Multi-Purpose-MPC/MPC.py

307 lines
11 KiB
Python

import numpy as np
import cvxpy as cp
import osqp
import scipy as sp
from scipy import sparse
##################
# MPC Controller #
##################
class MPC:
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
"""
Constructor for the Model Predictive Controller.
:param model: bicycle model object to be controlled
:param T: time horizon | int
:param Q: state cost matrix
:param R: input cost matrix
:param QN: final state cost matrix
:param StateConstraints: dictionary of state constraints
:param InputConstraints: dictionary of input constraints
:param Reference: reference values for state variables
"""
# Parameters
self.N = N # horizon
self.Q = Q # weight matrix state vector
self.R = R # weight matrix input vector
self.QN = QN # weight matrix terminal
# Model
self.model = model
# Constraints
self.state_constraints = StateConstraints
self.input_constraints = InputConstraints
# Current control and prediction
self.current_prediction = None
# Initialize Optimization Problem
self.problem = self._init_problem()
def _init_problem(self):
"""
Initialize parametrized optimization problem to be solved at each
time step.
"""
# number of input and state variables
nx = self.model.n_states
nu = 1
# system matrices
self.A = cp.Parameter(shape=(nx, nx*self.N))
self.B = cp.Parameter(shape=(nx, nu*self.N))
self.A.value = np.zeros(self.A.shape)
self.B.value = np.zeros(self.B.shape)
# reference values
xr = np.array([0., 0., -1.0])
self.ur = cp.Parameter((nu, self.N))
self.ur.value = np.zeros(self.ur.shape)
# constraints
umin = self.input_constraints['umin']
umax = self.input_constraints['umax']
xmin = self.state_constraints['xmin']
xmax = self.state_constraints['xmax']
# initial state
self.x_init = cp.Parameter(self.model.n_states)
# Define problem
self.u = cp.Variable((nu, self.N))
self.x = cp.Variable((nx, self.N + 1))
objective = 0
constraints = [self.x[:, 0] == self.x_init]
for n in range(self.N):
objective += cp.quad_form(self.x[:, n] - xr, self.Q) + cp.quad_form(self.u[:, n] - self.ur[:, n], self.R)
constraints += [self.x[:, n + 1] == self.A[:, n*nx:n*nx+nx] * self.x[:, n]
+ self.B[:, n*nu] * (self.u[:, n] - self.ur[:, n])]
constraints += [umin <= self.u[:, n], self.u[:, n] <= umax]
objective += cp.quad_form(self.x[:, self.N] - xr, self.QN)
constraints += [xmin <= self.x[:, self.N], self.x[:, self.N] <= xmax]
problem = cp.Problem(cp.Minimize(objective), constraints)
return problem
def get_control(self, v):
"""
Get control signal given the current position of the car. Solves a
finite time optimization problem based on the linearized car model.
"""
nx = self.model.n_states
nu = 1
for n in range(self.N):
current_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
next_waypoint = self.model.reference_path.waypoints[
self.model.wp_id + n + 1]
delta_s = next_waypoint - current_waypoint
kappa_r = current_waypoint.kappa
self.A.value[:, n*nx:n*nx+nx], self.B.value[:, n*nu:n*nu+nu] = self.model.linearize(v, kappa_r, delta_s)
self.ur.value[:, n] = kappa_r
self.x_init.value = np.array(self.model.spatial_state[:])
self.problem.solve(solver=cp.OSQP, verbose=True)
self.current_prediction = self.update_prediction(self.x.value)
delta = np.arctan(self.u.value[0, 0] * self.model.l)
return delta
def update_prediction(self, spatial_state_prediction):
"""
Transform the predicted states to predicted x and y coordinates.
Mainly for visualization purposes.
:param spatial_state_prediction: list of predicted state variables
:return: lists of predicted x and y coordinates
"""
# containers for x and y coordinates of predicted states
x_pred, y_pred = [], []
# get current waypoint ID
print('#########################')
for n in range(self.N):
associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[:, n])
print('delta: ', np.arctan(self.u.value[0, n] * self.model.l))
print('e_y: ', spatial_state_prediction[0, n])
print('e_psi: ', spatial_state_prediction[1, n])
print('t: ', spatial_state_prediction[2, n])
print('+++++++++++++++++++++++')
x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y)
return x_pred, y_pred
class MPC_OSQP:
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
"""
Constructor for the Model Predictive Controller.
