373 lines
11 KiB
C++
373 lines
11 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html
|
||
|
|
||
|
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
// Inspired by Inigo Quilez' raymarching guide:
|
||
|
// http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
/** Reprojects screen point to camera space given z coord. */
|
||
|
struct Reprojector
|
||
|
{
|
||
|
Reprojector() {}
|
||
|
inline Reprojector(Matx33f intr)
|
||
|
{
|
||
|
fxinv = 1.f/intr(0, 0), fyinv = 1.f/intr(1, 1);
|
||
|
cx = intr(0, 2), cy = intr(1, 2);
|
||
|
}
|
||
|
template<typename T>
|
||
|
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
|
||
|
{
|
||
|
T x = p.z * (p.x - cx) * fxinv;
|
||
|
T y = p.z * (p.y - cy) * fyinv;
|
||
|
return cv::Point3_<T>(x, y, p.z);
|
||
|
}
|
||
|
|
||
|
float fxinv, fyinv, cx, cy;
|
||
|
};
|
||
|
|
||
|
template<class Scene>
|
||
|
struct RenderInvoker : ParallelLoopBody
|
||
|
{
|
||
|
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
|
||
|
Reprojector _reproj,
|
||
|
float _depthFactor) : ParallelLoopBody(),
|
||
|
frame(_frame),
|
||
|
pose(_pose),
|
||
|
reproj(_reproj),
|
||
|
depthFactor(_depthFactor)
|
||
|
{ }
|
||
|
|
||
|
virtual void operator ()(const cv::Range& r) const
|
||
|
{
|
||
|
for(int y = r.start; y < r.end; y++)
|
||
|
{
|
||
|
float* frameRow = frame[y];
|
||
|
for(int x = 0; x < frame.cols; x++)
|
||
|
{
|
||
|
float pix = 0;
|
||
|
|
||
|
Point3f orig = pose.translation();
|
||
|
// direction through pixel
|
||
|
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
|
||
|
float xyt = 1.f/(screenVec.x*screenVec.x +
|
||
|
screenVec.y*screenVec.y + 1.f);
|
||
|
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
|
||
|
// screen space axis
|
||
|
dir.y = - dir.y;
|
||
|
|
||
|
const float maxDepth = 20.f;
|
||
|
const float maxSteps = 256;
|
||
|
float t = 0.f;
|
||
|
for(int step = 0; step < maxSteps && t < maxDepth; step++)
|
||
|
{
|
||
|
Point3f p = orig + dir*t;
|
||
|
float d = Scene::map(p);
|
||
|
if(d < 0.000001f)
|
||
|
{
|
||
|
float depth = std::sqrt(t*t*xyt);
|
||
|
pix = depth*depthFactor;
|
||
|
break;
|
||
|
}
|
||
|
t += d;
|
||
|
}
|
||
|
|
||
|
frameRow[x] = pix;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Mat_<float>& frame;
|
||
|
Affine3f pose;
|
||
|
Reprojector reproj;
|
||
|
float depthFactor;
|
||
|
};
|
||
|
|
||
|
struct Scene
|
||
|
{
|
||
|
virtual ~Scene() {}
|
||
|
static Ptr<Scene> create(int nScene, Size sz, Matx33f _intr, float _depthFactor);
|
||
|
virtual Mat depth(Affine3f pose) = 0;
|
||
|
virtual std::vector<Affine3f> getPoses() = 0;
|
||
|
};
|
||
|
|
||
|
struct CubeSpheresScene : Scene
|
||
|
{
|
||
|
const int framesPerCycle = 32;
|
||
|
const float nCycles = 0.25f;
|
||
|
