OpenCV_4.2.0/opencv_contrib-4.2.0/modules/rgbd/samples/dynafu_demo.cpp

496 lines
15 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_VERBOSE
#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/rgbd.hpp>
using namespace cv;
using namespace cv::dynafu;
using namespace std;
#ifdef HAVE_OPENCV_VIZ
#include <opencv2/viz.hpp>
#endif
static vector<string> readDepth(std::string fileList);
static vector<string> readDepth(std::string fileList)
{
vector<string> v;
fstream file(fileList);
if(!file.is_open())
throw std::runtime_error("Failed to read depth list");
std::string dir;
size_t slashIdx = fileList.rfind('/');
slashIdx = slashIdx != std::string::npos ? slashIdx : fileList.rfind('\\');
dir = fileList.substr(0, slashIdx);
while(!file.eof())
{
std::string s, imgPath;
std::getline(file, s);
if(s.empty() || s[0] == '#') continue;
std::stringstream ss;
ss << s;
double thumb;
ss >> thumb >> imgPath;
v.push_back(dir+'/'+imgPath);
}
return v;
}
struct DepthWriter
{
DepthWriter(string fileList) :
file(fileList, ios::out), count(0), dir()
{
size_t slashIdx = fileList.rfind('/');
slashIdx = slashIdx != std::string::npos ? slashIdx : fileList.rfind('\\');
dir = fileList.substr(0, slashIdx);
if(!file.is_open())
throw std::runtime_error("Failed to write depth list");
file << "# depth maps saved from device" << endl;
file << "# useless_number filename" << endl;
}
void append(InputArray _depth)
{
Mat depth = _depth.getMat();
string depthFname = cv::format("%04d.png", count);
string fullDepthFname = dir + '/' + depthFname;
if(!imwrite(fullDepthFname, depth))
throw std::runtime_error("Failed to write depth to file " + fullDepthFname);
file << count++ << " " << depthFname << endl;
}
fstream file;
int count;
string dir;
};
namespace Kinect2Params
{
static const Size frameSize = Size(512, 424);
// approximate values, no guarantee to be correct
static const float focal = 366.1f;
static const float cx = 258.2f;
static const float cy = 204.f;
static const float k1 = 0.12f;
static const float k2 = -0.34f;
static const float k3 = 0.12f;
};
struct DepthSource
{
public:
DepthSource(int cam) :
DepthSource("", cam)
{ }
DepthSource(String fileListName) :
DepthSource(fileListName, -1)
{ }
DepthSource(String fileListName, int cam) :
depthFileList(fileListName.empty() ? vector<string>() : readDepth(fileListName)),
frameIdx(0),
vc( cam >= 0 ? VideoCapture(VideoCaptureAPIs::CAP_OPENNI2 + cam) : VideoCapture()),
undistortMap1(),
undistortMap2(),
useKinect2Workarounds(true)
{
}
UMat getDepth()
{
UMat out;
if (!vc.isOpened())
{
if (frameIdx < depthFileList.size())
{
Mat f = cv::imread(depthFileList[frameIdx++], IMREAD_ANYDEPTH);
f.copyTo(out);
}
else
{
return UMat();
}
}
else
{
vc.grab();
vc.retrieve(out, CAP_OPENNI_DEPTH_MAP);
// workaround for Kinect 2
if(useKinect2Workarounds)
{
out = out(Rect(Point(), Kinect2Params::frameSize));
UMat outCopy;
// linear remap adds gradient between valid and invalid pixels
// which causes garbage, use nearest instead
remap(out, outCopy, undistortMap1, undistortMap2, cv::INTER_NEAREST);
cv::flip(outCopy, out, 1);
}
}
if (out.empty())
throw std::runtime_error("Matrix is empty");
return out;
}
bool empty()
{
return depthFileList.empty() && !(vc.isOpened());
}
void updateParams(Params& params)
{
if (vc.isOpened())
{
// this should be set in according to user's depth sensor
int w = (int)vc.get(VideoCaptureProperties::CAP_PROP_FRAME_WIDTH);
int h = (int)vc.get(VideoCaptureProperties::CAP_PROP_FRAME_HEIGHT);
float focal = (float)vc.get(CAP_OPENNI_DEPTH_GENERATOR | CAP_PROP_OPENNI_FOCAL_LENGTH);
// it's recommended to calibrate sensor to obtain its intrinsics
