Tidy up a bit. Remove inconsistencies.
Modify s2t and t2s to work with both, state objects and np arrays.master
parent
77d346b82e
commit
281fc19b6d
|
@ -1,10 +1,13 @@
|
|||
import numpy as np
|
||||
from abc import abstractmethod
|
||||
|
||||
try:
|
||||
from abc import ABC
|
||||
except:
|
||||
# for Python 2.7
|
||||
from abc import ABCMeta
|
||||
|
||||
|
||||
class ABC(object):
|
||||
__metaclass__ = ABCMeta
|
||||
pass
|
||||
|
@ -16,6 +19,7 @@ import math
|
|||
CAR = '#F1C40F'
|
||||
CAR_OUTLINE = '#B7950B'
|
||||
|
||||
|
||||
#########################
|
||||
# Temporal State Vector #
|
||||
#########################
|
||||
|
@ -23,12 +27,10 @@ CAR_OUTLINE = '#B7950B'
|
|||
class TemporalState:
|
||||
def __init__(self, x, y, psi):
|
||||
"""
|
||||
Temporal State Vector containing car pose (x, y, psi) and velocity
|
||||
Temporal State Vector containing car pose (x, y, psi)
|
||||
:param x: x position in global coordinate system | [m]
|
||||
:param y: y position in global coordinate system | [m]
|
||||
:param psi: yaw angle | [rad]
|
||||
:param v_x: velocity in x direction (car frame) | [m/s]
|
||||
:param v_y: velocity in y direction (car frame) | [m/s]
|
||||
"""
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
@ -41,7 +43,6 @@ class TemporalState:
|
|||
Overload Sum-Add operator.
|
||||
:param other: numpy array to be added to state vector
|
||||
"""
|
||||
|
||||
for state_id in range(len(self.members)):
|
||||
vars(self)[self.members[state_id]] += other[state_id]
|
||||
return self
|
||||
|
@ -59,7 +60,8 @@ class SpatialState(ABC):
|
|||
@abstractmethod
|
||||
def __init__(self):
|
||||
self.members = None
|
||||
pass
|
||||
self.e_y = None
|
||||
self.e_psi = None
|
||||
|
||||
def __getitem__(self, item):
|
||||
if isinstance(item, int):
|
||||
|
@ -92,7 +94,7 @@ class SpatialState(ABC):
|
|||
|
||||
|
||||
class SimpleSpatialState(SpatialState):
|
||||
def __init__(self, e_y, e_psi, t):
|
||||
def __init__(self, e_y=0.0, e_psi=0.0, t=0.0):
|
||||
"""
|
||||
Simplified Spatial State Vector containing orthogonal deviation from
|
||||
reference path (e_y), difference in orientation (e_psi) and velocity
|
||||
|
@ -114,18 +116,21 @@ class SimpleSpatialState(SpatialState):
|
|||
####################################
|
||||
|
||||
class SpatialBicycleModel(ABC):
|
||||
def __init__(self, reference_path, length, width):
|
||||
def __init__(self, reference_path, length, width, Ts):
|
||||
"""
|
||||
Abstract Base Class for Spatial Reformulation of Bicycle Model.
|
||||
:param reference_path: reference path object to follow
|
||||
:param length: length of car in m
|
||||
:param width: width of car in m
|
||||
:param Ts: sampling time of model
|
||||
"""
|
||||
|
||||
# Precision
|
||||
self.eps = 1e-12
|
||||
|
||||
# Car Parameters
|
||||
self.l = length
|
||||
self.w = width
|
||||
self.length = length
|
||||
self.width = width
|
||||
self.safety_margin = self._compute_safety_margin()
|
||||
|
||||
# Reference Path
|
||||
|
@ -134,8 +139,8 @@ class SpatialBicycleModel(ABC):
|
|||
# Set initial distance traveled
|
||||
self.s = 0.0
|
||||
|
||||
# Set sampling time to None (Initialization required)
|
||||
self.sampling_time = None
|
||||
# Set sampling time
|
||||
self.Ts = Ts
|
||||
|
||||
# Set initial waypoint ID
|
||||
self.wp_id = 0
|
||||
|
@ -149,69 +154,76 @@ class SpatialBicycleModel(ABC):
|
|||
# Declare temporal state variable | Initialization in sub-class
|
||||
self.temporal_state = None
|
||||
|
||||
# Declare system matrices of linearized model | Used for MPC
|
||||
self.A, self.B = None, None
|
||||
|
||||
def s2t(self, reference_waypoint=None, reference_state=None):
|
||||
def s2t(self, reference_waypoint, reference_state):
|
||||
"""
|
||||
Convert spatial state to temporal state. Either convert self.spatial_
|
||||
state with current waypoint as reference or provide reference waypoint
|
||||
and reference_state.
