254 lines
9.0 KiB
Python
254 lines
9.0 KiB
Python
import numpy as np
|
|
import osqp
|
|
from scipy import sparse
|
|
import matplotlib.pyplot as plt
|
|
from time import time
|
|
|
|
# Colors
|
|
PREDICTION = '#BA4A00'
|
|
|
|
##################
|
|
# MPC Controller #
|
|
##################
|
|
|
|
|
|
class MPC:
|
|
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
|
|
"""
|
|
Constructor for the Model Predictive Controller.
|
|
:param model: bicycle model object to be controlled
|
|
:param T: time horizon | int
|
|
:param Q: state cost matrix
|
|
:param R: input cost matrix
|
|
:param QN: final state cost matrix
|
|
:param StateConstraints: dictionary of state constraints
|
|
:param InputConstraints: dictionary of input constraints
|
|
"""
|
|
|
|
# Parameters
|
|
self.N = N # horizon
|
|
self.Q = Q # weight matrix state vector
|
|
self.R = R # weight matrix input vector
|
|
self.QN = QN # weight matrix terminal
|
|
|
|
# Model
|
|
self.model = model
|
|
|
|
# Dimensions
|
|
self.nx = self.model.n_states
|
|
self.nu = 2
|
|
|
|
# Constraints
|
|
self.state_constraints = StateConstraints
|
|
self.input_constraints = InputConstraints
|
|
|
|
# Maximum lateral acceleration
|
|
self.ay_max = 5.0
|
|
|
|
# Current control and prediction
|
|
self.current_prediction = None
|
|
|
|
# Counter for old control signals in case of infeasible problem
|
|
self.infeasibility_counter = 0
|
|
|
|
# Current control signals
|
|
self.current_control = np.ones((self.nu*self.N))
|
|
|
|
# Initialize Optimization Problem
|
|
self.optimizer = osqp.OSQP()
|
|
|
|
def _init_problem(self):
|
|
"""
|
|
Initialize optimization problem for current time step.
|
|
"""
|
|
|
|
# Constraints
|
|
umin = self.input_constraints['umin']
|
|
umax = self.input_constraints['umax']
|
|
xmin = self.state_constraints['xmin']
|
|
xmax = self.state_constraints['xmax']
|
|
|
|
# LTV System Matrices
|
|
A = np.zeros((self.nx * (self.N + 1), self.nx * (self.N + 1)))
|
|
B = np.zeros((self.nx * (self.N + 1), self.nu * (self.N)))
|
|
# Reference vector for state and input variables
|
|
ur = np.zeros(self.nu*self.N)
|
|
xr = np.array([0.0, 0.0, 0.0])
|
|
# Offset for equality constraint (due to B * (u - ur))
|
|
uq = np.zeros(self.N * self.nx)
|
|
# Dynamic state constraints
|
|
xmin_dyn = np.kron(np.ones(self.N + 1), xmin)
|
|
xmax_dyn = np.kron(np.ones(self.N + 1), xmax)
|
|
# Dynamic input constraints
|
|
umax_dyn = np.kron(np.ones(self.N), umax)
|
|
# Get curvature predictions from previous control signals
|
|
kappa_pred = np.tan(np.array(self.current_control[3::] +
|
|
self.current_control[-1:])) / self.model.l
|
|
|
|
# Iterate over horizon
|
|
for n in range(self.N):
|
|
|
|
# Get information about current waypoint
|
|
current_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n)
|
|
next_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id + n + 1)
|
|
delta_s = next_waypoint - current_waypoint
|
|
kappa_ref = current_waypoint.kappa
|
|
v_ref = current_waypoint.v_ref
|
|
|
|
# Compute LTV matrices
|
|
f, A_lin, B_lin = self.model.linearize(v_ref, kappa_ref, delta_s)
|
|
A[(n+1) * self.nx: (n+2)*self.nx, n * self.nx:(n+1)*self.nx] = A_lin
|
|
B[(n+1) * self.nx: (n+2)*self.nx, n * self.nu:(n+1)*self.nu] = B_lin
|
|
|
|
# Set reference for input signal
|
|
ur[n*self.nu:(n+1)*self.nu] = np.array([v_ref, kappa_ref])
|
|
# Compute equality constraint offset (B*ur)
|
|
uq[n * self.nx:(n+1)*self.nx] = B_lin.dot(np.array
|
|
([v_ref, kappa_ref])) - f
|
|
|
|
# Constrain maximum speed based on predicted car curvature
|
|
vmax_dyn = np.sqrt(self.ay_max / (np.abs(kappa_pred[n]) + 1e-12))
|
|
if vmax_dyn < umax_dyn[self.nu*n]:
|
|
umax_dyn[self.nu*n] = vmax_dyn
|
|
|
|
# Compute dynamic constraints on e_y
|
|
ub, lb, _ = self.model.reference_path.update_path_constraints(
|
|
self.model.wp_id+1, self.N, 2*self.model.safety_margin[1],
|
|
self.model.safety_margin[1])
|
|
xmin_dyn[0] = self.model.spatial_state.e_y
|
|
xmax_dyn[0] = self.model.spatial_state.e_y
|
|
xmin_dyn[self.nx::self.nx] = lb
|
|
xmax_dyn[self.nx::self.nx] = ub
|
|
|
|
# Get equality matrix
|
|
Ax = sparse.kron(sparse.eye(self.N + 1),
