OpenCV_4.2.0/opencv_contrib-4.2.0/modules/stereo/src/quasi_dense_stereo.cpp

686 lines
26 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/video/tracking.hpp>
#include <opencv2/stereo/quasi_dense_stereo.hpp>
#include <queue>
namespace cv {
namespace stereo {
#define NO_MATCH cv::Point(0,0)
typedef std::priority_queue<Match, std::vector<Match>, std::less<Match> > t_matchPriorityQueue;
class QuasiDenseStereoImpl : public QuasiDenseStereo
{
public:
QuasiDenseStereoImpl(cv::Size monoImgSize, cv::String paramFilepath)
{
loadParameters(paramFilepath);
width = monoImgSize.width;
height = monoImgSize.height;
refMap = cv::Mat_<cv::Point2i>(monoImgSize);
mtcMap = cv::Mat_<cv::Point2i>(monoImgSize);
cv::Size integralSize = cv::Size(monoImgSize.width+1, monoImgSize.height+1);
sum0 = cv::Mat_<int32_t>(integralSize);
sum1 = cv::Mat_<int32_t>(integralSize);
ssum0 = cv::Mat_<double>(integralSize);
ssum1 = cv::Mat_<double>(integralSize);
// the disparity image.
disparity = cv::Mat_<float>(monoImgSize);
disparityImg = cv::Mat_<uchar>(monoImgSize);
// texture images.
textureDescLeft = cv::Mat_<int> (monoImgSize);
textureDescRight = cv::Mat_<int> (monoImgSize);
}
~QuasiDenseStereoImpl()
{
rightFeatures.clear();
leftFeatures.clear();
refMap.release();
mtcMap.release();
sum0.release();
sum1.release();
ssum0.release();
ssum1.release();
// the disparity image.
disparity.release();
disparityImg.release();
// texture images.
textureDescLeft.release();
textureDescRight.release();
}
/**
* @brief Computes sparse stereo. The output is stores in refMap and mthMap.
*
* This method used the "goodFeaturesToTrack" function of OpenCV to extracts salient points
* in the left image. Feature locations are used as inputs in the "calcOpticalFlowPyrLK"
* function of OpenCV along with the left and right images. The optical flow algorithm estimates
* tracks the locations of the features in the right image. The two set of locations constitute
* the sparse set of matches. These are then used as seeds in the intensification stage of the
* algorithm.
* @param[in] imgLeft The left Channel of a stereo image.
* @param[in] imgRight The right Channel of a stereo image.
* @param[out] featuresLeft (vector of points) The location of the features in the left image.
* @param[out] featuresRight (vector of points) The location of the features in the right image.
* @note featuresLeft and featuresRight must have the same length and corresponding features
* must be indexed the same way in both vectors.
*/
void sparseMatching(const cv::Mat &imgLeft ,const cv::Mat &imgRight,
std::vector< cv::Point2f > &featuresLeft,
std::vector< cv::Point2f > &featuresRight)
{
std::vector< uchar > featureStatus;
std::vector< float > error;
featuresLeft.clear();
featuresRight.clear();
cv::goodFeaturesToTrack(imgLeft, featuresLeft, Param.gftMaxNumFeatures,
Param.gftQualityThres, Param.gftMinSeperationDist);
cv::Size templateSize(Param.lkTemplateSize,Param.lkTemplateSize);
cv::TermCriteria termination(cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
Param.lkTermParam1, Param.lkTermParam2);
cv::calcOpticalFlowPyrLK(imgLeft, imgRight, featuresLeft, featuresRight,
featureStatus, error,
templateSize, Param.lkPyrLvl, termination);
//discard bad features.
for(size_t i=0; i<featuresLeft.size();)
{
if( featureStatus[i]==0 )
{
std::swap(featuresLeft[i], featuresLeft.back());
featuresLeft.pop_back();
std::swap(featureStatus[i], featureStatus.back());
featureStatus.pop_back();
std::swap(featuresRight[i], featuresRight.back());
featuresRight.pop_back();
}
else
++i;
}
}
/**
* @brief Based on the seeds computed in sparse stereo, this method calculates the semi dense
* set of correspondences.