|
||||
:return x, y, psi
|
||||
Convert spatial state to temporal state given a reference waypoint.
|
||||
:param reference_waypoint: waypoint object to use as reference
|
||||
:param reference_state: state vector as np.array to use as reference
|
||||
:return Temporal State equivalent to reference state
|
||||
"""
|
||||
|
||||
# Compute spatial state for current waypoint if no waypoint given
|
||||
if reference_waypoint is None and reference_state is None:
|
||||
|
||||
# compute temporal state variables
|
||||
x = self.current_waypoint.x - self.spatial_state.e_y * np.sin(
|
||||
self.current_waypoint.psi)
|
||||
y = self.current_waypoint.y + self.spatial_state.e_y * np.cos(
|
||||
self.current_waypoint.psi)
|
||||
psi = self.current_waypoint.psi + self.spatial_state.e_psi
|
||||
|
||||
else:
|
||||
|
||||
# compute temporal state variables
|
||||
# Compute temporal state variables
|
||||
if isinstance(reference_state, np.ndarray):
|
||||
x = reference_waypoint.x - reference_state[0] * np.sin(
|
||||
reference_waypoint.psi)
|
||||
y = reference_waypoint.y + reference_state[0] * np.cos(
|
||||
reference_waypoint.psi)
|
||||
psi = reference_waypoint.psi + reference_state[1]
|
||||
elif isinstance(reference_state, SpatialState):
|
||||
x = reference_waypoint.x - reference_state.e_y * np.sin(
|
||||
reference_waypoint.psi)
|
||||
y = reference_waypoint.y + reference_state.e_y * np.cos(
|
||||
reference_waypoint.psi)
|
||||
psi = reference_waypoint.psi + reference_state.e_psi
|
||||
else:
|
||||
print('Reference State type not supported!')
|
||||
x, y, psi = None, None, None
|
||||
exit(1)
|
||||
|
||||
return x, y, psi
|
||||
return TemporalState(x, y, psi)
|
||||
|
||||
def t2s(self):
|
||||
def t2s(self, reference_waypoint, reference_state):
|
||||
"""
|
||||
Convert spatial state to temporal state. Either convert self.spatial_
|
||||
state with current waypoint as reference or provide reference waypoint
|
||||
and reference_state.
|
||||
:return x, y, psi
|
||||
:return Spatial State equivalent to reference state
|
||||
"""
|
||||
|
||||
# compute temporal state variables
|
||||
e_y = np.cos(self.current_waypoint.psi) * \
|
||||
(self.temporal_state.y - self.current_waypoint.y) - \
|
||||
np.sin(self.current_waypoint.psi) * (self.temporal_state.x -
|
||||
self.current_waypoint.x)
|
||||
e_psi = self.temporal_state.psi - self.current_waypoint.psi
|
||||
e_psi = np.mod(e_psi + math.pi, 2*math.pi) - math.pi
|
||||
t = 0
|
||||
# Compute spatial state variables
|
||||
if isinstance(reference_state, np.ndarray):
|
||||
e_y = np.cos(reference_waypoint.psi) * \
|
||||
(reference_state[1] - reference_waypoint.y) - \
|
||||
np.sin(reference_waypoint.psi) * (reference_state[0] -
|
||||
reference_waypoint.x)
|
||||
e_psi = reference_state[2] - reference_waypoint.psi
|
||||
|
||||
# Ensure e_psi is kept within range (-pi, pi]
|
||||
e_psi = np.mod(e_psi + math.pi, 2 * math.pi) - math.pi
|
||||
elif isinstance(reference_state, TemporalState):
|
||||
e_y = np.cos(reference_waypoint.psi) * \
|
||||
(reference_state.y - reference_waypoint.y) - \
|
||||
np.sin(reference_waypoint.psi) * (reference_state.x -
|
||||
reference_waypoint.x)
|
||||
e_psi = reference_state.psi - reference_waypoint.psi
|
||||
|
||||
# Ensure e_psi is kept within range (-pi, pi]
|
||||
e_psi = np.mod(e_psi + math.pi, 2 * math.pi) - math.pi
|
||||
else:
|
||||
print('Reference State type not supported!')