float fx, fy, cx, cy;
Size frameSize;
if(useKinect2Workarounds)
{
fx = fy = Kinect2Params::focal;
cx = Kinect2Params::cx;
cy = Kinect2Params::cy;
frameSize = Kinect2Params::frameSize;
}
else
{
fx = fy = focal;
cx = w/2 - 0.5f;
cy = h/2 - 0.5f;
frameSize = Size(w, h);
}
Matx33f camMatrix = Matx33f(fx, 0, cx,
0, fy, cy,
0, 0, 1);
params.frameSize = frameSize;
params.intr = camMatrix;
params.depthFactor = 1000.f;
Matx<float, 1, 5> distCoeffs;
distCoeffs(0) = Kinect2Params::k1;
distCoeffs(1) = Kinect2Params::k2;
distCoeffs(4) = Kinect2Params::k3;
if(useKinect2Workarounds)
initUndistortRectifyMap(camMatrix, distCoeffs, cv::noArray(),
camMatrix, frameSize, CV_16SC2,
undistortMap1, undistortMap2);
}
}
vector<string> depthFileList;
size_t frameIdx;
VideoCapture vc;
UMat undistortMap1, undistortMap2;
bool useKinect2Workarounds;
};
#ifdef HAVE_OPENCV_VIZ
const std::string vizWindowName = "cloud";
struct PauseCallbackArgs
{
PauseCallbackArgs(DynaFu& _df) : df(_df)
{ }
DynaFu& df;
};
void pauseCallback(const viz::MouseEvent& me, void* args);
void pauseCallback(const viz::MouseEvent& me, void* args)
{
if(me.type == viz::MouseEvent::Type::MouseMove ||
me.type == viz::MouseEvent::Type::MouseScrollDown ||
me.type == viz::MouseEvent::Type::MouseScrollUp)
{
PauseCallbackArgs pca = *((PauseCallbackArgs*)(args));
viz::Viz3d window(vizWindowName);
UMat rendered;
pca.df.render(rendered, window.getViewerPose().matrix);
imshow("render", rendered);
waitKey(1);
}
}
#endif
static const char* keys =
{
"{help h usage ? | | print this message }"
"{depth | | Path to depth.txt file listing a set of depth images }"
"{camera |0| Index of depth camera to be used as a depth source }"
"{coarse | | Run on coarse settings (fast but ugly) or on default (slow but looks better),"
" in coarse mode points and normals are displayed }"
"{idle | | Do not run DynaFu, just display depth frames }"
"{record | | Write depth frames to specified file list"
" (the same format as for the 'depth' key) }"
};
static const std::string message =
"\nThis demo uses live depth input or RGB-D dataset taken from"
"\nhttps://vision.in.tum.de/data/datasets/rgbd-dataset"
"\nto demonstrate KinectFusion implementation \n";
int main(int argc, char **argv)
{
bool coarse = false;
bool idle = false;
string recordPath;
CommandLineParser parser(argc, argv, keys);
parser.about(message);
if(!parser.check())
{
parser.printMessage();
parser.printErrors();
return -1;
}
if(parser.has("help"))
{
parser.printMessage();
return 0;
}
if(parser.has("coarse"))
{
coarse = true;
}
if(parser.has("record"))
{
recordPath = parser.get<String>("record");
}
if(parser.has("idle"))
{
idle = true;
}
Ptr<DepthSource> ds;
if (parser.has("depth"))
ds = makePtr<DepthSource>(parser.get<String>("depth"));
else
ds = makePtr<DepthSource>(parser.get<int>("camera"));
if (ds->empty())
{
std::cerr << "Failed to open depth source" << std::endl;
parser.printMessage();
return -1;
}
Ptr<DepthWriter> depthWriter;
if(!recordPath.empty())
depthWriter = makePtr<DepthWriter>(recordPath);
Ptr<Params> params;
Ptr<DynaFu> df;
if(coarse)
params = Params::coarseParams();
else
params = Params::defaultParams();
// These params can be different for each depth sensor
ds->updateParams(*params);
// Enables OpenCL explicitly (by default can be switched-off)
cv::setUseOptimized(false);
// Scene-specific params should be tuned for each scene individually
//params->volumePose = params->volumePose.translate(Vec3f(0.f, 0.f, 0.5f));
//params->tsdf_max_weight = 16;
namedWindow("OpenGL Window", WINDOW_OPENGL);
resizeWindow("OpenGL Window", 1, 1);
if(!idle)