*
* The method initially discards low quality matches based on their zero-normalized cross
* correlation (zncc) value. This is done by calling the "extractSparseSeeds" method. Remaining
* high quality Matches stored in a t_matchPriorityQueue sorted according to their zncc value.
* The priority queue allows for new matches to be added while keeping track of the best Match.
* The algorithm then process the queue iteratively. In every iteration a Match is popped from
* the queue. The algorithm then tries to find candidate matches by matching every point in a
* small patch around the left Match feature, with a point within a same sized patch around the
* corresponding right feature. For each candidate point match, the zncc is computed and if it
* surpasses a threshold, the candidate pair is stored in a temporary priority queue. After this
* process completed the candidate matches are popped from the Local priority queue and if a
* match is not registered in refMap, it means that is the best match for this point. The
* algorithm registers this point in refMap and also push it to the Seed queue. If a candidate
* match is already registered, it means that is not the best and the algorithm discards it.
*
* @note This method does not have input arguments, but uses the "leftFeatures" and
* "rightFeatures" vectors.
* Also there is no output since the method used refMap and mtcMap to store the results.
* @param[in] featuresLeft The location of the features in the left image.
* @param[in] featuresRight The location of the features in the right image.
*/
void quasiDenseMatching(const std::vector< cv::Point2f > &featuresLeft,
const std::vector< cv::Point2f > &featuresRight)
{
dMatchesLen = 0;
refMap = cv::Mat_<cv::Point2i>(cv::Size(width, height), cv::Point2i(0, 0));
mtcMap = cv::Point2i(0, 0);
// build texture homogeneity reference maps.
buildTextureDescriptor(grayLeft, textureDescLeft);
buildTextureDescriptor(grayRight, textureDescRight);
// generate the intergal images for fast variable window correlation calculations
cv::integral(grayLeft, sum0, ssum0);
cv::integral(grayRight, sum1, ssum1);
// Seed priority queue. The algorithm wants to pop the best seed available in order to densify
//the sparse set.
t_matchPriorityQueue seeds = extractSparseSeeds(featuresLeft, featuresRight,
refMap, mtcMap);
// Do the propagation part
while(!seeds.empty())
{
t_matchPriorityQueue Local;
// Get the best seed at the moment
Match m = seeds.top();
seeds.pop();
// Ignore the border
if(!CheckBorder(m, Param.borderX, Param.borderY, width, height))
continue;
// For all neighbours of the seed in image 1
//the neighborghoud is defined with Param.N*2 dimentrion
for(int y=-Param.neighborhoodSize;y<=Param.neighborhoodSize;y++)
{
for(int x=-Param.neighborhoodSize;x<=Param.neighborhoodSize;x++)
{
cv::Point2i p0 = cv::Point2i(m.p0.x+x,m.p0.y+y);
// Check if its unique in ref
if(refMap.at<cv::Point2i>(p0.y,p0.x) != NO_MATCH)
continue;
// Check the texture descriptor for a boundary
if(textureDescLeft.at<int>(p0.y, p0.x) > Param.textrureThreshold)
continue;
// For all candidate matches.
for(int wy=-Param.disparityGradient; wy<=Param.disparityGradient; wy++)
{
for(int wx=-Param.disparityGradient; wx<=Param.disparityGradient; wx++)
{
cv::Point p1 = cv::Point(m.p1.x+x+wx,m.p1.y+y+wy);
// Check if its unique in ref
if(mtcMap.at<cv::Point2i>(p1.y, p1.x) != NO_MATCH)
continue;
// Check the texture descriptor for a boundary
if(textureDescRight.at<int>(p1.y, p1.x) > Param.textrureThreshold)
continue;
// Calculate ZNCC and store local match.
float corr = iZNCC_c1(p0,p1,Param.corrWinSizeX,Param.corrWinSizeY);
// push back if this is valid match
if( corr > Param.correlationThreshold )
{
Match nm;
nm.p0 = p0;
nm.p1 = p1;
nm.corr = corr;
Local.push(nm);
}
}
}
}
}
// Get seeds from the local
while( !Local.empty() )
{
Match lm = Local.top();
Local.pop();
// Check if its unique in both ref and dst.
