initial commit LTV_MPC

master
matssteinweg 2019-11-29 09:36:30 +01:00
parent d0479e511c
commit 76df3ce814
3 changed files with 357 additions and 735 deletions

329
MPC.py
View File

@ -1,31 +1,32 @@
import numpy as np import numpy as np
import cvxpy as cp import cvxpy as cp
import osqp
import scipy as sp
from scipy import sparse
################## ##################
# MPC Controller # # MPC Controller #
################## ##################
class MPC: class MPC:
def __init__(self, model, T, Q, R, Qf, StateConstraints, InputConstraints, def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
Reference):
""" """
Constructor for the Model Predictive Controller. Constructor for the Model Predictive Controller.
:param model: bicycle model object to be controlled :param model: bicycle model object to be controlled
:param T: time horizon | int :param T: time horizon | int
:param Q: state cost matrix :param Q: state cost matrix
:param R: input cost matrix :param R: input cost matrix
:param Qf: final state cost matrix :param QN: final state cost matrix
:param StateConstraints: dictionary of state constraints :param StateConstraints: dictionary of state constraints
:param InputConstraints: dictionary of input constraints :param InputConstraints: dictionary of input constraints
:param Reference: reference values for state variables :param Reference: reference values for state variables
""" """
# Parameters # Parameters
self.T = T # horizon self.N = N # horizon
self.Q = Q # weight matrix state vector self.Q = Q # weight matrix state vector
self.R = R # weight matrix input vector self.R = R # weight matrix input vector
self.Qf = Qf # weight matrix terminal self.QN = QN # weight matrix terminal
# Model # Model
self.model = model self.model = model
@ -34,11 +35,7 @@ class MPC:
self.state_constraints = StateConstraints self.state_constraints = StateConstraints
self.input_constraints = InputConstraints self.input_constraints = InputConstraints
# Reference
self.reference = Reference
# Current control and prediction # Current control and prediction
self.current_control = None
self.current_prediction = None self.current_prediction = None
# Initialize Optimization Problem # Initialize Optimization Problem
@ -50,111 +47,71 @@ class MPC:
time step. time step.
""" """
# Instantiate optimization variables # number of input and state variables
self.x = cp.Variable((self.model.n_states+1, self.T + 1)) nx = self.model.n_states
self.u = cp.Variable((2, self.T)) nu = 1
# Instantiate optimization parameters # system matrices
self.kappa = cp.Parameter(self.T+1) self.A = cp.Parameter(shape=(nx, nx*self.N))
self.x_0 = cp.Parameter(self.model.n_states+1, 1) self.B = cp.Parameter(shape=(nx, nu*self.N))
self.A = cp.Parameter(self.model.A.shape) self.A.value = np.zeros(self.A.shape)
self.B = cp.Parameter(self.model.B.shape) self.B.value = np.zeros(self.B.shape)
# Initialize cost # reference values
cost = 0 xr = np.array([0., 0., -1.0])
self.ur = cp.Parameter((nu, self.N))
self.ur.value = np.zeros(self.ur.shape)
# Initialize constraints # constraints
constraints = [self.x[:, 0] == self.x_0] umin = self.input_constraints['umin']
umax = self.input_constraints['umax']
xmin = self.state_constraints['xmin']
xmax = self.state_constraints['xmax']
for t in range(self.T): # initial state
self.x_init = cp.Parameter(self.model.n_states)
# set dynamic constraints # Define problem
constraints += [self.x[:-1, t + 1] == self.A[:-1, :] self.u = cp.Variable((nu, self.N))
@ self.x[:, t] + self.B[:-1, :] @ self.u[:, t], self.x = cp.Variable((nx, self.N + 1))
self.x[-1, t + 1] == self.kappa[t+1]] objective = 0
constraints = [self.x[:, 0] == self.x_init]
# set input constraints for n in range(self.N):
inputs = ['D', 'delta'] objective += cp.quad_form(self.x[:, n] - xr, self.Q) + cp.quad_form(self.u[:, n] - self.ur[:, n], self.R)
for input_name, constraint in self.input_constraints.items(): constraints += [self.x[:, n + 1] == self.A[:, n*nx:n*nx+nx] * self.x[:, n]
input_id = inputs.index(input_name) + self.B[:, n*nu] * (self.u[:, n] - self.ur[:, n])]
if constraint[0] is not None: constraints += [umin <= self.u[:, n], self.u[:, n] <= umax]
constraints.append(-self.u[input_id, t] <= -constraint[0]) objective += cp.quad_form(self.x[:, self.N] - xr, self.QN)
if constraint[1] is not None: constraints += [xmin <= self.x[:, self.N], self.x[:, self.N] <= xmax]
constraints.append(self.u[input_id, t] <= constraint[1]) problem = cp.Problem(cp.Minimize(objective), constraints)
# Set state constraints
for state_name, constraint in self.state_constraints.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
if constraint[0] is not None:
constraints.append(-self.x[state_id, t] <= -constraint[0])
if constraint[1] is not None:
constraints.append(self.x[state_id, t] <= constraint[1])
# update cost function for states
for state_name, state_reference in self.reference.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
cost += cp.norm(self.x[state_id, t] - state_reference, 2) * self.Q[
state_id, state_id]
# update cost function for inputs
cost += cp.norm(self.u[0, t], 2) * self.R[0, 0]
cost += cp.norm(self.u[1, t], 2) * self.R[1, 1]
# set state constraints
for state_name, constraint in self.state_constraints.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
if constraint[0] is not None:
constraints.append(-self.x[state_id, self.T] <= -constraint[0])
if constraint[1] is not None:
constraints.append(self.x[state_id, self.T] <= constraint[1])
# update cost function for states
for state_name, state_reference in self.reference.items():
state_id = self.model.spatial_state.list_states(). \
index(state_name)
cost += cp.norm(self.x[state_id, self.T] - state_reference, 2) * \
self.Qf[state_id, state_id]
# sums problem objectives and concatenates constraints.
problem = cp.Problem(cp.Minimize(cost), constraints)
return problem return problem
def get_control(self): def get_control(self, v):
""" """
Get control signal given the current position of the car. Solves a Get control signal given the current position of the car. Solves a
finite time optimization problem based on the linearized car model. finite time optimization problem based on the linearized car model.