const Affine3f startPose = Affine3f(Vec3f(-0.5f, 0.f, 0.f), Vec3f(2.1f, 1.4f, -2.1f));
|
||
|
|
||
|
CubeSpheresScene(Size sz, Matx33f _intr, float _depthFactor) :
|
||
|
frameSize(sz), intr(_intr), depthFactor(_depthFactor)
|
||
|
{ }
|
||
|
|
||
|
static float map(Point3f p)
|
||
|
{
|
||
|
float plane = p.y + 0.5f;
|
||
|
|
||
|
Point3f boxPose = p - Point3f(-0.0f, 0.3f, 0.0f);
|
||
|
float boxSize = 0.5f;
|
||
|
float roundness = 0.08f;
|
||
|
Point3f boxTmp;
|
||
|
boxTmp.x = max(abs(boxPose.x) - boxSize, 0.0f);
|
||
|
boxTmp.y = max(abs(boxPose.y) - boxSize, 0.0f);
|
||
|
boxTmp.z = max(abs(boxPose.z) - boxSize, 0.0f);
|
||
|
float roundBox = (float)cv::norm(boxTmp) - roundness;
|
||
|
|
||
|
float sphereRadius = 0.7f;
|
||
|
float sphere = (float)cv::norm(boxPose) - sphereRadius;
|
||
|
|
||
|
float boxMinusSphere = max(roundBox, -sphere);
|
||
|
|
||
|
float sphere2 = (float)cv::norm(p - Point3f(0.3f, 1.f, 0.f)) - 0.1f;
|
||
|
float sphere3 = (float)cv::norm(p - Point3f(0.0f, 1.f, 0.f)) - 0.2f;
|
||
|
float res = min(min(plane, boxMinusSphere), min(sphere2, sphere3));
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
Mat depth(Affine3f pose) override
|
||
|
{
|
||
|
Mat_<float> frame(frameSize);
|
||
|
Reprojector reproj(intr);
|
||
|
|
||
|
Range range(0, frame.rows);
|
||
|
parallel_for_(range, RenderInvoker<CubeSpheresScene>(frame, pose, reproj, depthFactor));
|
||
|
|
||
|
return std::move(frame);
|
||
|
}
|
||
|
|
||
|
std::vector<Affine3f> getPoses() override
|
||
|
{
|
||
|
std::vector<Affine3f> poses;
|
||
|
for(int i = 0; i < (int)(framesPerCycle*nCycles); i++)
|
||
|
{
|
||
|
float angle = (float)(CV_2PI*i/framesPerCycle);
|
||
|
Affine3f pose;
|
||
|
pose = pose.rotate(startPose.rotation());
|
||
|
pose = pose.rotate(Vec3f(0.f, -1.f, 0.f)*angle);
|
||
|
pose = pose.translate(Vec3f(startPose.translation()[0]*sin(angle),
|
||
|
startPose.translation()[1],
|
||
|
startPose.translation()[2]*cos(angle)));
|
||
|
poses.push_back(pose);
|
||
|
}
|
||
|
|
||
|
return poses;
|
||
|
}
|
||
|
|
||
|
Size frameSize;
|
||
|
Matx33f intr;
|
||
|
float depthFactor;
|
||
|
};
|
||
|
|
||
|
|
||
|
struct RotatingScene : Scene
|
||
|
{
|
||
|
const int framesPerCycle = 32;
|
||
|
const float nCycles = 0.5f;
|
||
|
const Affine3f startPose = Affine3f(Vec3f(-1.f, 0.f, 0.f), Vec3f(1.5f, 2.f, -1.5f));
|
||
|
|
||
|
RotatingScene(Size sz, Matx33f _intr, float _depthFactor) :
|
||
|
frameSize(sz), intr(_intr), depthFactor(_depthFactor)
|
||
|
{
|
||
|
cv::RNG rng(0);
|
||
|
rng.fill(randTexture, cv::RNG::UNIFORM, 0.f, 1.f);
|
||
|
}
|
||
|
|
||
|
static float noise(Point2f pt)
|
||
|
{
|
||
|
pt.x = abs(pt.x - (int)pt.x);
|
||
|
pt.y = abs(pt.y - (int)pt.y);
|
||
|
pt *= 256.f;
|
||
|
|
||
|