if(refMap.at<cv::Point2i>(lm.p0.y, lm.p0.x) != NO_MATCH)
continue;
if(mtcMap.at<cv::Point2i>(lm.p1.y, lm.p1.x) != NO_MATCH)
continue;
// Unique match
refMap.at<cv::Point2i>(lm.p0.y, lm.p0.x) = lm.p1;
mtcMap.at<cv::Point2i>(lm.p1.y, lm.p1.x) = lm.p0;
dMatchesLen++;
// Add to the seed list
seeds.push(lm);
}
}
}
/**
* @brief Compute the disparity map based on the Euclidean distance of corresponding points.
* @param[in] matchMap A matrix of points, the same size as the left channel. Each cell of this
* matrix stores the location of the corresponding point in the right image.
* @param[out] dispMat The disparity map.
* @sa quantizeDisparity
* @sa getDisparity
*/
void computeDisparity(const cv::Mat_<cv::Point2i> &matchMap,
cv::Mat_<float> &dispMat)
{
for(int row=0; row< height; row++)
{
for(int col=0; col<width; col++)
{
cv::Point2d tmpPoint(col, row);
if (matchMap.at<cv::Point2i>(tmpPoint) == NO_MATCH)
{
dispMat.at<float>(tmpPoint) = 200;
continue;
}
//if a match is found, compute the difference in location of the match and current
//pixel.
int dx = col-matchMap.at<cv::Point2i>(tmpPoint).x;
int dy = row-matchMap.at<cv::Point2i>(tmpPoint).y;
//calculate disparity of current pixel.
dispMat.at<float>(tmpPoint) = sqrt(float(dx*dx+dy*dy));
}
}
}
/**
* @brief Disparity map normalization for display purposes. If needed specify the quantization
* level as input argument.
* @param[in] dispMat The disparity Map.
* @param[in] lvls The quantization level of the output disparity map.
* @return Disparity image.
* @note Stores the output in the disparityImage class variable.
* @sa computeDisparity
* @sa getDisparity
*/
cv::Mat quantiseDisparity(const cv::Mat_<float> &dispMat, const int lvls)
{
float tmpPixelVal ;
double min, max;
// minMaxLoc(disparity, &min, &max);
min = 0;
max = lvls;
for(int row=0; row<height; row++)
{
for(int col=0; col<width; col++)
{
tmpPixelVal = dispMat.at<float>(row, col);
tmpPixelVal = (float) (255. - 255.0*(tmpPixelVal-min)/(max-min));
disparityImg.at<uchar>(row, col) = (uint8_t) tmpPixelVal;
}
}
return disparityImg;
}
/**
* @brief Compute the Zero-mean Normalized Cross-correlation.
*
* Compare a patch in the left image, centered in point p0 with a patch in the right image,
* centered in point p1. Patches are defined by wy, wx and the patch size is (2*wx+1) by
* (2*wy+1).
* @param [in] p0 The central point of the patch in the left image.
* @param [in] p1 The central point of the patch in the right image.
* @param [in] wx The distance from the center of the patch to the border in the x direction.
* @param [in] wy The distance from the center of the patch to the border in the y direction.
* @return The value of the the zero-mean normalized cross correlation.
* @note Default value for wx, wy is 1. in this case the patch is 3x3.