""" """
# get current waypoint curvature nx = self.model.n_states
kappa_ref = [wp.kappa for wp in self.model.reference_path.waypoints nu = 1
[self.model.wp_id:self.model.wp_id+self.T+1]]
# Instantiate optimization parameters for n in range(self.N):
self.kappa.value = kappa_ref current_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
self.x_0.value = np.array(self.model.spatial_state[:] + [kappa_ref[0]]) next_waypoint = self.model.reference_path.waypoints[
self.A.value = self.model.A self.model.wp_id + n + 1]
self.B.value = self.model.B delta_s = next_waypoint - current_waypoint
kappa_r = current_waypoint.kappa
self.A.value[:, n*nx:n*nx+nx], self.B.value[:, n*nu:n*nu+nu] = self.model.linearize(v, kappa_r, delta_s)
self.ur.value[:, n] = kappa_r
# Solve optimization problem self.x_init.value = np.array(self.model.spatial_state[:])
self.problem.solve(solver=cp.ECOS, warm_start=True) self.problem.solve(solver=cp.OSQP, verbose=True)
# Store computed control signals and associated prediction self.current_prediction = self.update_prediction(self.x.value)
try: delta = np.arctan(self.u.value[0, 0] * self.model.l)
self.current_control = self.u.value
self.current_prediction = self.update_prediction(self.x.value)
except TypeError:
print('No solution found!')
exit(1)
# RCH - get first control signal return delta
D_0 = self.u.value[0, 0]
delta_0 = self.u.value[1, 0]
return D_0, delta_0
def update_prediction(self, spatial_state_prediction): def update_prediction(self, spatial_state_prediction):
""" """
@ -168,12 +125,180 @@ class MPC:
x_pred, y_pred = [], [] x_pred, y_pred = [], []
# get current waypoint ID # get current waypoint ID
wp_id_ = np.copy(self.model.wp_id) print('#########################')
for t in range(self.T): for n in range(self.N):
associated_waypoint = self.model.reference_path.waypoints[wp_id_+t] associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
predicted_temporal_state = self.model.s2t(associated_waypoint, predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[:, t]) spatial_state_prediction[:, n])
print('delta: ', np.arctan(self.u.value[0, n] * self.model.l))
print('e_y: ', spatial_state_prediction[0, n])
print('e_psi: ', spatial_state_prediction[1, n])
print('t: ', spatial_state_prediction[2, n])
print('+++++++++++++++++++++++')
x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y)
return x_pred, y_pred
class MPC_OSQP:
def __init__(self, model, N, Q, R, QN, StateConstraints, InputConstraints):
"""
Constructor for the Model Predictive Controller.
:param model: bicycle model object to be controlled
:param T: time horizon | int
:param Q: state cost matrix
:param R: input cost matrix
:param QN: final state cost matrix
:param StateConstraints: dictionary of state constraints
:param InputConstraints: dictionary of input constraints
:param Reference: reference values for state variables
"""
# Parameters
self.N = N # horizon
self.Q = Q # weight matrix state vector
self.R = R # weight matrix input vector
self.QN = QN # weight matrix terminal
# Model
self.model = model
# Constraints
self.state_constraints = StateConstraints
self.input_constraints = InputConstraints
# Current control and prediction
self.current_prediction = None
# Initialize Optimization Problem
self.optimizer = osqp.OSQP()
def _init_problem(self, v):
"""
Initialize optimization problem for current time step.
"""
# Number of state and input variables
nx = self.model.n_states
nu = 1
# Constraints
umin = self.input_constraints['umin']
umax = self.input_constraints['umax']
xmin = self.state_constraints['xmin']
xmax = self.state_constraints['xmax']
# LTV System Matrices
A = np.zeros((nx * (self.N + 1), nx * (self.N + 1)))
B = np.zeros((nx * (self.N + 1), nu * (self.N)))
# Reference vector for state and input variables
ur = np.zeros(self.N)
xr = np.array([0.0, 0.0, -1.0])
# Offset for equality constraint (due to B * (u - ur))
uq = np.zeros(self.N * nx)
# Iterate over horizon
for n in range(self.N):
# Get information about current waypoint
current_waypoint = self.model.reference_path.waypoints[
self.model.wp_id + n]
next_waypoint = self.model.reference_path.waypoints[
self.model.wp_id + n + 1]
delta_s = next_waypoint - current_waypoint
kappa_r = current_waypoint.kappa
# Compute LTV matrices
A_lin, B_lin = self.model.linearize(v, kappa_r, delta_s)
A[nx + n * nx:n * nx + 2 * nx, n * nx:n * nx + nx] = A_lin
B[nx + n * nx:n * nx + 2 * nx, n * nu:n * nu + nu] = B_lin
# Set kappa_r to reference for input signal
ur[n] = kappa_r
# Compute equality constraint offset (B*ur)
uq[n * nx:n * nx + nx] = B_lin[:, 0] * kappa_r
# Get equality matrix
Ax = sparse.kron(sparse.eye(self.N + 1),
-sparse.eye(nx)) + sparse.csc_matrix(A)
Bu = sparse.csc_matrix(B)
Aeq = sparse.hstack([Ax, Bu])
# Get inequality matrix
Aineq = sparse.eye((self.N + 1) * nx + self.N * nu)
# Combine constraint matrices
A = sparse.vstack([Aeq, Aineq], format='csc')
# Get upper and lower bound vectors for equality constraints
lineq = np.hstack([np.kron(np.ones(self.N + 1), xmin),
np.kron(np.ones(self.N), umin)])
uineq = np.hstack([np.kron(np.ones(self.N + 1), xmax),
np.kron(np.ones(self.N), umax)])
# Get upper and lower bound vectors for inequality constraints
x0 = np.array(self.model.spatial_state[:])
leq = np.hstack([-x0, uq])
ueq = leq
# Combine upper and lower bound vectors
l = np.hstack([leq, lineq])
u = np.hstack([ueq, uineq])
# Set cost matrices
P = sparse.block_diag([sparse.kron(sparse.eye(self.N), self.Q), self.QN,
sparse.kron(sparse.eye(self.N), self.R)], format='csc')
q = np.hstack(
[np.kron(np.ones(self.N), -self.Q.dot(xr)), -self.QN.dot(xr),
-self.R.A[0, 0] * ur])
# Initialize optimizer
self.optimizer = osqp.OSQP()
self.optimizer.setup(P=P, q=q, A=A, l=l, u=u, verbose=False)
def get_control(self, v):
"""
Get control signal given the current position of the car. Solves a
finite time optimization problem based on the linearized car model.
"""
# Number of state variables
nx = self.model.n_states
# Initialize optimization problem
self._init_problem(v)
# Solve optimization problem
dec = self.optimizer.solve()
x = np.reshape(dec.x[:(self.N+1)*nx], (self.N+1, nx))
u = np.arctan(dec.x[-self.N] * self.model.l)
self.current_prediction = self.update_prediction(u, x)
return u
def update_prediction(self, u, spatial_state_prediction):
"""
Transform the predicted states to predicted x and y coordinates.
Mainly for visualization purposes.
