216 lines
6.7 KiB
C++
216 lines
6.7 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include <opencv2/core/utility.hpp>
|
||
|
#include <opencv2/saliency.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
using namespace saliency;
|
||
|
|
||
|
static const char* keys =
|
||
|
{ "{@saliency_algorithm | | Saliency algorithm <saliencyAlgorithmType.[saliencyAlgorithmTypeSubType]> }"
|
||
|
"{@video_name | | video name }"
|
||
|
"{@start_frame |1| Start frame }"
|
||
|
"{@training_path |ObjectnessTrainedModel| Path of the folder containing the trained files}" };
|
||
|
|
||
|
static void help()
|
||
|
{
|
||
|
cout << "\nThis example shows the functionality of \"Saliency \""
|
||
|
"Call:\n"
|
||
|
"./example_saliency_computeSaliency <saliencyAlgorithmSubType> <video_name> <start_frame> \n"
|
||
|
<< endl;
|
||
|
}
|
||
|
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
|
||
|
CommandLineParser parser( argc, argv, keys );
|
||
|
|
||
|
String saliency_algorithm = parser.get<String>( 0 );
|
||
|
String video_name = parser.get<String>( 1 );
|
||
|
int start_frame = parser.get<int>( 2 );
|
||
|
String training_path = parser.get<String>( 3 );
|
||
|
|
||
|
if( saliency_algorithm.empty() || video_name.empty() )
|
||
|
{
|
||
|
help();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
//open the capture
|
||
|
VideoCapture cap;
|
||
|
cap.open( video_name );
|
||
|
cap.set( CAP_PROP_POS_FRAMES, start_frame );
|
||
|
|
||
|
if( !cap.isOpened() )
|
||
|
{
|
||
|
help();
|
||
|
cout << "***Could not initialize capturing...***\n";
|
||
|
cout << "Current parameter's value: \n";
|
||
|
parser.printMessage();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
Mat frame;
|
||
|
|
||
|
//instantiates the specific Saliency
|
||
|
Ptr<Saliency> saliencyAlgorithm;
|
||
|
|
||
|
Mat binaryMap;
|
||
|
Mat image;
|
||
|
|
||
|
cap >> frame;
|
||
|
if( frame.empty() )
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
frame.copyTo( image );
|
||
|
|
||
|
if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 )
|
||
|
{
|
||
|
Mat saliencyMap;
|
||
|
saliencyAlgorithm = StaticSaliencySpectralResidual::create();
|
||
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
|
||
|
{
|
||
|
StaticSaliencySpectralResidual spec;
|
||
|
spec.computeBinaryMap( saliencyMap, binaryMap );
|
||
|
|
||
|
imshow( "Saliency Map", saliencyMap );
|
||
|
imshow( "Original Image", image );
|
||
|
imshow( "Binary Map", binaryMap );
|
||
|
waitKey( 0 );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 )
|
||
|
{
|
||
|
Mat saliencyMap;
|
||
|
saliencyAlgorithm = StaticSaliencyFineGrained::create();
|
||
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
|
||
|
{
|
||
|
imshow( "Saliency Map", saliencyMap );
|
||
|
imshow( "Original Image", image );
|
||
|
waitKey( 0 );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else if( saliency_algorithm.find( "BING" ) == 0 )
|
||
|
{
|
||
|
if( training_path.empty() )
|
||
|
{
|
||
|
|
||
|
cout << "Path of trained files missing! " << endl;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
saliencyAlgorithm = ObjectnessBING::create();
|
||
|
vector<Vec4i> saliencyMap;
|
||
|
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path );
|
||
|
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( "Results" );
|
||
|
|
||
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
|
||
|
{
|
||
|
int ndet = int(saliencyMap.size());
|
||
|
std::cout << "Objectness done " << ndet << std::endl;
|
||
|
// The result are sorted by objectness. We only use the first maxd boxes here.
|
||
|
int maxd = 7, step = 255 / maxd, jitter=9; // jitter to separate single rects
|
||
|
Mat draw = image.clone();
|
||
|
for (int i = 0; i < std::min(maxd, ndet); i++) {
|
||
|
Vec4i bb = saliencyMap[i];
|
||
|
Scalar col = Scalar(((i*step)%255), 50, 255-((i*step)%255));
|
||
|
Point off(theRNG().uniform(-jitter,jitter), theRNG().uniform(-jitter,jitter));
|
||
|
rectangle(draw, Point(bb[0]+off.x, bb[1]+off.y), Point(bb[2]+off.x, bb[3]+off.y), col, 2);
|
||
|
rectangle(draw, Rect(20, 20+i*10, 10,10), col, -1); // mini temperature scale
|
||
|
}
|
||
|
imshow("BING", draw);
|
||
|
waitKey();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::cout << "No saliency found for " << video_name << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 )
|
||
|
{
|
||
|
saliencyAlgorithm = MotionSaliencyBinWangApr2014::create();
|
||
|
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows );
|
||
|
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init();
|
||
|
|
||
|
bool paused = false;
|
||
|
for ( ;; )
|
||
|
{
|
||
|
if( !paused )
|
||
|
{
|
||
|
|
||
|
cap >> frame;
|
||
|
if( frame.empty() )
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
cvtColor( frame, frame, COLOR_BGR2GRAY );
|
||
|
|
||
|
Mat saliencyMap;
|
||
|
saliencyAlgorithm->computeSaliency( frame, saliencyMap );
|
||
|
|
||
|
imshow( "image", frame );
|
||
|
imshow( "saliencyMap", saliencyMap * 255 );
|
||
|
}
|
||
|
|
||
|
char c = (char) waitKey( 2 );
|
||
|
if( c == 'q' )
|
||
|
break;
|
||
|
if( c == 'p' )
|
||
|
paused = !paused;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|