*/
float iZNCC_c1(const cv::Point2i p0, const cv::Point2i p1, const int wx=1, const int wy=1)
{
float m0=0.0 ,m1=0.0 ,s0=0.0 ,s1=0.0;
float wa = (float)(2*wy+1)*(2*wx+1);
float zncc=0.0;
patchSumSum2(p0, sum0, ssum0, m0, s0, wx, wy);
patchSumSum2(p1, sum1, ssum1, m1, s1, wx, wy);
m0 /= wa;
m1 /= wa;
// standard deviations
s0 = sqrt(s0-wa*m0*m0);
s1 = sqrt(s1-wa*m1*m1);
for (int col=-wy; col<=wy; col++)
{
for (int row=-wx; row<=wx; row++)
{
zncc += (float)grayLeft.at<uchar>(p0.y+row, p0.x+col) *
(float)grayRight.at<uchar>(p1.y+row, p1.x+col);
}
}
zncc = (zncc-wa*m0*m1)/(s0*s1);
return zncc;
}
/**
* @brief Compute the sum of values and the sum of squared values of a patch with dimensions
* 2*xWindow+1 by 2*yWindow+1 and centered in point p, using the integral image and integral
* image of squared pixel values.
* @param[in] p The center of the patch we want to calculate the sum and sum of squared values.
* @param[in] s The integral image
* @param[in] ss The integral image of squared values.
* @param[out] sum The sum of pixels inside the patch.
* @param[out] ssum The sum of squared values inside the patch.
* @param [in] xWindow The distance from the central pixel of the patch to the border in x
* direction.
* @param [in] yWindow The distance from the central pixel of the patch to the border in y
* direction.
* @note Default value for xWindow, yWindow is 1. in this case the patch is 3x3.
* @note integral images are very useful to sum values of patches in constant time independent
* of their size. For more information refer to the cv::Integral function OpenCV page.
*/
void patchSumSum2(const cv::Point2i p, const cv::Mat &sum, const cv::Mat &ssum,
float &s, float &ss, const int xWindow=1, const int yWindow=1)
{
cv::Point2i otl(p.x-xWindow, p.y-yWindow);
//outer top right
cv::Point2i otr(p.x+xWindow+1, p.y-yWindow);
//outer bottom left
cv::Point2i obl(p.x-xWindow, p.y+yWindow+1);
//outer bottom right
cv::Point2i obr(p.x+xWindow+1, p.y+yWindow+1);
// sum and squared sum for right window
s = (float)(sum.at<int>(otl) - sum.at<int>(otr)
- sum.at<int>(obl) + sum.at<int>(obr));
ss = (float)(ssum.at<double>(otl) - ssum.at<double>(otr)
- ssum.at<double>(obl) + ssum.at<double>(obr));
}
/**
* @brief Create a priority queue containing sparse Matches
*
* This method computes the zncc for each Match extracted in "sparseMatching". If the zncc is
* over the correlation threshold then the Match is inserted in the output priority queue.
* @param[in] featuresLeft The feature locations in the left image.
* @param[in] featuresRight The features locations in the right image.
* @param[out] leftMap A matrix of points, of the same size as the left image. Each cell of this
* matrix stores the location of the corresponding point in the right image.
* @param[out] rightMap A matrix of points, the same size as the right image. Each cell of this
* matrix stores the location of the corresponding point in the left image.
* @return Priority queue containing sparse matches.
*/
t_matchPriorityQueue extractSparseSeeds(const std::vector< cv::Point2f > &featuresLeft,
const std::vector< cv::Point2f > &featuresRight,
cv::Mat_<cv::Point2i> &leftMap,
cv::Mat_<cv::Point2i> &rightMap)
{
t_matchPriorityQueue seeds;
for(uint i=0; i < featuresLeft.size(); i++)
{
// Calculate correlation and store match in Seeds.
Match m;
m.p0 = cv::Point2i(featuresLeft[i]);
m.p1 = cv::Point2i(featuresRight[i]);
m.corr = 0;
// Check if too close to boundary.
if(!CheckBorder(m,Param.borderX,Param.borderY, width, height))
continue;
m.corr = iZNCC_c1(m.p0, m.p1, Param.corrWinSizeX, Param.corrWinSizeY);
// Can we add it to the list
if( m.corr > Param.correlationThreshold )
{
seeds.push(m);
leftMap.at<cv::Point2i>(m.p0.y, m.p0.x) = m.p1;
rightMap.at<cv::Point2i>(m.p1.y, m.p1.x) = m.p0;
}
}
return seeds;
}
/**
* @brief Check if a match is close to the boarder of an image.
* @param[in] m The match containing points in both image.