:param spatial_state_prediction: list of predicted state variables
:return: lists of predicted x and y coordinates
"""
# containers for x and y coordinates of predicted states
x_pred, y_pred = [], []
# get current waypoint ID
print('#########################')
for n in range(self.N):
associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[n, :])
print('delta: ', u)
print('e_y: ', spatial_state_prediction[n, 0])
print('e_psi: ', spatial_state_prediction[n, 1])
print('t: ', spatial_state_prediction[n, 2])
print('+++++++++++++++++++++++')
x_pred.append(predicted_temporal_state.x) x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y) y_pred.append(predicted_temporal_state.y)

View File

@ -1,17 +1,17 @@
from map import Map from map import Map
import numpy as np import numpy as np
from reference_path import ReferencePath from reference_path import ReferencePath
from spatial_bicycle_models import SimpleBicycleModel, ExtendedBicycleModel from spatial_bicycle_models import BicycleModel
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from MPC import MPC from MPC import MPC, MPC_OSQP
from time import time from scipy import sparse
import time
if __name__ == '__main__': if __name__ == '__main__':
# Select Simulation Mode | 'Race' or 'Q' # Select Simulation Mode | 'Race' or 'Q'
sim_mode = 'Race' sim_mode = 'Race'
# Select Model Type | 'Simple' or 'Extended'
model_type = 'Simple'
# Create Map # Create Map
if sim_mode == 'Race': if sim_mode == 'Race':
@ -45,46 +45,23 @@ if __name__ == '__main__':
# Initial state # Initial state
e_y_0 = 0.0 e_y_0 = 0.0
e_psi_0 = 0.0 e_psi_0 = 0.0
v_x_0 = 0.1 t_0 = 0.0
v_y_0 = 0 v = 1.0
omega_0 = 0
t_0 = 0
if model_type == 'Extended': car = BicycleModel(reference_path=reference_path,
car = ExtendedBicycleModel(reference_path=reference_path, e_y=e_y_0, e_psi=e_psi_0, t=t_0)
e_y=e_y_0, e_psi=e_psi_0, v_x=v_x_0, v_y=v_y_0,
omega=omega_0, t=t_0)
elif model_type == 'Simple':
car = SimpleBicycleModel(reference_path=reference_path,
e_y=e_y_0, e_psi=e_psi_0, v=v_x_0)
else:
car = None
print('Invalid Model Type!')
exit(1)
############## ##############
# Controller # # Controller #
############## ##############
if model_type == 'Extended': N = 20
Q = np.diag([1, 0, 0, 0, 0, 0]) Q = sparse.diags([0.01, 0.0, 0.4])
Qf = Q R = sparse.diags([0.01])
R = np.diag([0, 0]) QN = Q
Reference = {'e_y': 0, 'e_psi': 0, 'v_x': 1.0, 'v_y': 0, 'omega': 0, 't':0} InputConstraints = {'umin': np.array([-np.tan(0.44)/car.l]), 'umax': np.array([np.tan(0.44)/car.l])}
elif model_type == 'Simple': StateConstraints = {'xmin': np.array([-0.2, -np.inf, 0]), 'xmax': np.array([0.2, np.inf, np.inf])}
Reference = {'e_y': 0, 'e_psi': 0, 'v': 4.0} mpc = MPC_OSQP(car, N, Q, R, QN, StateConstraints, InputConstraints)
Q = np.diag([0.0005, 0.05, 0.5])
Qf = Q
R = np.diag([0, 0])
else:
Q, Qf, R, Reference = None, None, None, None
print('Invalid Model Type!')
exit(1)
T = 5
StateConstraints = {'e_y': (-0.2, 0.2), 'v': (0, 4)}
InputConstraints = {'D': (-1, 1), 'delta': (-0.44, 0.44)}
mpc = MPC(car, T, Q, R, Qf, StateConstraints, InputConstraints, Reference)
############## ##############
# Simulation # # Simulation #
@ -93,26 +70,22 @@ if __name__ == '__main__':
# logging containers # logging containers
x_log = [car.temporal_state.x] x_log = [car.temporal_state.x]
y_log = [car.temporal_state.y] y_log = [car.temporal_state.y]
psi_log = [car.temporal_state.psi]
v_log = [car.temporal_state.v_x]
D_log = []
delta_log = []
# iterate over waypoints # iterate over waypoints
for wp_id in range(len(car.reference_path.waypoints)-T-1): for wp_id in range(len(car.reference_path.waypoints)-mpc.N-1):
# get control signals # get control signals
D, delta = mpc.get_control() start = time.time()
delta = mpc.get_control(v)
end = time.time()
u = np.array([v, delta])
# drive car # drive car
car.drive(D, delta) car.drive(u)
# log current state # log
x_log.append(car.temporal_state.x) x_log.append(car.temporal_state.x)
y_log.append(car.temporal_state.y) y_log.append(car.temporal_state.y)
v_log.append(car.temporal_state.v_x)
D_log.append(D)
delta_log.append(delta)
################### ###################
# Plot Simulation # # Plot Simulation #
@ -121,19 +94,13 @@ if __name__ == '__main__':
car.reference_path.show() car.reference_path.show()
# plot car trajectory and velocity # plot car trajectory and velocity
plt.scatter(x_log, y_log, c='g', s=15) plt.scatter(x_log[:-1], y_log[:-1], c='g', s=15)
# plot mpc prediction plt.scatter(mpc.current_prediction[0], mpc.current_prediction[1], c='b', s=5)
if mpc.current_prediction is not None:
x_pred = mpc.current_prediction[0]
y_pred = mpc.current_prediction[1]
plt.scatter(x_pred, y_pred, c='b', s=10)
plt.title('MPC Simulation: Position: {:.2f} m, {:.2f} m, Velocity: ' plt.title('MPC Simulation: Position: {:.2f} m, {:.2f} m'.
