) {
for (size_t submap_index = 0;
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
if (trajectory_id == 0 && submap_index == 0) {
// Tie the first submap of the first trajectory to the origin.
C_submaps[trajectory_id].emplace_back(
transform::Rigid3d::Identity(), translation_parameterization(),
common::make_unique<ceres::AutoDiffLocalParameterization<
ConstantYawQuaternionPlus, 4, 2>>(),
&problem);
problem.SetParameterBlockConstant(
C_submaps[trajectory_id].back().translation());
} else {
C_submaps[trajectory_id].emplace_back(
submap_data_[trajectory_id][submap_index].pose,
translation_parameterization(),
common::make_unique<ceres::QuaternionParameterization>(), &problem);
}
}
}
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
++trajectory_id) {
for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
C_nodes[trajectory_id].emplace_back(
node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose,
translation_parameterization(),
common::make_unique<ceres::QuaternionParameterization>(), &problem);
}
}
// Add cost functions for intra- and inter-submap constraints.
for (const Constraint& constraint : constraints) {
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(constraint.pose)),
// Only loop closure constraints should have a loss function.
constraint.tag == Constraint::INTER_SUBMAP
? new ceres::HuberLoss(options_.huber_scale())
: nullptr,
C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index)
.rotation(),
C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index)
.translation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.rotation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.translation());
}
// Add constraints based on IMU observations of angular velocities and
// linear acceleration.
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
++trajectory_id) {
const std::vector<size_t>& flat_indices =
nodes_per_trajectory[trajectory_id];
const std::deque<ImuData>& imu_data = imu_data_.at(trajectory_id);
CHECK(!flat_indices.empty());
CHECK(!imu_data.empty());
// Skip IMU data before the first node of this trajectory.
auto it = imu_data.cbegin();
while ((it + 1) != imu_data.cend() &&
(it + 1)->time <= node_data_[flat_indices[0]].time) {
++it;
}
for (size_t node_index = 1; node_index < flat_indices.size();
++node_index) {
auto it2 = it;
const IntegrateImuResult<double> result =
IntegrateImu(imu_data, node_data_[flat_indices[node_index - 1]].time,
node_data_[flat_indices[node_index]].time, &it);
if (node_index + 1 < flat_indices.size()) {
const common::Time first_time =
node_data_[flat_indices[node_index - 1]].time;
const common::Time second_time =
node_data_[flat_indices[node_index]].time;
const common::Time third_time =
node_data_[flat_indices[node_index + 1]].time;
const common::Duration first_duration = second_time - first_time;
const common::Duration second_duration = third_time - second_time;
const common::Time first_center = first_time + first_duration / 2;
const common::Time second_center = second_time + second_duration / 2;
const IntegrateImuResult<double> result_to_first_center =
IntegrateImu(imu_data, first_time, first_center, &it2);
const IntegrateImuResult<double> result_center_to_center =
IntegrateImu(imu_data, first_center, second_center, &it2);
// 'delta_velocity' is the change in velocity from the point in time
// halfway between the first and second poses to halfway between second
// and third pose. It is computed from IMU data and still contains a
// delta due to gravity. The orientation of this vector is in the IMU
// frame at the second pose.
const Eigen::Vector3d delta_velocity =
(result.delta_rotation.inverse() *
result_to_first_center.delta_rotation) *
result_center_to_center.delta_velocity;
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<AccelerationCostFunction, 3, 4, 3,
3, 3, 1>(
new AccelerationCostFunction(
options_.acceleration_weight(), delta_velocity,
common::ToSeconds(first_duration),
common::ToSeconds(second_duration))),
nullptr, C_nodes[trajectory_id].at(node_index).rotation(),
C_nodes[trajectory_id].at(node_index - 1).translation(),
C_nodes[trajectory_id].at(node_index).translation(),
C_nodes[trajectory_id].at(node_index + 1).translation(),
&gravity_constant_);
}
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4>(
new RotationCostFunction(options_.rotation_weight(),
result.delta_rotation)),
nullptr, C_nodes[trajectory_id].at(node_index - 1).rotation(),
C_nodes[trajectory_id].at(node_index).rotation());
}
}
// Solve.
ceres::Solver::Summary summary;
ceres::Solve(
common::CreateCeresSolverOptions(options_.ceres_solver_options()),
&problem, &summary);
if (options_.log_solver_summary()) {
LOG(INFO) << summary.FullReport();
LOG(INFO) << "Gravity was: " << gravity_constant_;
}
// Store the result.
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) {
for (size_t submap_index = 0;
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
submap_data_[trajectory_id][submap_index].pose =
C_submaps[trajectory_id][submap_index].ToRigid();
}
}
for (size_t trajectory_id = 0; trajectory_id != nodes_per_trajectory.size();
++trajectory_id) {
for (size_t node_index = 0;
node_index != nodes_per_trajectory[trajectory_id].size();
++node_index) {
node_data_[nodes_per_trajectory[trajectory_id][node_index]]
.point_cloud_pose = C_nodes[trajectory_id][node_index].ToRigid();
}
}
}
const std::vector<NodeData>& OptimizationProblem::node_data() const {
return node_data_;
}
const std::vector<std::vector<SubmapData>>& OptimizationProblem::submap_data()
const {
return submap_data_;
}
} // namespace sparse_pose_graph
} // namespace mapping_3d
} // namespace cartographer