* @param[in] bx The offset of the image edge that defines the border in x direction.
* @param[in] by The offset of the image edge that defines the border in y direction.
* @param[in] w The width of the image.
* @param[in] h The height of the image.
* @retval true If the feature is in the border of the image.
* @retval false If the feature is not in the border of image.
*/
bool CheckBorder(Match m, int bx, int by, int w, int h)
{
if(m.p0.x<bx || m.p0.x>w-bx || m.p0.y<by || m.p0.y>h-by ||
m.p1.x<bx || m.p1.x>w-bx || m.p1.y<by || m.p1.y>h-by)
{
return false;
}
return true;
}
/**
* @brief Build a texture descriptor
* @param[in] img The image we need to compute the descriptor for.
* @param[out] descriptor The texture descriptor of the image.
*/
void buildTextureDescriptor(cv::Mat &img,cv::Mat &descriptor)
{
float a, b, c, d;
uint8_t center, top, bottom, right, left;
//reset descriptors
// traverse every pixel.
for(int row=1; row<height-1; row++)
{
for(int col=1; col<width-1; col++)
{
// the values of the current pixel.
center = img.at<uchar>(row,col);
top = img.at<uchar>(row-1,col);
bottom = img.at<uchar>(row+1,col);
left = img.at<uchar>(row,col-1);
right = img.at<uchar>(row,col+1);
a = (float)abs(center - top);
b = (float)abs(center - bottom);
c = (float)abs(center - left);
d = (float)abs(center - right);
//choose the biggest of them.
int val = (int) std::max(a, std::max(b, std::max(c, d)));
descriptor.at<int>(row, col) = val;
}
}
}
//-------------------------------------------------------------------------
void getSparseMatches(std::vector<stereo::Match> &sMatches) override
{
Match tmpMatch;
sMatches.clear();
sMatches.reserve(leftFeatures.size());
for (uint i=0; i<leftFeatures.size(); i++)
{
tmpMatch.p0 = leftFeatures[i];
tmpMatch.p1 = rightFeatures[i];
sMatches.push_back(tmpMatch);
}
}
int loadParameters(cv::String filepath) override
{
cv::FileStorage fs;
//if user specified a pathfile, try to use it.
if (!filepath.empty())
{
fs.open(filepath, cv::FileStorage::READ);
}
// If the file opened, read the parameters.
if (fs.isOpened())
{
fs["borderX"] >> Param.borderX;
fs["borderY"] >> Param.borderY;
fs["corrWinSizeX"] >> Param.corrWinSizeX;
fs["corrWinSizeY"] >> Param.corrWinSizeY;
fs["correlationThreshold"] >> Param.correlationThreshold;
fs["textrureThreshold"] >> Param.textrureThreshold;
fs["neighborhoodSize"] >> Param.neighborhoodSize;
fs["disparityGradient"] >> Param.disparityGradient;
fs["lkTemplateSize"] >> Param.lkTemplateSize;
fs["lkPyrLvl"] >> Param.lkPyrLvl;
fs["lkTermParam1"] >> Param.lkTermParam1;
fs["lkTermParam2"] >> Param.lkTermParam2;
fs["gftQualityThres"] >> Param.gftQualityThres;
fs["gftMinSeperationDist"] >> Param.gftMinSeperationDist;
fs["gftMaxNumFeatures"] >> Param.gftMaxNumFeatures;
fs.release();
return 1;
}
// If the filepath was incorrect or non existent, load default parameters.
Param.borderX = 15;
Param.borderY = 15;
// corr window size
Param.corrWinSizeX = 5;
Param.corrWinSizeY = 5;
Param.correlationThreshold = (float)0.5;
Param.textrureThreshold = 200;
Param.neighborhoodSize = 5;
Param.disparityGradient = 1;
Param.lkTemplateSize = 3;
Param.lkPyrLvl = 3;
Param.lkTermParam1 = 3;
Param.lkTermParam2 = (float)0.003;
Param.gftQualityThres = (float)0.01;
Param.gftMinSeperationDist = 10;
Param.gftMaxNumFeatures = 500;
// Return 0 if there was no filepath provides.