'{:.2f} m/s'.format(car.temporal_state.x, format(car.temporal_state.x, car.temporal_state.y))
car.temporal_state.y, car.temporal_state.v_x))
plt.xticks([]) plt.xticks([])
plt.yticks([]) plt.yticks([])
plt.pause(0.0000001) plt.pause(0.00000001)
plt.close() plt.close()

View File

@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
######################### #########################
class TemporalState: class TemporalState:
def __init__(self, x, y, psi, v_x, v_y): def __init__(self, x, y, psi):
""" """
Temporal State Vector containing car pose (x, y, psi) and velocity Temporal State Vector containing car pose (x, y, psi) and velocity
:param x: x position in global coordinate system | [m] :param x: x position in global coordinate system | [m]
@ -19,8 +19,6 @@ class TemporalState:
self.x = x self.x = x
self.y = y self.y = y
self.psi = psi self.psi = psi
self.v_x = v_x
self.v_y = v_y
######################## ########################
@ -39,6 +37,9 @@ class SpatialState(ABC):
def __getitem__(self, item): def __getitem__(self, item):
return list(vars(self).values())[item] return list(vars(self).values())[item]
def __setitem__(self, key, value):
vars(self)[list(vars(self).keys())[key]] = value
def __len__(self): def __len__(self):
return len(vars(self)) return len(vars(self))
@ -60,40 +61,18 @@ class SpatialState(ABC):
class SimpleSpatialState(SpatialState): class SimpleSpatialState(SpatialState):
def __init__(self, e_y, e_psi, v): def __init__(self, e_y, e_psi, t):
""" """
Simplified Spatial State Vector containing orthogonal deviation from Simplified Spatial State Vector containing orthogonal deviation from
reference path (e_y), difference in orientation (e_psi) and velocity reference path (e_y), difference in orientation (e_psi) and velocity
:param e_y: orthogonal deviation from center-line | [m] :param e_y: orthogonal deviation from center-line | [m]
:param e_psi: yaw angle relative to path | [rad] :param e_psi: yaw angle relative to path | [rad]
:param v: absolute velocity | [m/s] :param t: time | [s]
""" """
super(SimpleSpatialState, self).__init__() super(SimpleSpatialState, self).__init__()
self.e_y = e_y self.e_y = e_y
self.e_psi = e_psi self.e_psi = e_psi
self.v = v
class ExtendedSpatialState(SpatialState):
def __init__(self, e_y, e_psi, v_x, v_y, omega, t):
"""
Extended Spatial State Vector containing separate velocities in x and
y direction, angular velocity and time
:param e_y: orthogonal deviation from center-line | [m]
:param e_psi: yaw angle relative to path | [rad]
:param v_x: velocity in x direction (car frame) | [m/s]
:param v_y: velocity in y direction (car frame) | [m/s]
:param omega: anglular velocity of the car | [rad/s]
:param t: simulation time| [s]
"""
super(ExtendedSpatialState, self).__init__()
self.e_y = e_y
self.e_psi = e_psi
self.v_x = v_x
self.v_y = v_y
self.omega = omega
self.t = t self.t = t
@ -161,45 +140,60 @@ class SpatialBicycleModel(ABC):
return x, y, psi return x, y, psi
def drive(self, D, delta): def drive(self, input, state=None, kappa=None, delta_s=None):
""" """
Update states of spatial bicycle model. Model drive to the next Drive.
waypoint on the reference path. :param state: state vector for which to compute derivatives
:param D: acceleration command | [-1, 1] :param input: input vector
:param delta: angular velocity | [rad] :param kappa: curvature of corresponding waypoint
:return: numpy array with spatial derivatives for all state variables
""" """
# Get spatial derivatives # Get spatial derivatives
spatial_derivatives = self.get_spatial_derivatives(D, delta) if state is None and kappa is None and delta_s is None:
state = np.array(self.spatial_state[:])
# Get delta_s | distance to next waypoint
next_waypoint = self.reference_path.waypoints[self.wp_id + 1]
delta_s = next_waypoint - self.current_waypoint
# Get current curvature
kappa = self.current_waypoint.kappa
# Get delta_s | distance to next waypoint spatial_derivatives = self.get_spatial_derivatives(state, input, kappa)
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
delta_s = next_waypoint - self.current_waypoint
# Update spatial state (Forward Euler Approximation) # Update spatial state (Forward Euler Approximation)
self.spatial_state += spatial_derivatives * delta_s self.spatial_state += spatial_derivatives * delta_s
# Assert that unique projections of car pose onto path exists # Assert that unique projections of car pose onto path exists
assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa + #assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa +
self.eps)) # self.eps))
# Increase waypoint ID # Increase waypoint ID
self.wp_id += 1 self.wp_id += 1
# Update current waypoint # Update current waypoint
self.current_waypoint = self.reference_path.waypoints[self.wp_id] self.current_waypoint = self.reference_path.waypoints[self.wp_id]
# Update temporal_state to match spatial state # Update temporal_state to match spatial state
self.temporal_state = self.s2t() self.temporal_state = self.s2t()
# Update s | total driven distance along path # Update s | total driven distance along path
self.s += delta_s self.s += delta_s
# Linearize model around new operating point # Linearize model around new operating point
self.A, self.B = self.linearize() # self.A, self.B = self.linearize()
else:
spatial_derivatives = self.get_spatial_derivatives(state, input,
kappa)
# Update spatial state (Forward Euler Approximation)
state += spatial_derivatives * delta_s
return state
@abstractmethod @abstractmethod
def get_spatial_derivatives(self, D, delta): def get_spatial_derivatives(self, state, input, kappa):
pass pass
@abstractmethod @abstractmethod
@ -207,12 +201,12 @@ class SpatialBicycleModel(ABC):
pass pass
######################## #################
# Simple Bicycle Model # # Bicycle Model #
######################## #################
class SimpleBicycleModel(SpatialBicycleModel): class BicycleModel(SpatialBicycleModel):
def __init__(self, reference_path, e_y, e_psi, v): def __init__(self, reference_path, e_y, e_psi, t):
""" """
Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic
Bicycle Model. Uses Simplified Spatial State. Bicycle Model. Uses Simplified Spatial State.
@ -223,24 +217,22 @@ class SimpleBicycleModel(SpatialBicycleModel):
""" """
# Initialize base class # Initialize base class
super(SimpleBicycleModel, self).__init__(reference_path) super(BicycleModel, self).__init__(reference_path)
# Constants # Constants
self.C1 = 0.5 self.l = 0.06
self.C2 = 17.06
self.Cm1 = 12.0
self.Cm2 = 2.17
self.Cr2 = 0.1
self.Cr0 = 0.6
# Initialize spatial state # Initialize spatial state
self.spatial_state = SimpleSpatialState(e_y, e_psi, v) self.spatial_state = SimpleSpatialState(e_y, e_psi, t)
# Number of spatial state variables
self.n_states = len(self.spatial_state)
# Initialize temporal state # Initialize temporal state
self.temporal_state = self.s2t() self.temporal_state = self.s2t()
# Compute linear system matrices | Used for MPC # Compute linear system matrices | Used for MPC
self.A, self.B = self.linearize() # self.A, self.B = self.linearize()
def s2t(self, reference_waypoint=None, reference_state=None): def s2t(self, reference_waypoint=None, reference_state=None):
""" """
@ -253,547 +245,85 @@ class SimpleBicycleModel(SpatialBicycleModel):
if reference_state is None and reference_waypoint is None: if reference_state is None and reference_waypoint is None:
# Get pose information from base class implementation # Get pose information from base class implementation
x, y, psi = super(SimpleBicycleModel, self).s2t() x, y, psi = super(BicycleModel, self).s2t()
# Compute simplified velocities # Compute simplified velocities
v_x = self.spatial_state.v
v_y = 0
else: else:
# Get pose information from base class implementation # Get pose information from base class implementation
x, y, psi = super(SimpleBicycleModel, self).s2t(reference_waypoint, x, y, psi = super(BicycleModel, self).s2t(reference_waypoint,
reference_state) reference_state)
v_x = reference_state[2]
v_y = 0
return TemporalState(x, y, psi, v_x, v_y) return TemporalState(x, y, psi)
def get_temporal_derivatives(self, D, delta): def get_temporal_derivatives(self, state, input, kappa):
""" """
Compute relevant temporal derivatives needed for state update. Compute relevant temporal derivatives needed for state update.