:param model: bicycle model object to be controlled
:param T: time horizon | int
:param Q: state cost matrix
:param R: input cost matrix
:param QN: final state cost matrix
:param StateConstraints: dictionary of state constraints
:param InputConstraints: dictionary of input constraints
:param Reference: reference values for state variables
"""
# Parameters
self.N = N # horizon
self.Q = Q # weight matrix state vector
self.R = R # weight matrix input vector
self.QN = QN # weight matrix terminal
# Model
self.model = model
# Constraints
self.state_constraints = StateConstraints
self.input_constraints = InputConstraints
# Current control and prediction
self.current_prediction = None
# Initialize Optimization Problem
self.optimizer = osqp.OSQP()
def _init_problem(self, v):
"""
Initialize optimization problem for current time step.
"""
# Number of state and input variables
nx = self.model.n_states
nu = 1
# Constraints
umin = self.input_constraints['umin']
umax = self.input_constraints['umax']
xmin = self.state_constraints['xmin']
xmax = self.state_constraints['xmax']
# LTV System Matrices
A = np.zeros((nx * (self.N + 1), nx * (self.N + 1)))
B = np.zeros((nx * (self.N + 1), nu * (self.N)))
# Reference vector for state and input variables
ur = np.zeros(self.N)
xr = np.array([0.0, 0.0, -1.0])
# Offset for equality constraint (due to B * (u - ur))
uq = np.zeros(self.N * nx)
# Iterate over horizon
for n in range(self.N):
# Get information about current waypoint
current_waypoint = self.model.reference_path.waypoints[
self.model.wp_id + n]
next_waypoint = self.model.reference_path.waypoints[
self.model.wp_id + n + 1]
delta_s = next_waypoint - current_waypoint
kappa_r = current_waypoint.kappa
# Compute LTV matrices
A_lin, B_lin = self.model.linearize(v, kappa_r, delta_s)
A[nx + n * nx:n * nx + 2 * nx, n * nx:n * nx + nx] = A_lin
B[nx + n * nx:n * nx + 2 * nx, n * nu:n * nu + nu] = B_lin
# Set kappa_r to reference for input signal
ur[n] = kappa_r
# Compute equality constraint offset (B*ur)
uq[n * nx:n * nx + nx] = B_lin[:, 0] * kappa_r
# Get equality matrix
Ax = sparse.kron(sparse.eye(self.N + 1),
-sparse.eye(nx)) + sparse.csc_matrix(A)
Bu = sparse.csc_matrix(B)
Aeq = sparse.hstack([Ax, Bu])
# Get inequality matrix
Aineq = sparse.eye((self.N + 1) * nx + self.N * nu)
# Combine constraint matrices
A = sparse.vstack([Aeq, Aineq], format='csc')
# Get upper and lower bound vectors for equality constraints
lineq = np.hstack([np.kron(np.ones(self.N + 1), xmin),
np.kron(np.ones(self.N), umin)])
uineq = np.hstack([np.kron(np.ones(self.N + 1), xmax),
np.kron(np.ones(self.N), umax)])
# Get upper and lower bound vectors for inequality constraints
x0 = np.array(self.model.spatial_state[:])
leq = np.hstack([-x0, uq])
ueq = leq
# Combine upper and lower bound vectors
l = np.hstack([leq, lineq])
u = np.hstack([ueq, uineq])
# Set cost matrices
P = sparse.block_diag([sparse.kron(sparse.eye(self.N), self.Q), self.QN,
sparse.kron(sparse.eye(self.N), self.R)], format='csc')
q = np.hstack(
[np.kron(np.ones(self.N), -self.Q.dot(xr)), -self.QN.dot(xr),
-self.R.A[0, 0] * ur])
# Initialize optimizer
self.optimizer = osqp.OSQP()
self.optimizer.setup(P=P, q=q, A=A, l=l, u=u, verbose=False)
def get_control(self, v):
"""
Get control signal given the current position of the car. Solves a
finite time optimization problem based on the linearized car model.
"""
# Number of state variables
nx = self.model.n_states
# Initialize optimization problem
self._init_problem(v)
# Solve optimization problem
dec = self.optimizer.solve()
x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx))
u = np.arctan(dec.x[-self.N] * self.model.l)
self.current_prediction = self.update_prediction(u, x)
return u
def update_prediction(self, u, spatial_state_prediction):
"""
Transform the predicted states to predicted x and y coordinates.
Mainly for visualization purposes.
:param spatial_state_prediction: list of predicted state variables
:return: lists of predicted x and y coordinates
"""
# containers for x and y coordinates of predicted states
x_pred, y_pred = [], []
# get current waypoint ID
print('#########################')
for n in range(self.N):
associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[n, :])
print('delta: ', u)
print('e_y: ', spatial_state_prediction[n, 0])
print('e_psi: ', spatial_state_prediction[n, 1])
print('t: ', spatial_state_prediction[n, 2])
print('+++++++++++++++++++++++')
x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y)
return x_pred, y_pred