|
||||
e_y, e_psi = None, None
|
||||
exit(1)
|
||||
|
||||
# time state can be set to zero since it's only relevant for the MPC
|
||||
# prediction horizon
|
||||
t = 0.0
|
||||
|
||||
return SimpleSpatialState(e_y, e_psi, t)
|
||||
|
||||
def set_sampling_time(self, Ts):
|
||||
"""
|
||||
Set sampling time of bicycle model.
|
||||
:param Ts: sampling time in s
|
||||
"""
|
||||
self.Ts = Ts
|
||||
|
||||
def drive(self, u):
|
||||
"""
|
||||
Drive.
|
||||
:param u: input vector
|
||||
:return: numpy array with spatial derivatives for all state variables
|
||||
:param u: input vector containing [v, delta]
|
||||
"""
|
||||
|
||||
# Get input signals
|
||||
|
@ -220,7 +232,7 @@ class SpatialBicycleModel(ABC):
|
|||
# Compute temporal state derivatives
|
||||
x_dot = v * np.cos(self.temporal_state.psi)
|
||||
y_dot = v * np.sin(self.temporal_state.psi)
|
||||
psi_dot = v / self.l * np.tan(delta)
|
||||
psi_dot = v / self.length * np.tan(delta)
|
||||
temporal_derivatives = np.array([x_dot, y_dot, psi_dot])
|
||||
|
||||
# Update spatial state (Forward Euler Approximation)
|
||||
|
@ -239,15 +251,13 @@ class SpatialBicycleModel(ABC):
|
|||
"""
|
||||
|
||||
# Model ellipsoid around the car
|
||||
length = self.l / np.sqrt(2)
|
||||
width = self.w / np.sqrt(2)
|
||||
widht = 0
|
||||
return length, width
|
||||
safety_margin = self.width / np.sqrt(2)
|
||||
|
||||
return safety_margin
|
||||
|
||||
def get_current_waypoint(self):
|
||||
"""
|
||||
Create waypoint on reference path at current location of car by
|
||||
interpolation information from given path waypoints.
|
||||
Get closest waypoint on reference path based on car's current location.
|
||||
"""
|
||||
|
||||
# Compute cumulative path length
|
||||
|
@ -256,7 +266,7 @@ class SpatialBicycleModel(ABC):
|
|||
# so far
|
||||
greater_than_threshold = length_cum > self.s
|
||||
next_wp_id = greater_than_threshold.searchsorted(True)
|
||||
# Get previous index for interpolation
|
||||
# Get previous index
|
||||
prev_wp_id = next_wp_id - 1
|
||||
|
||||
# Get distance traveled for both enclosing waypoints
|
||||
|
@ -269,19 +279,6 @@ class SpatialBicycleModel(ABC):
|
|||
else:
|
||||
self.wp_id = prev_wp_id
|
||||
self.current_waypoint = self.reference_path.waypoints[prev_wp_id]
|
||||
#
|
||||
# # Weight for next waypoint
|
||||
# w = (s_next - self.s) / (s_next - s_prev)
|
||||
#
|
||||
# # Interpolate between the two waypoints
|
||||
# prev_wp = self.reference_path.waypoints[prev_wp_id]
|
||||
# next_wp = self.reference_path.waypoints[next_wp_id]
|
||||
# x = w * next_wp.x + (1 - w) * prev_wp.x
|
||||
# y = w * next_wp.y + (1 - w) * prev_wp.y
|
||||
# psi = w * next_wp.psi + (1 - w) * prev_wp.psi
|
||||
# kappa = w * next_wp.kappa + (1 - w) * prev_wp.kappa
|
||||
|
||||
|
||||
|
||||
def show(self):
|
||||
"""
|
||||
|
@ -293,24 +290,22 @@ class SpatialBicycleModel(ABC):
|
|||
# Get current angle with respect to x-axis
|
||||
yaw = np.rad2deg(self.temporal_state.psi)
|
||||
# Draw rectangle
|
||||