:param D: duty-cycle of DC motor | [-1, 1] :param state: state vector for which to compute derivatives
:param delta: steering command | [rad] :param input: input vector
:param kappa: curvature of corresponding waypoint
:return: temporal derivatives of distance, angle and velocity :return: temporal derivatives of distance, angle and velocity
""" """
# Compute velocity components | Approximation for small delta e_y, e_psi, t = state
v_x = self.spatial_state.v v, delta = input
v_y = self.spatial_state.v * delta * self.C1
# Compute velocity along waypoint direction
v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin(
self.spatial_state.e_psi)
# Compute velocity along path # Compute velocity along path
s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) * v_sigma s_dot = 1 / (1 - (e_y * kappa)) * v * np.cos(e_psi)
# Compute yaw angle rate of change # Compute yaw angle rate of change
psi_dot = self.spatial_state.v * delta * self.C2 psi_dot = v / self.l * np.tan(delta)
# Compute acceleration return s_dot, psi_dot
v_dot = (self.Cm1 - self.Cm2 * self.spatial_state.v) * D - self.Cr2 * (
self.spatial_state.v ** 2) - self.Cr0 - (
self.spatial_state.v * delta) ** 2 * self.C2 * self.C1 ** 2
return s_dot, psi_dot, v_dot def get_spatial_derivatives(self, state, input, kappa):
def get_spatial_derivatives(self, D, delta):
""" """
Compute spatial derivatives of all state variables for update. Compute spatial derivatives of all state variables for update.
:param D: duty-cycle of DC motor | [-1, 1] :param state: state vector for which to compute derivatives
:param delta: steering angle | [rad] :param input: input vector
:param kappa: curvature of corresponding waypoint
:return: numpy array with spatial derivatives for all state variables :return: numpy array with spatial derivatives for all state variables
""" """
e_y, e_psi, t = state
v, delta = input
# Compute temporal derivatives # Compute temporal derivatives
s_dot, psi_dot, v_dot = self.get_temporal_derivatives(D, delta) s_dot, psi_dot = self.get_temporal_derivatives(state, input, kappa)
# Compute spatial derivatives # Compute spatial derivatives
d_e_y_d_s = (self.spatial_state.v * np.sin(self.spatial_state.e_psi) d_e_y_d_s = v * np.sin(e_psi) / s_dot
+ self.spatial_state.v * delta * self.C1 * np.cos( d_e_psi_d_s = psi_dot / s_dot - kappa
self.spatial_state.e_psi)) / s_dot d_t_d_s = 1 / s_dot
d_e_psi_d_s = psi_dot / s_dot - self.current_waypoint.kappa
d_v_d_s = v_dot / s_dot
return np.array([d_e_y_d_s, d_e_psi_d_s, d_v_d_s]) return np.array([d_e_y_d_s, d_e_psi_d_s, d_t_d_s])
def linearize(self, D=0, delta=0): def linearize(self, v=None, kappa_r=None, delta_s=None):
""" """
Linearize the system equations around the current state and waypoint. Linearize the system equations around the current state and waypoint.
:param delta: reference steering angle | [rad] :param kappa_r: kappa of waypoint around which to linearize
:param D: reference duty-cycle of DC-motor | [-1, 1] """
"""
# Get current state | operating point to linearize around # Get linearization state
e_y = self.spatial_state.e_y if kappa_r is None and delta_s is None:
e_psi = self.spatial_state.e_psi # Get curvature of linearization waypoint
v = self.spatial_state.v kappa_r = self.reference_path.waypoints[self.wp_id].kappa
# Get delta_s
# Get curvature of current waypoint next_waypoint = self.reference_path.waypoints[self.wp_id + 1]
kappa = self.reference_path.waypoints[self.wp_id].kappa delta_s = next_waypoint - self.current_waypoint
# Get delta_s
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
delta_s = next_waypoint - self.current_waypoint
##############################
# Helper Partial Derivatives #
##############################
# Compute velocity components
v_x = v
v_y = v * delta * self.C1
# Compute partial derivatives of s_dot w.r.t. each state variable,
# input variable and kappa
s_dot = 1 / (1 - e_y*kappa) * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi))
d_s_dot_d_v = 1 / (1 - e_y*kappa) * (np.cos(e_psi) - delta * self.C1 * np.sin(e_psi))
# d_s_dot_d_D = 0
d_s_dot_d_delta = 1 / (1 - e_y*kappa) * (- v * self.C1 * np.sin(e_psi))
d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
# Compute partial derivatives of v_psi w.r.t. each state variable,
# input variable and kappa
v_psi = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
# d_v_psi_d_e_y = 0
d_v_psi_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
d_v_psi_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi)
# d_v_psi_d_D = 0
d_v_psi_d_delta = self.C1 * v * np.cos(e_psi)
# d_v_psi_d_kappa = 0
# Compute partial derivatives of psi_dot w.r.t. each state variable,
# input variable and kappa
psi_dot = v * delta * self.C2
# d_psi_dot_d_e_y = 0
# d_psi_dot_d_e_psi = 0
d_psi_dot_d_v = delta * self.C2
# d_psi_dot_d_D = 0
d_psi_dot_d_delta = v * self.C2
# d_psi_dot_d_kappa = 0
# Compute partial derivatives of v_dot w.r.t. each state variable,
# input variable and kappa
v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 \
- (v * delta) ** 2 * self.C2 * (self.C1 ** 2)
# d_v_dot_d_e_y = 0
# d_v_dot_d_e_psi = 0
d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) \
* self.C2 * (self.C1 ** 2)
d_v_dot_d_D = self.Cm1 - self.Cm2 * v
d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2
# d_v_dot_d_kappa = 0
#############################
# State Partial Derivatives #
#############################
# Use pre-computed helper derivatives to compute spatial derivatives of
# all state variables using Quotient Rule
# Compute partial derivatives of e_y w.r.t. each state variable,
# input variable and kappa
# e_y = v_psi / s_dot
d_e_y_d_e_y = - d_s_dot_d_e_y * v_psi / (s_dot**2)
d_e_y_d_e_psi = (d_v_psi_d_e_psi * s_dot - d_s_dot_d_e_psi * v_psi) / (s_dot**2)
d_e_y_d_v = (d_v_psi_d_v * s_dot - d_s_dot_d_v * v_psi) / (s_dot**2)
d_e_y_d_D = 0
d_e_y_d_delta = (d_v_psi_d_delta * s_dot - d_s_dot_d_delta * v_psi) / (s_dot**2)
d_e_y_d_kappa = - d_s_dot_d_kappa * v_psi / (s_dot**2)
# Compute partial derivatives of e_psi w.r.t. each state variable,
# input variable and kappa
# e_psi = psi_dot / s_dot - kappa
d_e_psi_d_e_y = - d_s_dot_d_e_y * psi_dot / (s_dot**2)
d_e_psi_d_e_psi = - d_s_dot_d_e_psi * psi_dot / (s_dot**2)
d_e_psi_d_v = (d_psi_dot_d_v * s_dot - d_s_dot_d_v * psi_dot) / (s_dot**2)
d_e_psi_d_D = 0
d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - d_s_dot_d_delta * psi_dot) / (s_dot**2)
d_e_psi_d_kappa = - d_s_dot_d_kappa * psi_dot / (s_dot**2) - 1
# Compute partial derivatives of v w.r.t. each state variable,
# input variable and kappa
# v = v_dot / s_dot
d_v_d_e_y = - d_s_dot_d_e_y * v_dot / (s_dot**2)
d_v_d_e_psi = - d_s_dot_d_e_psi * v_dot / (s_dot**2)
d_v_d_v = (d_v_dot_d_v * s_dot - d_s_dot_d_v * v_dot) / (s_dot**2)
d_v_d_D = d_v_dot_d_D * s_dot / (s_dot**2)
d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2)
d_v_d_kappa = - d_s_dot_d_kappa * v_dot / (s_dot**2)
#############
# Jacobians #
#############
# Construct Jacobian Matrix
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa])
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa])
a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa])
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta])
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta])
b_3 = np.array([d_v_d_D, d_v_d_delta])
# Add extra row for kappa | Allows for updating kappa during MPC
# optimization
a_4 = np.array([0, 0, 0, 0])
b_4 = np.array([0, 0])
Ja = np.stack((a_1, a_2, a_3, a_4), axis=0)
Jb = np.stack((b_1, b_2, b_3, b_4), axis=0)
################### ###################
# System Matrices # # System Matrices #
################### ###################
# Construct system matrices from Jacobians. Multiply by sampling # Construct Jacobian Matrix
# distance delta_s + add identity matrix (Forward Euler Approximation) a_1 = np.array([1, delta_s, 0])
A = Ja * delta_s + np.identity(Ja.shape[1]) a_2 = np.array([-kappa_r**2*delta_s, 1, 0])
B = Jb * delta_s a_3 = np.array([-kappa_r/v*delta_s, 0, 0])
b_1 = np.array([0, ])
b_2 = np.array([delta_s, ])
b_3 = np.array([0, ])
A = np.stack((a_1, a_2, a_3), axis=0)
B = np.stack((b_1, b_2, b_3), axis=0)
return A, B return A, B
##########################
# Extended Bicycle Model #
##########################
class ExtendedBicycleModel(SpatialBicycleModel):
def __init__(self, reference_path, e_y, e_psi, v_x, v_y, omega, t):
"""
Construct spatial bicycle model.
:param e_y: initial deviation from reference path | [m]
:param e_psi: initial heading offset from reference path | [rad]
:param v: initial velocity | [m/s]
:param reference_path: reference path model is supposed to follow
"""
super(ExtendedBicycleModel, self).__init__(reference_path)
# Constants
self.m = 0.041
self.Iz = 27.8e-6
self.lf = 0.029
self.lr = 0.033
self.Cm1 = 0.287
self.Cm2 = 0.0545
self.Cr2 = 0.0518
self.Cr0 = 0.00035
self.Br = 3.3852
self.Cr = 1.2691
self.Dr = 0.1737
self.Bf = 2.579
self.Cf = 1.2
self.Df = 0.192
# Spatial state
self.spatial_state = ExtendedSpatialState(e_y, e_psi, v_x, v_y, omega, t)
# Temporal state
self.temporal_state = self.s2t()
# Linear System Matrices
self.A, self.B = self.linearize()
def s2t(self, reference_waypoint=None, predicted_state=None):
"""
Convert spatial state to temporal state
:return temporal state equivalent to self.spatial_state
"""
# compute velocity information
if predicted_state is None and reference_waypoint is None:
# get information from base class
x, y, psi = super(ExtendedBicycleModel, self).s2t()
v_x = self.spatial_state.v_x
v_y = self.spatial_state.v_y
else:
# get information from base class
x, y, psi = super(ExtendedBicycleModel, self).s2t(reference_waypoint,
predicted_state)
v_x = predicted_state[2]
v_y = predicted_state[3]
return TemporalState(x, y, psi, v_x, v_y)
def get_forces(self, delta, D):
"""
Compute forces required for temporal derivatives of v_x and v_y
:param delta:
:param D:
:return:
"""
F_rx = (self.Cm1 - self.Cm2 * self.spatial_state.v_x) * D - self.Cr0 - self.Cr2 * self.spatial_state.v_x ** 2
alpha_f = - np.arctan2(self.spatial_state.omega*self.lf + self.spatial_state.v_y, self.spatial_state.v_x) + delta
F_fy = self.Df * np.sin(self.Cf*np.arctan(self.Bf*alpha_f))
alpha_r = np.arctan2(self.spatial_state.omega*self.lr - self.spatial_state.v_y, self.spatial_state.v_x)
F_ry = self.Dr * np.sin(self.Cr * np.arctan(self.Br*alpha_r))
return F_rx, F_fy, F_ry, alpha_f, alpha_r
def get_temporal_derivatives(self, delta, F_rx, F_fy, F_ry):
"""
Compute temporal derivatives needed for state update.
:param delta: steering command
:param D: duty-cycle of DC motor
:return: temporal derivatives of distance, angle and velocity
"""
# velocity along path
s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) \
* (self.spatial_state.v_x * np.cos(self.spatial_state.e_psi)
+ self.spatial_state.v_y * np.sin(self.spatial_state.e_psi))
# velocity in x and y direction
v_x_dot = (F_rx - F_fy * np.sin(delta) + self.m * self.spatial_state.
v_y * self.spatial_state.omega) / self.m
v_y_dot = (F_ry + F_fy * np.cos(delta) - self.m * self.spatial_state.
v_x * self.spatial_state.omega) / self.m
# omega dot
omega_dot = (F_fy * self.lf * np.cos(delta) - F_ry * self.lr) / self.Iz
return s_dot, v_x_dot, v_y_dot, omega_dot
def get_spatial_derivatives(self, delta, D):
"""
Compute spatial derivatives of all state variables for update.
:param delta: steering angle
:param psi_dot: heading rate of change
:param s_dot: velocity along path
:param v_dot: acceleration
:return: spatial derivatives for all state variables
"""
# get required forces
F_rx, F_fy, F_ry, _, _ = self.get_forces(delta, D)
# Compute state derivatives
s_dot, v_x_dot, v_y_dot, omega_dot = \
self.get_temporal_derivatives(delta, F_rx, F_fy, F_ry)
d_e_y = (self.spatial_state.v_x * np.sin(self.spatial_state.e_psi)
+ self.spatial_state.v_y * np.cos(self.spatial_state.e_psi)) \
/ (s_dot + self.eps)
d_e_psi = (self.spatial_state.omega / (s_dot + self.eps) - self.current_waypoint.kappa)
d_v_x = v_x_dot / (s_dot + self.eps)
d_v_y = v_y_dot / (s_dot + self.eps)
d_omega = omega_dot / (s_dot + self.eps)
d_t = 1 / (s_dot + self.eps)
return np.array([d_e_y, d_e_psi, d_v_x, d_v_y, d_omega, d_t])
def linearize(self, delta=0, D=0):
"""
Linearize the system equations around the current state and waypoint.
:param delta: reference steering angle
:param D: reference dutycycle
"""
# get current state
e_y = self.spatial_state.e_y
e_psi = self.spatial_state.e_psi
v_x = self.spatial_state.v_x
v_y = self.spatial_state.v_y
omega = self.spatial_state.omega
t = self.spatial_state.t
# get information about current waypoint
kappa = self.reference_path.waypoints[self.wp_id].kappa
# get delta_s
next_waypoint = self.reference_path.waypoints[self.wp_id + 1]
delta_s = next_waypoint - self.current_waypoint
# get temporal derivatives
F_rx, F_fy, F_ry, alpha_f, alpha_r = self.get_forces(delta, D)
s_dot, v_x_dot, v_y_dot, omega_dot = self.\
get_temporal_derivatives(delta, F_rx, F_fy, F_ry)
##############################
# Forces Partial Derivatives #
##############################
d_alpha_f_d_v_x = 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (omega * self.lf + v_y) / (v_x**2)
d_alpha_f_d_v_y = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) / v_x
d_alpha_f_d_omega = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (self.lf / v_x)
d_alpha_f_d_delta = 1
d_alpha_r_d_v_x = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (omega * self.lr - v_y) / (v_x**2)
d_alpha_r_d_v_y = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) / v_x
d_alpha_r_d_omega = 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (self.lr * v_x)
d_F_fy_d_v_x = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_x
d_F_fy_d_v_y = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_y
d_F_fy_d_omega = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_omega
d_F_fy_d_delta = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_delta
d_F_ry_d_v_x = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_x
d_F_ry_d_v_y = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_y
d_F_ry_d_omega = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_omega
d_F_rx_d_v_x = - self.Cm2 * D - 2 * self.Cr2 * v_x
d_F_rx_d_D = self.Cm1 - self.Cm2 * v_x
##############################
# Helper Partial Derivatives #
##############################
d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi))
d_s_dot_d_v_x = 1 / (1 - e_y*kappa) * np.cos(e_psi)
d_s_dot_d_v_y = -1 / (1 - e_y*kappa) * np.sin(e_psi)
d_s_dot_d_omega = 0
d_s_dot_d_t = 0
d_s_dot_d_delta = 0
d_s_dot_d_D = 0
d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
# Check
c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
d_c_1_d_e_y = 0
d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
d_c_1_d_v_x = np.sin(e_psi)
d_c_1_d_v_y = np.cos(e_psi)
d_c_1_d_omega = 0
d_c_1_d_t = 0
d_c_1_d_delta = 0
d_c_1_d_D = 0
d_c_1_d_kappa = 0
# Check
d_v_x_dot_d_e_y = 0
d_v_x_dot_d_e_psi = 0
d_v_x_dot_d_v_x = (d_F_rx_d_v_x - d_F_fy_d_v_x * np.sin(delta)) / self.m
d_v_x_dot_d_v_y = - (d_F_fy_d_v_y * np.sin(delta) + self.m * omega) / self.m
d_v_x_dot_d_omega = - (d_F_fy_d_omega * np.sin(delta) + self.m * v_y) / self.m
d_v_x_dot_d_t = 0
d_v_x_dot_d_delta = - (F_fy * np.cos(delta) + d_F_fy_d_delta * np.sin(delta)) / self.m
d_v_x_dot_d_D = d_F_rx_d_D / self.m
d_v_x_dot_d_kappa = 0
d_v_y_dot_d_e_y = 0
d_v_y_dot_d_e_psi = 0
d_v_y_dot_d_v_x = (d_F_ry_d_v_x + d_F_fy_d_v_x * np.cos(delta) - self.m * omega) / self.m
d_v_y_dot_d_v_y = (d_F_ry_d_v_y + d_F_fy_d_v_y * np.cos(delta)) / self.m
d_v_y_dot_d_omega = (d_F_ry_d_omega + d_F_fy_d_omega * np.cos(delta) - self.m * v_x) / self.m
d_v_y_dot_d_t = 0
d_v_y_dot_d_delta = d_F_fy_d_delta * np.cos(delta) / self.m
d_v_y_dot_d_D = 0
d_v_y_dot_d_kappa = 0
d_omega_dot_d_e_y = 0
d_omega_dot_d_e_psi = 0
d_omega_dot_d_v_x = (d_F_fy_d_v_x * self.lf * np.cos(delta) - d_F_ry_d_v_x * self.lr) / self.Iz
d_omega_dot_d_v_y = (d_F_fy_d_v_y * self.lf * np.cos(delta) - d_F_fy_d_v_y * self.lr) / self.Iz
d_omega_dot_d_omega = (d_F_fy_d_omega * self.lf * np.cos(delta) - d_F_fy_d_omega * self.lr) / self.Iz
d_omega_dot_d_t = 0
d_omega_dot_d_delta = (- F_fy * np.sin(delta) + d_F_fy_d_delta * np.cos(delta)) / self.Iz
d_omega_dot_d_D = 0
d_omega_dot_d_kappa = 0
#######################
# Partial Derivatives #
#######################
# derivatives for E_Y
d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2)
d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2)
d_e_y_d_v_x = (d_c_1_d_v_x * s_dot - d_s_dot_d_v_x * c_1) / (s_dot**2)
d_e_y_d_v_y = (d_c_1_d_v_y * s_dot - d_s_dot_d_v_y * c_1) / (s_dot**2)
d_e_y_d_omega = (d_c_1_d_omega * s_dot - d_s_dot_d_omega * c_1) / (s_dot**2)
d_e_y_d_t = 0
d_e_y_d_D = 0
d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2)
d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2)
# derivatives for E_PSI
d_e_psi_d_e_y = - omega * d_s_dot_d_e_y / (s_dot**2)
d_e_psi_d_e_psi = - omega * d_s_dot_d_e_psi / (s_dot**2)
d_e_psi_d_v_x = (- omega * d_s_dot_d_v_x) / (s_dot**2)
d_e_psi_d_v_y = (- omega * d_s_dot_d_v_y) / (s_dot**2)
d_e_psi_d_omega = (s_dot - omega * d_s_dot_d_omega) / (s_dot**2)
d_e_psi_d_t = 0
d_e_psi_d_delta = (- omega * d_s_dot_d_delta) / (s_dot**2)
d_e_psi_d_D = (- omega * d_s_dot_d_D) / (s_dot**2)
d_e_psi_d_kappa = -d_s_dot_d_kappa * omega / (s_dot**2) - 1
# derivatives for V_X
d_v_x_d_e_y = - d_s_dot_d_e_y * v_x_dot / (s_dot**2)
d_v_x_d_e_psi = - d_s_dot_d_e_psi * v_x_dot / (s_dot**2)
d_v_x_d_v_x = (d_v_x_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_x_dot) / (s_dot**2)
d_v_x_d_v_y = (d_v_x_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_x_dot) / (s_dot**2)
d_v_x_d_omega = (d_v_x_dot_d_omega * s_dot - d_s_dot_d_omega * v_x_dot) / (s_dot**2)
d_v_x_d_t = 0
d_v_x_d_delta = (d_v_x_dot_d_delta * s_dot - d_s_dot_d_delta * v_x_dot) / (s_dot**2)
d_v_x_d_D = d_v_x_dot_d_D * s_dot / (s_dot**2)
d_v_x_d_kappa = -d_s_dot_d_kappa * v_x_dot / (s_dot**2)
# derivatives for V_Y
d_v_y_d_e_y = - d_s_dot_d_e_y * v_y_dot / (s_dot ** 2)
d_v_y_d_e_psi = - d_s_dot_d_e_psi * v_y_dot / (s_dot ** 2)
d_v_y_d_v_x = (d_v_y_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_y_dot) / (
s_dot ** 2)
d_v_y_d_v_y = (d_v_y_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_y_dot) / (
s_dot ** 2)
d_v_y_d_omega = (d_v_y_dot_d_omega * s_dot - d_s_dot_d_omega * v_y_dot) / (
s_dot ** 2)
d_v_y_d_t = 0
d_v_y_d_delta = (d_v_y_dot_d_delta * s_dot - d_s_dot_d_delta * v_y_dot) / (
s_dot ** 2)
d_v_y_d_D = d_v_y_dot_d_D * s_dot / (s_dot ** 2)
d_v_y_d_kappa = -d_s_dot_d_kappa * v_y_dot / (s_dot ** 2)
# derivatives for Omega
d_omega_d_e_y = (d_omega_dot_d_e_y * s_dot - omega_dot * d_s_dot_d_e_y) / (s_dot**2)
d_omega_d_e_psi = (d_omega_dot_d_e_psi * s_dot - omega_dot * d_s_dot_d_e_psi) / (s_dot**2)
d_omega_d_v_x = (d_omega_dot_d_v_x * s_dot - omega_dot * d_s_dot_d_v_x) / (s_dot**2)
d_omega_d_v_y = (d_omega_dot_d_v_y * s_dot - omega_dot * d_s_dot_d_v_y) / (s_dot**2)
d_omega_d_omega = (d_omega_dot_d_omega * s_dot - omega_dot * d_s_dot_d_omega) / (s_dot**2)
d_omega_d_t = (d_omega_dot_d_t * s_dot - omega_dot * d_s_dot_d_t) / (s_dot**2)
d_omega_d_delta = (d_omega_dot_d_delta * s_dot - omega_dot * d_s_dot_d_delta) / (s_dot**2)
d_omega_d_D = (d_omega_dot_d_D * s_dot - omega_dot * d_s_dot_d_D) / (s_dot**2)
d_omega_d_kappa = (d_omega_dot_d_kappa * s_dot - omega_dot * d_s_dot_d_kappa) / (s_dot**2)
# derivatives for T
d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2)
d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2)
d_t_d_v_x = - d_s_dot_d_v_x / (s_dot ** 2)
d_t_d_v_y = - d_s_dot_d_v_y / (s_dot ** 2)
d_t_d_omega = - d_s_dot_d_omega / (s_dot ** 2)
d_t_d_t = 0
d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2)
d_t_d_D = 0
d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2)
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v_x, d_e_y_d_v_y, d_e_y_d_omega, d_e_y_d_t, d_e_y_d_kappa])
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v_x, d_e_psi_d_v_y, d_e_psi_d_omega, d_e_psi_d_t, d_e_psi_d_kappa])
a_3 = np.array([d_v_x_d_e_y, d_v_x_d_e_psi, d_v_x_d_v_x, d_v_x_d_v_y, d_v_x_d_omega, d_v_x_d_t, d_v_x_d_kappa])
a_4 = np.array([d_v_y_d_e_y, d_v_y_d_e_psi, d_v_y_d_v_x, d_v_y_d_v_y, d_v_y_d_omega, d_v_y_d_t, d_v_y_d_kappa])
a_5 = np.array([d_omega_d_e_y, d_omega_d_e_psi, d_omega_d_v_x, d_omega_d_v_y, d_omega_d_omega, d_omega_d_t, d_omega_d_kappa])
a_6 = np.array([d_t_d_e_y, d_t_d_e_psi, d_t_d_v_x, d_t_d_v_y, d_t_d_omega, d_t_d_t, d_t_d_kappa])
a_7 = np.array([0, 0, 0, 0, 0, 0, 1])
A = np.stack((a_1, a_2, a_3, a_4, a_5, a_6, a_7), axis=0) * delta_s
A[0, 0] += 1
A[1, 1] += 1
A[2, 2] += 1
A[3, 3] += 1
A[4, 4] += 1
A[5, 5] += 1
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta])
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta])
b_3 = np.array([d_v_x_d_D, d_v_x_d_delta])
b_4 = np.array([d_v_y_d_D, d_v_y_d_delta])
b_5 = np.array([d_omega_d_D, d_omega_d_delta])
b_6 = np.array([d_t_d_D, d_t_d_delta])
b_7 = np.array([0, 0])
B = np.stack((b_1, b_2, b_3, b_4, b_5, b_6, b_7), axis=0) * delta_s
# set system matrices
return A, B