OpenCV_4.2.0/opencv_contrib-4.2.0/modules/rgbd/test/test_kinfu.cpp

373 lines
11 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
#include "test_precomp.hpp"
// Inspired by Inigo Quilez' raymarching guide:
// http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
namespace opencv_test { namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f/intr(0, 0), fyinv = 1.f/intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj,
float _depthFactor) : ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor)
{ }
virtual void operator ()(const cv::Range& r) const
{
for(int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for(int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f/(screenVec.x*screenVec.x +
screenVec.y*screenVec.y + 1.f);
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = - dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for(int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir*t;
float d = Scene::map(p);
if(d < 0.000001f)
{
float depth = std::sqrt(t*t*xyt);
pix = depth*depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(int nScene, Size sz, Matx33f _intr, float _depthFactor);
virtual Mat depth(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct CubeSpheresScene : Scene
{
const int framesPerCycle = 32;
const float nCycles = 0.25f;
const Affine3f startPose = Affine3f(Vec3f(-0.5f, 0.f, 0.f), Vec3f(2.1f, 1.4f, -2.1f));
CubeSpheresScene(Size sz, Matx33f _intr, float _depthFactor) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor)
{ }
static float map(Point3f p)
{
float plane = p.y + 0.5f;
Point3f boxPose = p - Point3f(-0.0f, 0.3f, 0.0f);
float boxSize = 0.5f;
float roundness = 0.08f;
Point3f boxTmp;
boxTmp.x = max(abs(boxPose.x) - boxSize, 0.0f);
boxTmp.y = max(abs(boxPose.y) - boxSize, 0.0f);
boxTmp.z = max(abs(boxPose.z) - boxSize, 0.0f);
float roundBox = (float)cv::norm(boxTmp) - roundness;
float sphereRadius = 0.7f;
float sphere = (float)cv::norm(boxPose) - sphereRadius;
float boxMinusSphere = max(roundBox, -sphere);
float sphere2 = (float)cv::norm(p - Point3f(0.3f, 1.f, 0.f)) - 0.1f;
float sphere3 = (float)cv::norm(p - Point3f(0.0f, 1.f, 0.f)) - 0.2f;
float res = min(min(plane, boxMinusSphere), min(sphere2, sphere3));
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<CubeSpheresScene>(frame, pose, reproj, depthFactor));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for(int i = 0; i < (int)(framesPerCycle*nCycles); i++)
{
float angle = (float)(CV_2PI*i/framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -1.f, 0.f)*angle);
pose = pose.translate(Vec3f(startPose.translation()[0]*sin(angle),
startPose.translation()[1],
startPose.translation()[2]*cos(angle)));
poses.push_back(pose);
}
return poses;
}
Size frameSize;
Matx33f intr;
float depthFactor;
};
struct RotatingScene : Scene
{
const int framesPerCycle = 32;
const float nCycles = 0.5f;
const Affine3f startPose = Affine3f(Vec3f(-1.f, 0.f, 0.f), Vec3f(1.5f, 2.f, -1.5f));
RotatingScene(Size sz, Matx33f _intr, float _depthFactor) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor)
{
cv::RNG rng(0);
rng.fill(randTexture, cv::RNG::UNIFORM, 0.f, 1.f);
}
static float noise(Point2f pt)
{
pt.x = abs(pt.x - (int)pt.x);
pt.y = abs(pt.y - (int)pt.y);
pt *= 256.f;
int xi = cvFloor(pt.x), yi = cvFloor(pt.y);
const float* row0 = randTexture[(yi+0)%256];
const float* row1 = randTexture[(yi+1)%256];
float v00 = row0[(xi+0)%256];
float v01 = row0[(xi+1)%256];
float v10 = row1[(xi+0)%256];
float v11 = row1[(xi+1)%256];
float tx = pt.x - xi, ty = pt.y - yi;
float v0 = v00 + tx*(v01 - v00);
float v1 = v10 + tx*(v11 - v10);