df = DynaFu::create(params);
#ifdef HAVE_OPENCV_VIZ
cv::viz::Viz3d window(vizWindowName);
window.setViewerPose(Affine3f::Identity());
bool pause = false;
#endif
UMat rendered;
UMat points;
UMat normals;
int64 prevTime = getTickCount();
for(UMat frame = ds->getDepth(); !frame.empty(); frame = ds->getDepth())
{
Mat depthImg, vertImg, normImg;
setOpenGlContext("OpenGL Window");
df->renderSurface(depthImg, vertImg, normImg);
if(!depthImg.empty())
{
UMat depthCvt8, vertCvt8, normCvt8;
convertScaleAbs(depthImg, depthCvt8, 0.33*255);
vertImg.convertTo(vertCvt8, CV_8UC3, 255);
normImg.convertTo(normCvt8, CV_8UC3, 255);
imshow("Surface prediction", depthCvt8);
imshow("vertex prediction", vertCvt8);
imshow("normal prediction", normCvt8);
}
if(depthWriter)
depthWriter->append(frame);
#ifdef HAVE_OPENCV_VIZ
if(pause)
{
// doesn't happen in idle mode
df->getCloud(points, normals);
if(!points.empty() && !normals.empty())
{
viz::WCloud cloudWidget(points, viz::Color::white());
viz::WCloudNormals cloudNormals(points, normals, /*level*/1, /*scale*/0.05, viz::Color::gray());
Vec3d volSize = df->getParams().voxelSize*Vec3d(df->getParams().volumeDims);
window.showWidget("cube", viz::WCube(Vec3d::all(0),
volSize),
df->getParams().volumePose);
PauseCallbackArgs pca(*df);
window.registerMouseCallback(pauseCallback, (void*)&pca);
window.showWidget("text", viz::WText(cv::String("Move camera in this window. "
"Close the window or press Q to resume"), Point()));
window.spin();
window.removeWidget("text");
//window.removeWidget("cloud");
//window.removeWidget("normals");
window.registerMouseCallback(0);
}
pause = false;
}
else
#endif
{
UMat cvt8;
float depthFactor = params->depthFactor;
convertScaleAbs(frame, cvt8, 0.25*256. / depthFactor);
if(!idle)
{
imshow("depth", cvt8);
if(!df->update(frame))
{
df->reset();
std::cout << "reset" << std::endl;
}
#ifdef HAVE_OPENCV_VIZ
else
{
Mat meshCloud, meshEdges, meshPoly;
df->marchCubes(meshCloud, meshEdges);
for(int i = 0; i < meshEdges.size().height; i += 3)
{
meshPoly.push_back<int>(3);
meshPoly.push_back<int>(meshEdges.at<int>(i, 0));
meshPoly.push_back<int>(meshEdges.at<int>(i+1, 0));
meshPoly.push_back<int>(meshEdges.at<int>(i+2, 0));
}
viz::WMesh mesh(meshCloud.t(), meshPoly);
window.showWidget("mesh", mesh);
if(coarse)
{
df->getCloud(points, normals);
if(!points.empty() && !normals.empty())
{
viz::WCloud cloudWidget(points, viz::Color::white());
viz::WCloudNormals cloudNormals(points, normals, /*level*/1, /*scale*/0.05, viz::Color::gray());
//window.showWidget("cloud", cloudWidget);
//window.showWidget("normals", cloudNormals);
if(!df->getNodesPos().empty())
{
viz::WCloud nodeCloud(df->getNodesPos(), viz::Color::red());
nodeCloud.setRenderingProperty(viz::POINT_SIZE, 4);
window.showWidget("nodes", nodeCloud);
}
}
}
//window.showWidget("worldAxes", viz::WCoordinateSystem());
Vec3d volSize = df->getParams().voxelSize*df->getParams().volumeDims;
window.showWidget("cube", viz::WCube(Vec3d::all(0),
volSize),
df->getParams().volumePose);
window.setViewerPose(df->getPose());
window.spinOnce(1, true);
}
#endif
df->render(rendered);
}
else
{
rendered = cvt8;
}
}
int64 newTime = getTickCount();
putText(rendered, cv::format("FPS: %2d press R to reset, P to pause, Q to quit",
(int)(getTickFrequency()/(newTime - prevTime))),
Point(0, rendered.rows-1), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 255));
prevTime = newTime;
imshow("render", rendered);
int c = waitKey(1);
switch (c)
{
case 'r':
if(!idle)
df->reset();
break;
case 'q':
return 0;
#ifdef HAVE_OPENCV_VIZ
case 'p':
if(!idle)
pause = true;
#endif
default:
break;
}
}
return 0;
}