|
|
-sparse.eye(self.nx)) + sparse.csc_matrix(A)
|
|
Bu = sparse.csc_matrix(B)
|
|
Aeq = sparse.hstack([Ax, Bu])
|
|
# Get inequality matrix
|
|
Aineq = sparse.eye((self.N + 1) * self.nx + self.N * self.nu)
|
|
# Combine constraint matrices
|
|
A = sparse.vstack([Aeq, Aineq], format='csc')
|
|
|
|
# Get upper and lower bound vectors for equality constraints
|
|
lineq = np.hstack([xmin_dyn,
|
|
np.kron(np.ones(self.N), umin)])
|
|
uineq = np.hstack([xmax_dyn, umax_dyn])
|
|
# Get upper and lower bound vectors for inequality constraints
|
|
x0 = np.array(self.model.spatial_state[:])
|
|
leq = np.hstack([-x0, uq])
|
|
ueq = leq
|
|
# Combine upper and lower bound vectors
|
|
l = np.hstack([leq, lineq])
|
|
u = np.hstack([ueq, uineq])
|
|
|
|
# Set cost matrices
|
|
P = sparse.block_diag([sparse.kron(sparse.eye(self.N), self.Q), self.QN,
|
|
sparse.kron(sparse.eye(self.N), self.R)], format='csc')
|
|
q = np.hstack(
|
|
[np.kron(np.ones(self.N), -self.Q.dot(xr)), -self.QN.dot(xr),
|
|
-np.tile(np.array([self.R.A[0, 0], self.R.A[1, 1]]), self.N) * ur])
|
|
|
|
# Initialize optimizer
|
|
self.optimizer = osqp.OSQP()
|
|
self.optimizer.setup(P=P, q=q, A=A, l=l, u=u, verbose=False)
|
|
|
|
def get_control(self):
|
|
"""
|
|
Get control signal given the current position of the car. Solves a
|
|
finite time optimization problem based on the linearized car model.
|
|
"""
|
|
|
|
# Number of state variables
|
|
nx = self.model.n_states
|
|
nu = 2
|
|
|
|
# Update current waypoint
|
|
self.model.get_current_waypoint()
|
|
|
|
# Update spatial state
|
|
self.model.spatial_state = self.model.t2s()
|
|
|
|
# Initialize optimization problem
|
|
self._init_problem()
|
|
|
|
# Solve optimization problem
|
|
dec = self.optimizer.solve()
|
|
|
|
try:
|
|
# Get control signals
|
|
control_signals = np.array(dec.x[-self.N*nu:])
|
|
control_signals[1::2] = np.arctan(control_signals[1::2] * self.model.l)
|
|
v = control_signals[0]
|
|
delta = control_signals[1]
|
|
|
|
# Update control signals
|
|
self.current_control = control_signals
|
|
|
|
# Get predicted spatial states
|
|
x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx))
|
|
|
|
# Update predicted temporal states
|
|
self.current_prediction = self.update_prediction(delta, x)
|
|
|
|
# Get current control signal
|
|
u = np.array([v, delta])
|
|
|
|
# if problem solved, reset infeasibility counter
|
|
self.infeasibility_counter = 0
|
|
|
|
except:
|
|
|
|
print('Infeasible problem. Previously predicted'
|
|
' control signal used!')
|
|
id = nu * (self.infeasibility_counter + 1)
|
|
u = np.array(self.current_control[id:id+2])
|
|
|
|
# increase infeasibility counter
|
|
self.infeasibility_counter += 1
|
|
|
|
if self.infeasibility_counter == (self.N - 1):
|
|
print('No control signal computed!')
|
|
exit(1)
|
|
|
|
return u
|
|
|
|
def update_prediction(self, u, spatial_state_prediction):
|
|
"""
|
|
Transform the predicted states to predicted x and y coordinates.
|
|
Mainly for visualization purposes.
|
|
:param spatial_state_prediction: list of predicted state variables
|
|
:return: lists of predicted x and y coordinates
|
|
"""
|
|
|
|
# containers for x and y coordinates of predicted states
|
|
x_pred, y_pred = [], []
|
|
|
|
# get current waypoint ID
|
|
#print('#########################')
|
|
|
|
for n in range(2, self.N):
|
|
associated_waypoint = self.model.reference_path.get_waypoint(self.model.wp_id+n)
|
|
predicted_temporal_state = self.model.s2t(associated_waypoint,
|
|
spatial_state_prediction[n, :])
|
|
#print(spatial_state_prediction[n, 2])
|
|
#print('delta: ', u)
|
|
#print('e_y: ', spatial_state_prediction[n, 0])
|
|
#print('e_psi: ', spatial_state_prediction[n, 1])
|
|
#print('t: ', spatial_state_prediction[n, 2])
|
|
#print('+++++++++++++++++++++++')
|
|
|
|
x_pred.append(predicted_temporal_state.x)
|
|
y_pred.append(predicted_temporal_state.y)
|
|
|
|
return x_pred, y_pred
|
|
|
|
def show_prediction(self):
|
|
"""
|
|
Display predicted car trajectory in current axis.
|
|
"""
|
|
|
|
plt.scatter(self.current_prediction[0], self.current_prediction[1],
|
|
c=PREDICTION, s=30)
|
|
|