Update MPC.py
Reformulate optimization problem. Problem is now a member variable and instantiated in the constructor. Problem can then be solved with different parameters in get_controlmaster
parent
9454e521e1
commit
d0479e511c
194
MPC.py
194
MPC.py
|
@ -1,12 +1,25 @@
|
|||
import numpy as np
|
||||
import cvxpy as cp
|
||||
|
||||
|
||||
##################
|
||||
# MPC Controller #
|
||||
##################
|
||||
|
||||
class MPC:
|
||||
def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints, Reference):
|
||||
def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints,
|
||||
Reference):
|
||||
"""
|
||||
Constructor for the Model Predictive Controller.
|
||||
:param model: bicycle model object to be controlled
|
||||
:param T: time horizon | int
|
||||
:param Q: state cost matrix
|
||||
:param R: input cost matrix
|
||||
:param Qf: final state cost matrix
|
||||
:param StateConstraints: dictionary of state constraints
|
||||
:param InputConstraints: dictionary of input constraints
|
||||
:param Reference: reference values for state variables
|
||||
"""
|
||||
|
||||
# Parameters
|
||||
self.T = T # horizon
|
||||
|
@ -28,6 +41,88 @@ class MPC:
|
|||
self.current_control = None
|
||||
self.current_prediction = None
|
||||
|
||||
# Initialize Optimization Problem
|
||||
self.problem = self._init_problem()
|
||||
|
||||
def _init_problem(self):
|
||||
"""
|
||||
Initialize parametrized optimization problem to be solved at each
|
||||
time step.
|
||||
"""
|
||||
|
||||
# Instantiate optimization variables
|
||||
self.x = cp.Variable((self.model.n_states+1, self.T + 1))
|
||||
self.u = cp.Variable((2, self.T))
|
||||
|
||||
# Instantiate optimization parameters
|
||||
self.kappa = cp.Parameter(self.T+1)
|
||||
self.x_0 = cp.Parameter(self.model.n_states+1, 1)
|
||||
self.A = cp.Parameter(self.model.A.shape)
|
||||
self.B = cp.Parameter(self.model.B.shape)
|
||||
|
||||
# Initialize cost
|
||||
cost = 0
|
||||
|
||||
# Initialize constraints
|
||||
constraints = [self.x[:, 0] == self.x_0]
|
||||
|
||||
for t in range(self.T):
|
||||
|
||||
# set dynamic constraints
|
||||
constraints += [self.x[:-1, t + 1] == self.A[:-1, :]
|
||||
@ self.x[:, t] + self.B[:-1, :] @ self.u[:, t],
|
||||
self.x[-1, t + 1] == self.kappa[t+1]]
|
||||
|
||||
# set input constraints
|
||||
inputs = ['D', 'delta']
|
||||
for input_name, constraint in self.input_constraints.items():
|
||||
input_id = inputs.index(input_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.u[input_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.u[input_id, t] <= constraint[1])
|
||||
|
||||
# Set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.x[state_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.x[state_id, t] <= constraint[1])
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
cost += cp.norm(self.x[state_id, t] - state_reference, 2) * self.Q[
|
||||
state_id, state_id]
|
||||
|
||||
# update cost function for inputs
|
||||
cost += cp.norm(self.u[0, t], 2) * self.R[0, 0]
|
||||
cost += cp.norm(self.u[1, t], 2) * self.R[1, 1]
|
||||
|
||||
# set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-self.x[state_id, self.T] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(self.x[state_id, self.T] <= constraint[1])
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
cost += cp.norm(self.x[state_id, self.T] - state_reference, 2) * \
|
||||
self.Qf[state_id, state_id]