return v0 + ty*(v1 - v0);
}
static float map(Point3f p)
{
const Point3f torPlace(0.f, 0.f, 0.f);
Point3f torPos(p - torPlace);
const Point2f torusParams(1.f, 0.2f);
Point2f torq(std::sqrt(torPos.x*torPos.x + torPos.z*torPos.z) - torusParams.x, torPos.y);
float torus = (float)cv::norm(torq) - torusParams.y;
const Point3f cylShift(0.25f, 0.25f, 0.25f);
Point3f cylPos = Point3f(abs(std::fmod(p.x-0.1f, cylShift.x)),
p.y,
abs(std::fmod(p.z-0.2f, cylShift.z))) - cylShift*0.5f;
const Point2f cylParams(0.1f,
0.1f+0.1f*sin(p.x*p.y*5.f /* +std::log(1.f+abs(p.x*0.1f)) */));
Point2f cyld = Point2f(abs(std::sqrt(cylPos.x*cylPos.x + cylPos.z*cylPos.z)), abs(cylPos.y)) - cylParams;
float pins = min(max(cyld.x, cyld.y), 0.0f) + (float)cv::norm(Point2f(max(cyld.x, 0.f), max(cyld.y, 0.f)));
float terrain = p.y + 0.25f*noise(Point2f(p.x, p.z)*0.01f);
float res = min(terrain, max(-pins, torus));
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<RotatingScene>(frame, pose, reproj, depthFactor));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for(int i = 0; i < framesPerCycle*nCycles; i++)
{
float angle = (float)(CV_2PI*i/framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -1.f, 0.f)*angle);
pose = pose.translate(Vec3f(startPose.translation()[0]*sin(angle),
startPose.translation()[1],
startPose.translation()[2]*cos(angle)));
poses.push_back(pose);
}
return poses;
}
Size frameSize;
Matx33f intr;
float depthFactor;
static cv::Mat_<float> randTexture;
};
Mat_<float> RotatingScene::randTexture(256, 256);
Ptr<Scene> Scene::create(int nScene, Size sz, Matx33f _intr, float _depthFactor)
{
if(nScene == 0)
return makePtr<RotatingScene>(sz, _intr, _depthFactor);
else
return makePtr<CubeSpheresScene>(sz, _intr, _depthFactor);
}
static const bool display = false;
void flyTest(bool hiDense, bool inequal)
{
Ptr<kinfu::Params> params;
if(hiDense)
params = kinfu::Params::defaultParams();
else
params = kinfu::Params::coarseParams();
if(inequal)
{
params->volumeDims[0] += 32;
params->volumeDims[1] -= 32;
}
Ptr<Scene> scene = Scene::create(hiDense, params->frameSize, params->intr, params->depthFactor);
Ptr<kinfu::KinFu> kf = kinfu::KinFu::create(params);
std::vector<Affine3f> poses = scene->getPoses();
Affine3f startPoseGT = poses[0], startPoseKF;
Affine3f pose, kfPose;
for(size_t i = 0; i < poses.size(); i++)
{
pose = poses[i];
Mat depth = scene->depth(pose);
ASSERT_TRUE(kf->update(depth));
kfPose = kf->getPose();
if(i == 0)
startPoseKF = kfPose;
pose = ( startPoseGT.inv() * pose )*startPoseKF;
if(display)
{
imshow("depth", depth*(1.f/params->depthFactor/4.f));
Mat rendered;
kf->render(rendered);
imshow("render", rendered);
waitKey(10);
}
}
double rvecThreshold = hiDense ? 0.01 : 0.02;
ASSERT_LT(cv::norm(kfPose.rvec() - pose.rvec()), rvecThreshold);
double poseThreshold = hiDense ? 0.03 : 0.1;
ASSERT_LT(cv::norm(kfPose.translation() - pose.translation()), poseThreshold);
}
#ifdef OPENCV_ENABLE_NONFREE
TEST( KinectFusion, lowDense )
#else
TEST(KinectFusion, DISABLED_lowDense)
#endif
{
flyTest(false, false);
}
#ifdef OPENCV_ENABLE_NONFREE
TEST( KinectFusion, highDense )
#else
TEST(KinectFusion, DISABLED_highDense)
#endif
{
flyTest(true, false);
}
#ifdef OPENCV_ENABLE_NONFREE
TEST( KinectFusion, inequal )
#else
TEST(KinectFusion, DISABLED_inequal)
#endif
{
flyTest(false, true);
}
#ifdef HAVE_OPENCL
#ifdef OPENCV_ENABLE_NONFREE
TEST( KinectFusion, OCL )
#else
TEST(KinectFusion, DISABLED_OCL)
#endif
{
cv::ocl::setUseOpenCL(false);
flyTest(false, false);
cv::ocl::setUseOpenCL(true);
flyTest(false, false);
}
#endif
}} // namespace