int xi = cvFloor(pt.x), yi = cvFloor(pt.y);
|
||
|
|
||
|
const float* row0 = randTexture[(yi+0)%256];
|
||
|
const float* row1 = randTexture[(yi+1)%256];
|
||
|
|
||
|
float v00 = row0[(xi+0)%256];
|
||
|
float v01 = row0[(xi+1)%256];
|
||
|
float v10 = row1[(xi+0)%256];
|
||
|
float v11 = row1[(xi+1)%256];
|
||
|
|
||
|
float tx = pt.x - xi, ty = pt.y - yi;
|
||
|
float v0 = v00 + tx*(v01 - v00);
|
||
|
float v1 = v10 + tx*(v11 - v10);
|
||
|
return v0 + ty*(v1 - v0);
|
||
|
}
|
||
|
|
||
|
static float map(Point3f p)
|
||
|
{
|
||
|
const Point3f torPlace(0.f, 0.f, 0.f);
|
||
|
Point3f torPos(p - torPlace);
|
||
|
const Point2f torusParams(1.f, 0.2f);
|
||
|
Point2f torq(std::sqrt(torPos.x*torPos.x + torPos.z*torPos.z) - torusParams.x, torPos.y);
|
||
|
float torus = (float)cv::norm(torq) - torusParams.y;
|
||
|
|
||
|
const Point3f cylShift(0.25f, 0.25f, 0.25f);
|
||
|
|
||
|
Point3f cylPos = Point3f(abs(std::fmod(p.x-0.1f, cylShift.x)),
|
||
|
p.y,
|
||
|
abs(std::fmod(p.z-0.2f, cylShift.z))) - cylShift*0.5f;
|
||
|
|
||
|
const Point2f cylParams(0.1f,
|
||
|
0.1f+0.1f*sin(p.x*p.y*5.f /* +std::log(1.f+abs(p.x*0.1f)) */));
|
||
|
Point2f cyld = Point2f(abs(std::sqrt(cylPos.x*cylPos.x + cylPos.z*cylPos.z)), abs(cylPos.y)) - cylParams;
|
||
|
float pins = min(max(cyld.x, cyld.y), 0.0f) + (float)cv::norm(Point2f(max(cyld.x, 0.f), max(cyld.y, 0.f)));
|
||
|
|
||
|
float terrain = p.y + 0.25f*noise(Point2f(p.x, p.z)*0.01f);
|
||
|
|
||
|
float res = min(terrain, max(-pins, torus));
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
Mat depth(Affine3f pose) override
|
||
|
{
|
||
|
Mat_<float> frame(frameSize);
|
||
|
Reprojector reproj(intr);
|
||
|
|
||
|
Range range(0, frame.rows);
|
||
|
parallel_for_(range, RenderInvoker<RotatingScene>(frame, pose, reproj, depthFactor));
|
||
|
|
||
|
return std::move(frame);
|
||
|
}
|
||
|
|
||
|
std::vector<Affine3f> getPoses() override
|
||
|
{
|
||
|
std::vector<Affine3f> poses;
|
||
|
for(int i = 0; i < framesPerCycle*nCycles; i++)
|
||
|
{
|
||
|
float angle = (float)(CV_2PI*i/framesPerCycle);
|
||
|
Affine3f pose;
|
||
|
pose = pose.rotate(startPose.rotation());
|
||
|
pose = pose.rotate(Vec3f(0.f, -1.f, 0.f)*angle);
|
||
|
pose = pose.translate(Vec3f(startPose.translation()[0]*sin(angle),
|
||
|
startPose.translation()[1],
|
||
|
startPose.translation()[2]*cos(angle)));
|
||
|
poses.push_back(pose);
|
||
|
}
|
||
|
|
||
|
return poses;
|
||
|
}
|
||
|
|
||
|
Size frameSize;
|
||
|
Matx33f intr;
|
||
|
float depthFactor;
|
||
|
static cv::Mat_<float> randTexture;
|
||
|
};
|
||
|
|
||
|
Mat_<float> RotatingScene::randTexture(256, 256);
|
||
|
|
||
|
Ptr<Scene> Scene::create(int nScene, Size sz, Matx33f _intr, float _depthFactor)
|
||
|
{
|
||
|
