Multi-Purpose-MPC/map.py

102 lines
3.6 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from skimage.morphology import remove_small_holes
from PIL import Image
from skimage.draw import line_aa
class Map:
"""
Handle for map message. Contains a subscriber to the map topic and
processes the map. Numpy array version of the
map available as member variable.
"""
def __init__(self, file_path, value_unknown=50, threshold_occupied=90, origin=[-30.0, -24.0], resolution=0.059999):
self.value_unknown = value_unknown
self.threshold_occupied = threshold_occupied
# instantiate member variables
self.data = np.array(Image.open(file_path))[:, :, 0] # numpy array containing map data
self.process_map()
self.height = self.data.shape[0] # height of the map in px
self.width = self.data.shape[1] # width of the map in px
self.resolution = resolution # resolution of the map in m/px
self.origin = origin # x and y coordinates of map origin
# (bottom-left corner) in m
self.obstacles = list()
self.boundaries = list()
def w2m(self, x, y):
"""
World2Map. Transform coordinates from global coordinate system to
map coordinates.
:param x: x coordinate in global coordinate system
:param y: y coordinate in global coordinate system
:return: discrete x and y coordinates in px
"""
d_x = np.floor((x - self.origin[0]) / self.resolution)
d_y = np.floor((y - self.origin[1]) / self.resolution)
return int(d_x), int(d_y)
def m2w(self, dx, dy):
"""
World2Map. Transform coordinates from global coordinate system to
map coordinates.
:param x: x coordinate in global coordinate system
:param y: y coordinate in global coordinate system
:return: discrete x and y coordinates in px
"""
x = (dx + 0.5) * self.resolution + self.origin[0]
y = (dy + 0.5) * self.resolution + self.origin[1]
return x, y
def add_obstacles(self, obstacles):
"""
Add obstacles to the path.
:param obstacles: list of obstacle objects
"""
# Extend list of obstacles
self.obstacles.extend(obstacles)
# Iterate over list of obstacles
for obstacle in obstacles:
# Compute radius of circular object in pixels
radius_px = int(np.ceil(obstacle.radius / self.resolution))
# Get center coordinates of obstacle in map coordinates
cx_px, cy_px = self.w2m(obstacle.cx, obstacle.cy)
# Add circular object to map
y, x = np.ogrid[-radius_px: radius_px, -radius_px: radius_px]
index = x ** 2 + y ** 2 <= radius_px ** 2
self.data[cy_px-radius_px:cy_px+radius_px, cx_px-radius_px:
cx_px+radius_px][index] = 0
def add_boundary(self, boundaries):
# Extend list of boundaries
self.boundaries.extend(boundaries)
# Iterate over list of boundaries
for boundary in boundaries:
sx = self.w2m(boundary[0][0], boundary[0][1])
gx = self.w2m(boundary[1][0], boundary[1][1])
path_x, path_y, _ = line_aa(sx[0], sx[1], gx[0], gx[1])
for x, y in zip(path_x, path_y):
self.data[y, x] = 0
def process_map(self):
self.data = np.where(self.data >= 100, 1, 0)
self.data = remove_small_holes(self.data, area_threshold=5,
connectivity=8).astype(np.int8)
if __name__ == '__main__':
map = Map('map_floor2.png')
plt.imshow(map.data, cmap='gray')
plt.show()