// Return -1 if there was a problem opening the filepath provided.
if(filepath.empty())
{
return 0;
}
return -1;
}
int saveParameters(cv::String filepath) override
{
cv::FileStorage fs(filepath, cv::FileStorage::WRITE);
if (fs.isOpened())
{
fs << "borderX" << Param.borderX;
fs << "borderY" << Param.borderY;
fs << "corrWinSizeX" << Param.corrWinSizeX;
fs << "corrWinSizeY" << Param.corrWinSizeY;
fs << "correlationThreshold" << Param.correlationThreshold;
fs << "textrureThreshold" << Param.textrureThreshold;
fs << "neighborhoodSize" << Param.neighborhoodSize;
fs << "disparityGradient" << Param.disparityGradient;
fs << "lkTemplateSize" << Param.lkTemplateSize;
fs << "lkPyrLvl" << Param.lkPyrLvl;
fs << "lkTermParam1" << Param.lkTermParam1;
fs << "lkTermParam2" << Param.lkTermParam2;
fs << "gftQualityThres" << Param.gftQualityThres;
fs << "gftMinSeperationDist" << Param.gftMinSeperationDist;
fs << "gftMaxNumFeatures" << Param.gftMaxNumFeatures;
fs.release();
}
return -1;
}
void getDenseMatches(std::vector<stereo::Match> &denseMatches) override
{
Match tmpMatch;
denseMatches.clear();
denseMatches.reserve(dMatchesLen);
for (int row=0; row<height; row++)
{
for(int col=0; col<width; col++)
{
tmpMatch.p0 = cv::Point(col, row);
tmpMatch.p1 = refMap.at<Point2i>(row, col);
if (tmpMatch.p1 == NO_MATCH)
{
continue;
}
denseMatches.push_back(tmpMatch);
}
}
}
void process(const cv::Mat &imgLeft , const cv::Mat &imgRight) override
{
if (imgLeft.channels()>1)
{
cv::cvtColor(imgLeft, grayLeft, cv::COLOR_BGR2GRAY);
cv::cvtColor(imgRight, grayRight, cv::COLOR_BGR2GRAY);
}
else
{
grayLeft = imgLeft.clone();
grayRight = imgRight.clone();
}
sparseMatching(grayLeft, grayRight, leftFeatures, rightFeatures);
quasiDenseMatching(leftFeatures, rightFeatures);
}
cv::Point2f getMatch(const int x, const int y) override
{
return refMap.at<cv::Point2i>(y, x);
}
cv::Mat getDisparity(uint8_t disparityLvls) override
{
computeDisparity(refMap, disparity);
return quantiseDisparity(disparity, disparityLvls);
}
// Variables used at sparse feature extraction.
// Container for left images' features, extracted with GFT algorithm.
std::vector< cv::Point2f > leftFeatures;
// Container for right images' features, matching is done with LK flow algorithm.
std::vector< cv::Point2f > rightFeatures;
// Width and height of a single image.
int width;
int height;
int dMatchesLen;
// Containers to store input images.
cv::Mat grayLeft;
cv::Mat grayRight;
// Containers to store the locations of each points pair.
cv::Mat_<cv::Point2i> refMap;
cv::Mat_<cv::Point2i> mtcMap;
cv::Mat_<int32_t> sum0;
cv::Mat_<int32_t> sum1;
cv::Mat_<double> ssum0;
cv::Mat_<double> ssum1;
// Container to store the disparity un-normalized
cv::Mat_<float> disparity;
// Container to store the disparity image.
cv::Mat_<uchar> disparityImg;
// Containers to store textures descriptors.
cv::Mat_<int> textureDescLeft;
cv::Mat_<int> textureDescRight;
};
cv::Ptr<QuasiDenseStereo> QuasiDenseStereo::create(cv::Size monoImgSize, cv::String paramFilepath)
{
return cv::makePtr<QuasiDenseStereoImpl>(monoImgSize, paramFilepath);
}
QuasiDenseStereo::~QuasiDenseStereo(){
}
}
}