Remove update bounds function

master
matssteinweg 2019-12-08 11:58:22 +01:00
parent df6e7351c8
commit dc7628ee8d
1 changed files with 2 additions and 82 deletions

View File

@ -399,86 +399,6 @@ class ReferencePath:
return self.waypoints[wp_id]
def update_bounds(self, wp_id, safety_margin):
"""
Compute upper and lower bounds of the drivable area orthogonal to
the given waypoint.
:param safety_margin: safety margin of the car orthogonal to path in m
:param wp_id: ID of reference waypoint
"""
# Get reference waypoint
wp = self.get_waypoint(wp_id)
# Get waypoint's border cells in map coordinates
ub_p = self.map.w2m(wp.border_cells[0][0], wp.border_cells[0][1])
lb_p = self.map.w2m(wp.border_cells[1][0], wp.border_cells[1][1])
# Compute path from left border cell to right border cell
x_list, y_list = line(ub_p[0], ub_p[1], lb_p[0], lb_p[1])
# Initialize upper and lower bound of drivable area to
# upper bound of path
ub_o, lb_o = ub_p, ub_p
# Initialize upper and lower bound of best segment to upper bound of
# path
ub_ls, lb_ls = ub_p, ub_p
# Iterate over path from left border to right border
for x, y in zip(x_list[1:], y_list[1:]):
# If cell is free, update lower bound
if self.map.data[y, x] == 1:
lb_o = (x, y)
# If cell is occupied, end segment. Update best segment if current
# segment is larger than previous best segment. Then, reset upper
# and lower bound to current cell
if self.map.data[y, x] == 0 or (x, y) == lb_p:
if np.sqrt((ub_o[0]-lb_o[0])**2+(ub_o[1]-lb_o[1])**2) > \
np.sqrt((ub_ls[0]-lb_ls[0])**2+(ub_ls[1]-lb_ls[1])**2):
ub_ls = ub_o
lb_ls = lb_o
# Start new segment
ub_o = (x, y)
lb_o = (x, y)
# Transform upper and lower bound cells to world coordinates
ub_ls = self.map.m2w(ub_ls[0], ub_ls[1])
lb_ls = self.map.m2w(lb_ls[0], lb_ls[1])
# Check sign of upper and lower bound
angle_ub = np.mod(np.arctan2(ub_ls[1] - wp.y, ub_ls[0] - wp.x)
- wp.psi + math.pi, 2*math.pi) - math.pi
angle_lb = np.mod(np.arctan2(lb_ls[1] - wp.y, lb_ls[0] - wp.x)
- wp.psi + math.pi, 2*math.pi) - math.pi
sign_ub = np.sign(angle_ub)
sign_lb = np.sign(angle_lb)
# Compute upper and lower bound of largest drivable area
ub = sign_ub * np.sqrt((ub_ls[0]-wp.x)**2+(ub_ls[1]-wp.y)**2)
lb = sign_lb * np.sqrt((lb_ls[0]-wp.x)**2+(lb_ls[1]-wp.y)**2)
# Add safety margin (attribute of car) to bounds
ub = ub - safety_margin
lb = lb + safety_margin
# Check feasibility of the path
if ub < lb:
# Upper and lower bound of 0 indicate an infeasible path
# given the specified safety margin
ub, lb = 0.0, 0.0
# Compute absolute angle of bound cell
angle_ub = np.mod(math.pi/2 + wp.psi + math.pi, 2 * math.pi) - math.pi
angle_lb = np.mod(-math.pi/2 + wp.psi + math.pi, 2 * math.pi) - math.pi
# Compute cell on bound for computed distance ub and lb
ub_ls = wp.x + ub * np.cos(angle_ub), wp.y + ub * np.sin(angle_ub)
lb_ls = wp.x - lb * np.cos(angle_lb), wp.y - lb * np.sin(angle_lb)
border_cells = (ub_ls, lb_ls)
return lb, ub, border_cells
def add_obstacles(self, obstacles):
"""
Add obstacles to the path.
@ -753,7 +673,7 @@ class ReferencePath:
if __name__ == '__main__':
# Select Path | 'Race' or 'Q'
path = 'Q'
path = 'Race'
# Create Map
if path == 'Race':
@ -806,7 +726,7 @@ if __name__ == '__main__':
print('Invalid path!')
exit(1)
ub, lb, border_cells = reference_path.update_path_constraints(0, reference_path.n_waypoints, 0.60, 0.1)
ub, lb, border_cells = reference_path.update_path_constraints(0, reference_path.n_waypoints, 0.02, 0.01)
# Get x and y locations of border cells for upper and lower bound
for wp_id in range(reference_path.n_waypoints):
if ub[wp_id] > 0.0 and lb[wp_id] > 0.0: