Update spatial_bicycle_models.py
Add comments. SimpleBicycleModel checked. New Convention: each function call with control signals (D, delta) according to order in control signal returned by MPCmaster
parent
eabf75c9ad
commit
53d30d46b4
|
@ -1,7 +1,4 @@
|
|||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
import cvxpy as cp
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
|
@ -10,9 +7,9 @@ from abc import ABC, abstractmethod
|
|||
#########################
|
||||
|
||||
class TemporalState:
|
||||
def __init__(self, x, y, psi, v_x=0, v_y=0):
|
||||
def __init__(self, x, y, psi, v_x, v_y):
|
||||
"""
|
||||
Temporal State Vector containing x, y coordinates and heading psi
|
||||
Temporal State Vector containing car pose (x, y, psi) and velocity
|
||||
:param x: x position in global coordinate system | [m]
|
||||
:param y: y position in global coordinate system | [m]
|
||||
:param psi: yaw angle | [rad]
|
||||
|
@ -31,6 +28,10 @@ class TemporalState:
|
|||
########################
|
||||
|
||||
class SpatialState(ABC):
|
||||
"""
|
||||
Spatial State Vector - Abstract Base Class.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self):
|
||||
pass
|
||||
|
@ -41,19 +42,28 @@ class SpatialState(ABC):
|
|||
def __len__(self):
|
||||
return len(vars(self))
|
||||
|
||||
def list_states(self):
|
||||
return list(vars(self).keys())
|
||||
|
||||
def __iadd__(self, other):
|
||||
"""
|
||||
Overload Sum-Add operator.
|
||||
:param other: numpy array to be added to state vector
|
||||
"""
|
||||
|
||||
for state_id, state in enumerate(vars(self).values()):
|
||||
vars(self)[list(vars(self).keys())[state_id]] += other[state_id]
|
||||
return self
|
||||
|
||||
def list_states(self):
|
||||
"""
|
||||
Return list of names of all states.
|
||||
"""
|
||||
return list(vars(self).keys())
|
||||
|
||||
|
||||
class SimpleSpatialState(SpatialState):
|
||||
def __init__(self, e_y, e_psi, v):
|
||||
"""
|
||||
Temporal State Vector containing x, y coordinates and heading psi
|
||||
Simplified Spatial State Vector containing orthogonal deviation from
|
||||
reference path (e_y), difference in orientation (e_psi) and velocity
|
||||
:param e_y: orthogonal deviation from center-line | [m]
|
||||
:param e_psi: yaw angle relative to path | [rad]
|
||||
:param v: absolute velocity | [m/s]
|
||||
|
@ -68,10 +78,14 @@ class SimpleSpatialState(SpatialState):
|
|||
class ExtendedSpatialState(SpatialState):
|
||||
def __init__(self, e_y, e_psi, v_x, v_y, omega, t):
|
||||
"""
|
||||
Temporal State Vector containing x, y coordinates and heading psi
|
||||
Extended Spatial State Vector containing separate velocities in x and
|
||||
y direction, angular velocity and time
|
||||
:param e_y: orthogonal deviation from center-line | [m]
|
||||
:param e_psi: yaw angle relative to path | [rad]
|
||||
:param v: absolute velocity | [m/s]
|
||||
:param v_x: velocity in x direction (car frame) | [m/s]
|
||||
:param v_y: velocity in y direction (car frame) | [m/s]
|
||||
:param omega: anglular velocity of the car | [rad/s]
|
||||
:param t: simulation time| [s]
|
||||
"""
|
||||
super(ExtendedSpatialState, self).__init__()
|
||||
|
||||
|
@ -90,8 +104,8 @@ class ExtendedSpatialState(SpatialState):
|
|||
class SpatialBicycleModel(ABC):
|
||||
def __init__(self, reference_path):
|
||||
"""
|
||||
Construct spatial bicycle model.
|
||||
:param reference_path: reference path model is supposed to follow
|
||||
Abstract Base Class for Spatial Reformulation of Bicycle Model.
|
||||
:param reference_path: reference path object to follow
|
||||
"""
|
||||
|
||||
# Precision
|
||||
|
@ -100,28 +114,34 @@ class SpatialBicycleModel(ABC):
|
|||
# Reference Path
|
||||
self.reference_path = reference_path
|
||||
|
||||
# set initial distance traveled
|
||||
# Set initial distance traveled
|
||||
self.s = 0.0
|
||||
|
||||
# set initial waypoint ID
|
||||
# Set initial waypoint ID
|
||||
self.wp_id = 0
|
||||
|
||||
# set initial waypoint
|
||||
# Set initial waypoint
|
||||
self.current_waypoint = self.reference_path.waypoints[self.wp_id]
|
||||
|
||||
# initialize spatial state
|
||||
# Declare spatial state variable | Initialization in sub-class
|
||||
self.spatial_state = None
|
||||
|
||||
def s2t(self, reference_waypoint=None, predicted_state=None):
|
||||
# Declare temporal state variable | Initialization in sub-class
|
||||
self.temporal_state = None
|
||||
|
||||
# Declare system matrices of linearized model | Used for MPC
|
||||
self.A, self.B = None, None
|
||||
|
||||
def s2t(self, reference_waypoint=None, reference_state=None):
|
||||
"""
|
||||
Convert spatial state to temporal state. Either convert self.spatial
|
||||
Convert spatial state to temporal state. Either convert self.spatial_
|
||||
state with current waypoint as reference or provide reference waypoint
|
||||
and (e_y, e_psi).
|
||||
and reference_state.
|
||||
:return x, y, psi
|
||||
"""
|
||||
|
||||
# Compute spatial state for current waypoint if no waypoint given
|
||||
if reference_waypoint is None and predicted_state is None:
|
||||
if reference_waypoint is None and reference_state is None:
|
||||
|
||||
# compute temporal state variables
|
||||
x = self.current_waypoint.x - self.spatial_state.e_y * np.sin(
|
||||
|
@ -133,52 +153,53 @@ class SpatialBicycleModel(ABC):
|
|||
else:
|
||||
|
||||
# compute temporal state variables
|
||||
x = reference_waypoint.x - predicted_state[0] * np.sin(
|
||||
x = reference_waypoint.x - reference_state[0] * np.sin(
|
||||
reference_waypoint.psi)
|
||||
y = reference_waypoint.y + predicted_state[0] * np.cos(
|
||||
y = reference_waypoint.y + reference_state[0] * np.cos(
|
||||
reference_waypoint.psi)
|
||||
psi = reference_waypoint.psi + predicted_state[1]
|
||||
psi = reference_waypoint.psi + reference_state[1]
|
||||
|
||||
return x, y, psi
|
||||
|
||||
def drive(self, delta, D):
|
||||
def drive(self, D, delta):
|
||||
"""
|
||||
Update states of spatial bicycle model.
|
||||
:param delta: angular velocity | [rad]
|
||||
Update states of spatial bicycle model. Model drive to the next
|
||||
waypoint on the reference path.
|
||||
:param D: acceleration command | [-1, 1]
|
||||
:param delta: angular velocity | [rad]
|
||||
"""
|
||||
|
||||
# get spatial derivatives
|
||||
spatial_derivatives = self.get_spatial_derivatives(delta, D)
|
||||
# Get spatial derivatives
|
||||
spatial_derivatives = self.get_spatial_derivatives(D, delta)
|
||||
|
||||
# get delta_s
|
||||
# Get delta_s | distance to next waypoint
|
||||
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
|
||||
delta_s = next_waypoint - self.current_waypoint
|
||||
|
||||
# update spatial state (euler method)
|
||||
# Update spatial state (Forward Euler Approximation)
|
||||
self.spatial_state += spatial_derivatives * delta_s
|
||||
|
||||
# assert that unique projections exists
|
||||
# Assert that unique projections of car pose onto path exists
|
||||
assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa +
|
||||
self.eps))
|
||||
|
||||
# increase waypoint ID
|
||||
# Increase waypoint ID
|
||||
self.wp_id += 1
|
||||
|
||||
# update current waypoint
|
||||
# Update current waypoint
|
||||
self.current_waypoint = self.reference_path.waypoints[self.wp_id]
|
||||
|
||||
# update temporal_state to match spatial state
|
||||
# Update temporal_state to match spatial state
|
||||
self.temporal_state = self.s2t()
|
||||
|
||||
# update s
|
||||
# Update s | total driven distance along path
|
||||
self.s += delta_s
|
||||
|
||||
# linearize model around new operating point
|
||||
# Linearize model around new operating point
|
||||
self.A, self.B = self.linearize()
|
||||
|
||||
@abstractmethod
|
||||
def get_spatial_derivatives(self, delta, D):
|
||||
def get_spatial_derivatives(self, D, delta):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
@ -193,12 +214,15 @@ class SpatialBicycleModel(ABC):
|
|||
class SimpleBicycleModel(SpatialBicycleModel):
|
||||
def __init__(self, reference_path, e_y, e_psi, v):
|
||||
"""
|
||||
Construct spatial bicycle model.
|
||||
:param e_y: initial deviation from reference path | [m]
|
||||
:param e_psi: initial heading offset from reference path | [rad]
|
||||
:param v: initial velocity | [m/s]
|
||||
Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic
|
||||
Bicycle Model. Uses Simplified Spatial State.
|
||||
:param reference_path: reference path model is supposed to follow
|
||||
:param e_y: deviation from reference path | [m]
|
||||
:param e_psi: heading offset from reference path | [rad]
|
||||
:param v: initial velocity | [m/s]
|
||||
"""
|
||||
|
||||
# Initialize base class
|
||||
super(SimpleBicycleModel, self).__init__(reference_path)
|
||||
|
||||
# Constants
|
||||
|
@ -209,69 +233,62 @@ class SimpleBicycleModel(SpatialBicycleModel):
|
|||
self.Cr2 = 0.1
|
||||
self.Cr0 = 0.6
|
||||
|
||||
# Spatial state
|
||||
# Initialize spatial state
|
||||
self.spatial_state = SimpleSpatialState(e_y, e_psi, v)
|
||||
|
||||
# Temporal state
|
||||
# Initialize temporal state
|
||||
self.temporal_state = self.s2t()
|
||||
|
||||
# Linear System Matrices
|
||||
# Compute linear system matrices | Used for MPC
|
||||
self.A, self.B = self.linearize()
|
||||
|
||||
def s2t(self, reference_waypoint=None, predicted_state=None):
|
||||
def s2t(self, reference_waypoint=None, reference_state=None):
|
||||
"""
|
||||
Convert spatial state to temporal state
|
||||
:return temporal state equivalent to self.spatial_state
|
||||
Convert spatial state to temporal state. Either convert self.spatial_
|
||||
state with current waypoint as reference or provide reference waypoint
|
||||
and reference_state.
|
||||
:return temporal state equivalent to self.spatial_state or provided
|
||||
reference state
|
||||
"""
|
||||
|
||||
# compute velocity information
|
||||
if predicted_state is None and reference_waypoint is None:
|
||||
# get information from base class
|
||||
if reference_state is None and reference_waypoint is None:
|
||||
# Get pose information from base class implementation
|
||||
x, y, psi = super(SimpleBicycleModel, self).s2t()
|
||||
# Compute simplified velocities
|
||||
v_x = self.spatial_state.v
|
||||
v_y = 0
|
||||
else:
|
||||
# get information from base class
|
||||
# Get pose information from base class implementation
|
||||
x, y, psi = super(SimpleBicycleModel, self).s2t(reference_waypoint,
|
||||
predicted_state)
|
||||
v_x = predicted_state[2]
|
||||
reference_state)
|
||||
v_x = reference_state[2]
|
||||
v_y = 0
|
||||
|
||||
return TemporalState(x, y, psi, v_x, v_y)
|
||||
|
||||
def get_velocities(self, delta):
|
||||
def get_temporal_derivatives(self, D, delta):
|
||||
"""
|
||||
Compute relevant velocity components for current update.
|
||||
:param delta: steering command
|
||||
:return: velocities in x, y and waypoint direction
|
||||
"""
|
||||
|
||||
# approximation for small delta
|
||||
v_x = self.spatial_state.v
|
||||
v_y = self.spatial_state.v * delta * self.C1
|
||||
|
||||
# velocity along waypoint direction
|
||||
v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin(
|
||||
self.spatial_state.e_psi)
|
||||
|
||||
return v_x, v_y, v_sigma
|
||||
|
||||
def get_temporal_derivatives(self, v_sigma, delta, D):
|
||||
"""
|
||||
Compute temporal derivatives needed for state update.
|
||||
:param v_sigma: velocity along the path
|
||||
:param delta: steering command
|
||||
:param D: dutycycle of DC motor
|
||||
Compute relevant temporal derivatives needed for state update.
|
||||
:param D: duty-cycle of DC motor | [-1, 1]
|
||||
:param delta: steering command | [rad]
|
||||
:return: temporal derivatives of distance, angle and velocity
|
||||
"""
|
||||
|
||||
# velocity along path
|
||||
# Compute velocity components | Approximation for small delta
|
||||
v_x = self.spatial_state.v
|
||||
v_y = self.spatial_state.v * delta * self.C1
|
||||
|
||||
# Compute velocity along waypoint direction
|
||||
v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin(
|
||||
self.spatial_state.e_psi)
|
||||
|
||||
# Compute velocity along path
|
||||
s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) * v_sigma
|
||||
|
||||
# angle rate of change
|
||||
# Compute yaw angle rate of change
|
||||
psi_dot = self.spatial_state.v * delta * self.C2
|
||||
|
||||
# acceleration
|
||||
# Compute acceleration
|
||||
v_dot = (self.Cm1 - self.Cm2 * self.spatial_state.v) * D - self.Cr2 * (
|
||||
self.spatial_state.v ** 2) - self.Cr0 - (
|
||||
self.spatial_state.v * delta) ** 2 * self.C2 * self.C1 ** 2
|
||||
|
@ -281,149 +298,159 @@ class SimpleBicycleModel(SpatialBicycleModel):
|
|||
def get_spatial_derivatives(self, delta, D):
|
||||
"""
|
||||
Compute spatial derivatives of all state variables for update.
|
||||
:param delta: steering angle
|
||||
:param D: duty-cycle
|
||||
:return: spatial derivatives for all state variables
|
||||
:param delta: steering angle | [rad]
|
||||
:param D: duty-cycle of DC motor | [-1, 1]
|
||||
:return: numpy array with spatial derivatives for all state variables
|
||||
"""
|
||||
|
||||
# Compute velocities
|
||||
v_x, v_y, v_sigma = self.get_velocities(delta)
|
||||
# Compute temporal derivatives
|
||||
s_dot, psi_dot, v_dot = self.get_temporal_derivatives(D, delta)
|
||||
|
||||
# Compute state derivatives
|
||||
s_dot, psi_dot, v_dot = self.get_temporal_derivatives(v_sigma, delta,
|
||||
D)
|
||||
|
||||
d_e_y = (self.spatial_state.v * np.sin(self.spatial_state.e_psi)
|
||||
# Compute spatial derivatives
|
||||
d_e_y_d_s = (self.spatial_state.v * np.sin(self.spatial_state.e_psi)
|
||||
+ self.spatial_state.v * delta * self.C1 * np.cos(
|
||||
self.spatial_state.e_psi)) \
|
||||
/ (s_dot + self.eps)
|
||||
d_e_psi = (psi_dot / (s_dot + self.eps) - self.current_waypoint.kappa)
|
||||
d_v = v_dot / (s_dot + self.eps)
|
||||
d_t = 1 / (s_dot + self.eps)
|
||||
self.spatial_state.e_psi)) / s_dot
|
||||
d_e_psi_d_s = psi_dot / s_dot - self.current_waypoint.kappa
|
||||
d_v_d_s = v_dot / s_dot
|
||||
|
||||
return np.array([d_e_y, d_e_psi, d_v])
|
||||
return np.array([d_e_y_d_s, d_e_psi_d_s, d_v_d_s])
|
||||
|
||||
def linearize(self, delta=0, D=0):
|
||||
def linearize(self, D=0, delta=0):
|
||||
"""
|
||||
Linearize the system equations around the current state and waypoint.
|
||||
:param delta: reference steering angle
|
||||
:param D: reference duty-cycle
|
||||
:param delta: reference steering angle | [rad]
|
||||
:param D: reference duty-cycle of DC-motor | [-1, 1]
|
||||
"""
|
||||
|
||||
# get current state
|
||||
# Get current state | operating point to linearize around
|
||||
e_y = self.spatial_state.e_y
|
||||
e_psi = self.spatial_state.e_psi
|
||||
v = self.spatial_state.v
|
||||
|
||||
# get information about current waypoint
|
||||
# Get curvature of current waypoint
|
||||
kappa = self.reference_path.waypoints[self.wp_id].kappa
|
||||
|
||||
# get delta_s
|
||||
# Get delta_s
|
||||
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
|
||||
delta_s = next_waypoint - self.current_waypoint
|
||||
|
||||
# set helper variables
|
||||
v_x = v
|
||||
v_y = v * delta * self.C1
|
||||
|
||||
##############################
|
||||
# Helper Partial Derivatives #
|
||||
##############################
|
||||
|
||||
# Compute velocity components
|
||||
v_x = v
|
||||
v_y = v * delta * self.C1
|
||||
|
||||
# Compute partial derivatives of s_dot w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
s_dot = 1 / (1 - e_y*kappa) * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
|
||||
d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
|
||||
d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi))
|
||||
d_s_dot_d_v = 1 / (1 - e_y*kappa) * (np.cos(e_psi) - delta * self.C1 * np.sin(e_psi))
|
||||
d_s_dot_d_t = 0
|
||||
# d_s_dot_d_D = 0
|
||||
d_s_dot_d_delta = 1 / (1 - e_y*kappa) * (- v * self.C1 * np.sin(e_psi))
|
||||
d_s_dot_d_D = 0
|
||||
d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
|
||||
# Check
|
||||
|
||||
c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
|
||||
d_c_1_d_e_y = 0
|
||||
d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
|
||||
d_c_1_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi)
|
||||
d_c_1_d_t = 0
|
||||
d_c_1_d_delta = self.C1 * v * np.cos(e_psi)
|
||||
d_c_1_d_D = 0
|
||||
# Check
|
||||
# Compute partial derivatives of v_psi w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
v_psi = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
|
||||
# d_v_psi_d_e_y = 0
|
||||
d_v_psi_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
|
||||
d_v_psi_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi)
|
||||
# d_v_psi_d_D = 0
|
||||
d_v_psi_d_delta = self.C1 * v * np.cos(e_psi)
|
||||
# d_v_psi_d_kappa = 0
|
||||
|
||||
# Compute partial derivatives of psi_dot w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
psi_dot = v * delta * self.C2
|
||||
d_psi_dot_d_e_y = 0
|
||||
d_psi_dot_d_e_psi = 0
|
||||
# d_psi_dot_d_e_y = 0
|
||||
# d_psi_dot_d_e_psi = 0
|
||||
d_psi_dot_d_v = delta * self.C2
|
||||
d_psi_dot_d_t = 0
|
||||
# d_psi_dot_d_D = 0
|
||||
d_psi_dot_d_delta = v * self.C2
|
||||
d_psi_dot_d_D = 0
|
||||
# Check
|
||||
# d_psi_dot_d_kappa = 0
|
||||
|
||||
v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 - (
|
||||
v * delta) ** 2 * self.C2 * (self.C1 ** 2)
|
||||
d_v_dot_d_e_y = 0
|
||||
d_v_dot_d_e_psi = 0
|
||||
d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) * self.C2 * (self.C1 ** 2)
|
||||
d_v_dot_d_t = 0
|
||||
d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2
|
||||
# Compute partial derivatives of v_dot w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 \
|
||||
- (v * delta) ** 2 * self.C2 * (self.C1 ** 2)
|
||||
# d_v_dot_d_e_y = 0
|
||||
# d_v_dot_d_e_psi = 0
|
||||
d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) \
|
||||
* self.C2 * (self.C1 ** 2)
|
||||
d_v_dot_d_D = self.Cm1 - self.Cm2 * v
|
||||
# Check
|
||||
d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2
|
||||
# d_v_dot_d_kappa = 0
|
||||
|
||||
#######################
|
||||
# Partial Derivatives #
|
||||
#######################
|
||||
#############################
|
||||
# State Partial Derivatives #
|
||||
#############################
|
||||
|
||||
# derivatives for E_Y
|
||||
d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2)
|
||||
d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2)
|
||||
d_e_y_d_v = (d_c_1_d_v * s_dot - d_s_dot_d_v * c_1) / (s_dot**2)
|
||||
d_e_y_d_t = 0
|
||||
# Use pre-computed helper derivatives to compute spatial derivatives of
|
||||
# all state variables using Quotient Rule
|
||||
|
||||
# Compute partial derivatives of e_y w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
# e_y = v_psi / s_dot
|
||||
d_e_y_d_e_y = - d_s_dot_d_e_y * v_psi / (s_dot**2)
|
||||
d_e_y_d_e_psi = (d_v_psi_d_e_psi * s_dot - d_s_dot_d_e_psi * v_psi) / (s_dot**2)
|
||||
d_e_y_d_v = (d_v_psi_d_v * s_dot - d_s_dot_d_v * v_psi) / (s_dot**2)
|
||||
d_e_y_d_D = 0
|
||||
d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2)
|
||||
d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2)
|
||||
d_e_y_d_delta = (d_v_psi_d_delta * s_dot - d_s_dot_d_delta * v_psi) / (s_dot**2)
|
||||
d_e_y_d_kappa = - d_s_dot_d_kappa * v_psi / (s_dot**2)
|
||||
|
||||
# derivatives for E_PSI
|
||||
d_e_psi_d_e_y = - psi_dot * d_s_dot_d_e_y / (s_dot**2)
|
||||
d_e_psi_d_e_psi = - psi_dot * d_s_dot_d_e_psi / (s_dot**2)
|
||||
d_e_psi_d_v = (d_psi_dot_d_v * s_dot - psi_dot * d_s_dot_d_v) / (s_dot**2)
|
||||
d_e_psi_d_t = 0
|
||||
d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - psi_dot * d_s_dot_d_delta) / (s_dot**2)
|
||||
# Compute partial derivatives of e_psi w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
# e_psi = psi_dot / s_dot - kappa
|
||||
d_e_psi_d_e_y = - d_s_dot_d_e_y * psi_dot / (s_dot**2)
|
||||
d_e_psi_d_e_psi = - d_s_dot_d_e_psi * psi_dot / (s_dot**2)
|
||||
d_e_psi_d_v = (d_psi_dot_d_v * s_dot - d_s_dot_d_v * psi_dot) / (s_dot**2)
|
||||
d_e_psi_d_D = 0
|
||||
d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - d_s_dot_d_delta * psi_dot) / (s_dot**2)
|
||||
d_e_psi_d_kappa = - d_s_dot_d_kappa * psi_dot / (s_dot**2) - 1
|
||||
|
||||
# derivatives for V
|
||||
# Compute partial derivatives of v w.r.t. each state variable,
|
||||
# input variable and kappa
|
||||
# v = v_dot / s_dot
|
||||
d_v_d_e_y = - d_s_dot_d_e_y * v_dot / (s_dot**2)
|
||||
d_v_d_e_psi = - d_s_dot_d_e_psi * v_dot / (s_dot**2)
|
||||
d_v_d_v = (d_v_dot_d_v * s_dot - d_s_dot_d_v * v_dot) / (s_dot**2)
|
||||
d_v_d_t = 0
|
||||
d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2)
|
||||
d_v_d_D = d_v_dot_d_D * s_dot / (s_dot**2)
|
||||
d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2)
|
||||
d_v_d_kappa = - d_s_dot_d_kappa * v_dot / (s_dot**2)
|
||||
|
||||
# derivatives for T
|
||||
d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2)
|
||||
d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2)
|
||||
d_t_d_v = - d_s_dot_d_v / (s_dot ** 2)
|
||||
d_t_d_t = 0
|
||||
d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2)
|
||||
d_t_d_D = 0
|
||||
d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2)
|
||||
#############
|
||||
# Jacobians #
|
||||
#############
|
||||
|
||||
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa]) * delta_s
|
||||
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa]) * delta_s
|
||||
a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa]) * delta_s
|
||||
a_4 = np.array([0, 0, 0, 1])
|
||||
A = np.stack((a_1, a_2, a_3, a_4), axis=0)
|
||||
A[0, 0] += 1
|
||||
A[1, 1] += 1
|
||||
A[2, 2] += 1
|
||||
# Construct Jacobian Matrix
|
||||
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa])
|
||||
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa])
|
||||
a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa])
|
||||
|
||||
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta]) * delta_s
|
||||
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta]) * delta_s
|
||||
b_3 = np.array([d_v_d_D, d_v_d_delta]) * delta_s
|
||||
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta])
|
||||
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta])
|
||||
b_3 = np.array([d_v_d_D, d_v_d_delta])
|
||||
|
||||
# Add extra row for kappa | Allows for updating kappa during MPC
|
||||
# optimization
|
||||
a_4 = np.array([0, 0, 0, 0])
|
||||
b_4 = np.array([0, 0])
|
||||
B = np.stack((b_1, b_2, b_3, b_4), axis=0)
|
||||
|
||||
# set system matrices
|
||||
Ja = np.stack((a_1, a_2, a_3, a_4), axis=0)
|
||||
Jb = np.stack((b_1, b_2, b_3, b_4), axis=0)
|
||||
|
||||
###################
|
||||
# System Matrices #
|
||||
###################
|
||||
|
||||
# Construct system matrices from Jacobians. Multiply by sampling
|
||||
# distance delta_s + add identity matrix (Forward Euler Approximation)
|
||||
A = Ja * delta_s + np.identity(Ja.shape[1])
|
||||
B = Jb * delta_s
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
|
@ -770,13 +797,3 @@ class ExtendedBicycleModel(SpatialBicycleModel):
|
|||
|
||||
# set system matrices
|
||||
return A, B
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
state = ExtendedSpatialState(0, 1, 2, 3, 4, 5)
|
||||
print(state[0:2])
|
||||
print(len(state))
|
||||
print(state.list_states())
|
||||
state += np.array([1, 1, 1, 2, 1, 1])
|
||||
print(vars(state))
|
Loading…
Reference in New Issue