if(nScene == 0)
|
||
|
return makePtr<RotatingScene>(sz, _intr, _depthFactor);
|
||
|
else
|
||
|
return makePtr<CubeSpheresScene>(sz, _intr, _depthFactor);
|
||
|
}
|
||
|
|
||
|
static const bool display = false;
|
||
|
|
||
|
void flyTest(bool hiDense, bool inequal)
|
||
|
{
|
||
|
Ptr<kinfu::Params> params;
|
||
|
if(hiDense)
|
||
|
params = kinfu::Params::defaultParams();
|
||
|
else
|
||
|
params = kinfu::Params::coarseParams();
|
||
|
|
||
|
if(inequal)
|
||
|
{
|
||
|
params->volumeDims[0] += 32;
|
||
|
params->volumeDims[1] -= 32;
|
||
|
}
|
||
|
|
||
|
Ptr<Scene> scene = Scene::create(hiDense, params->frameSize, params->intr, params->depthFactor);
|
||
|
|
||
|
Ptr<kinfu::KinFu> kf = kinfu::KinFu::create(params);
|
||
|
|
||
|
std::vector<Affine3f> poses = scene->getPoses();
|
||
|
Affine3f startPoseGT = poses[0], startPoseKF;
|
||
|
Affine3f pose, kfPose;
|
||
|
for(size_t i = 0; i < poses.size(); i++)
|
||
|
{
|
||
|
pose = poses[i];
|
||
|
|
||
|
Mat depth = scene->depth(pose);
|
||
|
|
||
|
ASSERT_TRUE(kf->update(depth));
|
||
|
|
||
|
kfPose = kf->getPose();
|
||
|
if(i == 0)
|
||
|
startPoseKF = kfPose;
|
||
|
|
||
|
pose = ( startPoseGT.inv() * pose )*startPoseKF;
|
||
|
|
||
|
if(display)
|
||
|
{
|
||
|
imshow("depth", depth*(1.f/params->depthFactor/4.f));
|
||
|
Mat rendered;
|
||
|
kf->render(rendered);
|
||
|
imshow("render", rendered);
|
||
|
waitKey(10);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double rvecThreshold = hiDense ? 0.01 : 0.02;
|
||
|
ASSERT_LT(cv::norm(kfPose.rvec() - pose.rvec()), rvecThreshold);
|
||
|
double poseThreshold = hiDense ? 0.03 : 0.1;
|
||
|
ASSERT_LT(cv::norm(kfPose.translation() - pose.translation()), poseThreshold);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef OPENCV_ENABLE_NONFREE
|
||
|
TEST( KinectFusion, lowDense )
|
||
|
#else
|
||
|
TEST(KinectFusion, DISABLED_lowDense)
|
||
|
#endif
|
||
|
{
|
||
|
flyTest(false, false);
|
||
|
}
|
||
|
|
||
|
#ifdef OPENCV_ENABLE_NONFREE
|
||
|
TEST( KinectFusion, highDense )
|
||
|
#else
|
||
|
TEST(KinectFusion, DISABLED_highDense)
|
||
|
#endif
|
||
|
{
|
||
|
flyTest(true, false);
|
||
|
}
|
||
|
|
||
|
#ifdef OPENCV_ENABLE_NONFREE
|
||
|
TEST( KinectFusion, inequal )
|
||
|
#else
|
||
|
TEST(KinectFusion, DISABLED_inequal)
|
||
|
#endif
|
||
|
{
|
||
|
flyTest(false, true);
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_OPENCL
|
||
|
#ifdef OPENCV_ENABLE_NONFREE
|
||
|
TEST( KinectFusion, OCL )
|
||
|
#else
|
||
|
TEST(KinectFusion, DISABLED_OCL)
|
||
|
#endif
|
||
|
{
|
||
|
cv::ocl::setUseOpenCL(false);
|
||
|
flyTest(false, false);
|
||
|
cv::ocl::setUseOpenCL(true);
|
||
|
flyTest(false, false);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
}} // namespace
|