/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include #include using namespace std; using namespace cv; using namespace saliency; static const char* keys = { "{@saliency_algorithm | | Saliency algorithm }" "{@video_name | | video name }" "{@start_frame |1| Start frame }" "{@training_path |ObjectnessTrainedModel| Path of the folder containing the trained files}" }; static void help() { cout << "\nThis example shows the functionality of \"Saliency \"" "Call:\n" "./example_saliency_computeSaliency \n" << endl; } int main( int argc, char** argv ) { CommandLineParser parser( argc, argv, keys ); String saliency_algorithm = parser.get( 0 ); String video_name = parser.get( 1 ); int start_frame = parser.get( 2 ); String training_path = parser.get( 3 ); if( saliency_algorithm.empty() || video_name.empty() ) { help(); return -1; } //open the capture VideoCapture cap; cap.open( video_name ); cap.set( CAP_PROP_POS_FRAMES, start_frame ); if( !cap.isOpened() ) { help(); cout << "***Could not initialize capturing...***\n"; cout << "Current parameter's value: \n"; parser.printMessage(); return -1; } Mat frame; //instantiates the specific Saliency Ptr saliencyAlgorithm; Mat binaryMap; Mat image; cap >> frame; if( frame.empty() ) { return 0; } frame.copyTo( image ); if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 ) { Mat saliencyMap; saliencyAlgorithm = StaticSaliencySpectralResidual::create(); if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) { StaticSaliencySpectralResidual spec; spec.computeBinaryMap( saliencyMap, binaryMap ); imshow( "Saliency Map", saliencyMap ); imshow( "Original Image", image ); imshow( "Binary Map", binaryMap ); waitKey( 0 ); } } else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 ) { Mat saliencyMap; saliencyAlgorithm = StaticSaliencyFineGrained::create(); if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) { imshow( "Saliency Map", saliencyMap ); imshow( "Original Image", image ); waitKey( 0 ); } } else if( saliency_algorithm.find( "BING" ) == 0 ) { if( training_path.empty() ) { cout << "Path of trained files missing! " << endl; return -1; } else { saliencyAlgorithm = ObjectnessBING::create(); vector saliencyMap; saliencyAlgorithm.dynamicCast()->setTrainingPath( training_path ); saliencyAlgorithm.dynamicCast()->setBBResDir( "Results" ); if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) { int ndet = int(saliencyMap.size()); std::cout << "Objectness done " << ndet << std::endl; // The result are sorted by objectness. We only use the first maxd boxes here. int maxd = 7, step = 255 / maxd, jitter=9; // jitter to separate single rects Mat draw = image.clone(); for (int i = 0; i < std::min(maxd, ndet); i++) { Vec4i bb = saliencyMap[i]; Scalar col = Scalar(((i*step)%255), 50, 255-((i*step)%255)); Point off(theRNG().uniform(-jitter,jitter), theRNG().uniform(-jitter,jitter)); rectangle(draw, Point(bb[0]+off.x, bb[1]+off.y), Point(bb[2]+off.x, bb[3]+off.y), col, 2); rectangle(draw, Rect(20, 20+i*10, 10,10), col, -1); // mini temperature scale } imshow("BING", draw); waitKey(); } else { std::cout << "No saliency found for " << video_name << std::endl; } } } else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 ) { saliencyAlgorithm = MotionSaliencyBinWangApr2014::create(); saliencyAlgorithm.dynamicCast()->setImagesize( image.cols, image.rows ); saliencyAlgorithm.dynamicCast()->init(); bool paused = false; for ( ;; ) { if( !paused ) { cap >> frame; if( frame.empty() ) { return 0; } cvtColor( frame, frame, COLOR_BGR2GRAY ); Mat saliencyMap; saliencyAlgorithm->computeSaliency( frame, saliencyMap ); imshow( "image", frame ); imshow( "saliencyMap", saliencyMap * 255 ); } char c = (char) waitKey( 2 ); if( c == 'q' ) break; if( c == 'p' ) paused = !paused; } } return 0; }