|
||||
|
||||
# sums problem objectives and concatenates constraints.
|
||||
problem = cp.Problem(cp.Minimize(cost), constraints)
|
||||
|
||||
return problem
|
||||
|
||||
def get_control(self):
|
||||
"""
|
||||
Get control signal given the current position of the car. Solves a
|
||||
|
@ -35,98 +130,39 @@ class MPC:
|
|||
"""
|
||||
|
||||
# get current waypoint curvature
|
||||
kappa_ref = self.model.reference_path.waypoints[self.model.wp_id].kappa
|
||||
|
||||
# Set initial state
|
||||
x_0 = np.array(self.model.spatial_state[:] + [kappa_ref])
|
||||
|
||||
# Instantiate optimization variables
|
||||
x = cp.Variable((len(x_0), self.T + 1))
|
||||
u = cp.Variable((2, self.T))
|
||||
kappa_ref = [wp.kappa for wp in self.model.reference_path.waypoints
|
||||
[self.model.wp_id:self.model.wp_id+self.T+1]]
|
||||
|
||||
# Instantiate optimization parameters
|
||||
kappa = cp.Parameter(value=kappa_ref)
|
||||
self.kappa.value = kappa_ref
|
||||
self.x_0.value = np.array(self.model.spatial_state[:] + [kappa_ref[0]])
|
||||
self.A.value = self.model.A
|
||||
self.B.value = self.model.B
|
||||
|
||||
# Initialize cost
|
||||
cost = 0
|
||||
|
||||
# Initialize constraints
|
||||
constraints = [x[:, 0] == x_0]
|
||||
|
||||
for t in range(self.T):
|
||||
|
||||
# update kappa value for next time step
|
||||
kappa.value = self.model.reference_path.waypoints[
|
||||
self.model.wp_id + 1 + t].kappa - kappa_ref
|
||||
|
||||
# set dynamic constraints
|
||||
constraints += [x[:-1, t + 1] == self.model.A[:-1, :]
|
||||
@ x[:, t] + self.model.B[:-1, :] @ u[:, t],
|
||||
x[-1, t + 1] == kappa]
|
||||
|
||||
# set input constraints
|
||||
inputs = ['D', 'delta']
|
||||
for input_name, constraint in self.input_constraints.items():
|
||||
input_id = inputs.index(input_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-u[input_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(u[input_id, t] <= constraint[1])
|
||||
|
||||
# Set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states().\
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-x[state_id, t] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(x[state_id, t] <= constraint[1])
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states().\
|
||||
index(state_name)
|
||||
cost += cp.norm(x[state_id, t] - state_reference, 2) * self.Q[state_id, state_id]
|
||||
|
||||
# update cost function for inputs
|
||||
cost += cp.norm(u[0, t], 2) * self.R[0, 0]
|
||||
cost += cp.norm(u[1, t], 2) * self.R[1, 1]
|
||||
|
||||
# set state constraints
|
||||
for state_name, constraint in self.state_constraints.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
if constraint[0] is not None:
|
||||
constraints.append(-x[state_id, self.T] <= -constraint[0])
|
||||
if constraint[1] is not None:
|
||||
constraints.append(x[state_id, self.T] <= constraint[1])
|
||||
|
||||
# update cost function for states
|
||||
for state_name, state_reference in self.reference.items():
|
||||
state_id = self.model.spatial_state.list_states(). \
|
||||
index(state_name)
|
||||
cost += cp.norm(x[state_id, self.T] - state_reference, 2) * \
|
||||
self.Qf[state_id, state_id]
|
||||
|
||||
# sums problem objectives and concatenates constraints.
|
||||
problem = cp.Problem(cp.Minimize(cost), constraints)
|
||||
problem.solve(solver=cp.ECOS)
|
||||
# Solve optimization problem
|
||||
self.problem.solve(solver=cp.ECOS, warm_start=True)
|
||||
|
||||
# Store computed control signals and associated prediction
|
||||
try:
|
||||
self.current_control = u.value
|
||||
self.current_prediction = self.update_prediction(x.value)
|
||||
self.current_control = self.u.value
|
||||
self.current_prediction = self.update_prediction(self.x.value)
|
||||
except TypeError:
|
||||
print('No solution found!')
|
||||
exit(1)
|
||||
|
||||
# RCH - get first control signal
|
||||
D_0 = u.value[0, 0]
|
||||
delta_0 = u.value[1, 0]
|
||||
D_0 = self.u.value[0, 0]
|
||||
delta_0 = self.u.value[1, 0]
|
||||
|
||||
return D_0, delta_0
|
||||
|
||||
def update_prediction(self, spatial_state_prediction):
|
||||
"""
|
||||
Transform the predicted states to predicted x and y coordinates.
|
||||
Mainly for visualization purposes.
|
||||
:param spatial_state_prediction: list of predicted state variables
|
||||
:return: lists of predicted x and y coordinates
|
||||
"""
|
||||
|
||||
# containers for x and y coordinates of predicted states
|
||||
x_pred, y_pred = [], []
|
||||
|
@ -137,7 +173,7 @@ class MPC:
|
|||
for t in range(self.T):
|
||||
associated_waypoint = self.model.reference_path.waypoints[wp_id_+t]
|
||||
predicted_temporal_state = self.model.s2t(associated_waypoint,
|
||||
spatial_state_prediction[:, t])
|
||||
spatial_state_prediction[:, t])
|
||||
x_pred.append(predicted_temporal_state.x)
|
||||
y_pred.append(predicted_temporal_state.y)
|
||||
|
||||
|
|
Loading…
Reference in New Issue