car = plt_patches.Rectangle(cog, width=self.l, height=self.w,
|
||||
angle=yaw, facecolor=CAR, edgecolor=CAR_OUTLINE, zorder=20)
|
||||
car = plt_patches.Rectangle(cog, width=self.length, height=self.width,
|
||||
angle=yaw, facecolor=CAR,
|
||||
edgecolor=CAR_OUTLINE, zorder=20)
|
||||
|
||||
# Shift center rectangle to match center of the car
|
||||
car.set_x(car.get_x() - (self.l/2 * np.cos(self.temporal_state.psi) -
|
||||
self.w/2 * np.sin(self.temporal_state.psi)))
|
||||
car.set_y(car.get_y() - (self.w/2 * np.cos(self.temporal_state.psi) +
|
||||
self.l/2 * np.sin(self.temporal_state.psi)))
|
||||
|
||||
# Show safety margin
|
||||
safety_margin = plt_patches.Ellipse(cog, width=2*self.safety_margin[0],
|
||||
height=2*self.safety_margin[1],
|
||||
angle=yaw,
|
||||
fill=False, edgecolor=CAR, zorder=20)
|
||||
car.set_x(car.get_x() - (self.length / 2 *
|
||||
np.cos(self.temporal_state.psi) -
|
||||
self.width / 2 *
|
||||
np.sin(self.temporal_state.psi)))
|
||||
car.set_y(car.get_y() - (self.width / 2 *
|
||||
np.cos(self.temporal_state.psi) +
|
||||
self.length / 2 *
|
||||
np.sin(self.temporal_state.psi)))
|
||||
|
||||
# Add rectangle to current axis
|
||||
ax = plt.gca()
|
||||
#ax.add_patch(safety_margin)
|
||||
ax.add_patch(car)
|
||||
|
||||
@abstractmethod
|
||||
|
@ -318,7 +313,7 @@ class SpatialBicycleModel(ABC):
|
|||
pass
|
||||
|
||||
@abstractmethod
|
||||
def linearize(self):
|
||||
def linearize(self, v_ref, kappa_ref, delta_s):
|
||||
pass
|
||||
|
||||
|
||||
|
@ -327,49 +322,29 @@ class SpatialBicycleModel(ABC):
|
|||
#################
|
||||
|
||||
class BicycleModel(SpatialBicycleModel):
|
||||
def __init__(self, length, width, reference_path, e_y, e_psi, t):
|
||||
def __init__(self, reference_path, length, width, Ts):
|
||||
"""
|
||||
Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic
|
||||
Bicycle Model. Uses Simplified Spatial State.
|
||||
:param reference_path: reference path model is supposed to follow
|
||||
:param length: length of the car in m
|
||||
:param width: with of the car in m
|
||||
:param reference_path: reference path model is supposed to follow
|
||||
:param e_y: deviation from reference path | [m]
|
||||
:param e_psi: heading offset from reference path | [rad]
|
||||
:param Ts: sampling time of model in s
|
||||
"""
|
||||
|
||||
# Initialize base class
|
||||
super(BicycleModel, self).__init__(reference_path, length=length,
|
||||
width=width)
|
||||
width=width, Ts=Ts)
|
||||
|
||||
# Initialize spatial state
|
||||
self.spatial_state = SimpleSpatialState(e_y, e_psi, t)
|
||||
self.spatial_state = SimpleSpatialState()
|
||||
|
||||
# Number of spatial state variables
|
||||
self.n_states = len(self.spatial_state)
|
||||
|
||||
# Initialize temporal state
|
||||
self.temporal_state = self.s2t()
|
||||
|
||||
def s2t(self, reference_waypoint=None, reference_state=None):
|
||||
"""
|
||||
Convert spatial state to temporal state. Either convert self.spatial_
|
||||
state with current waypoint as reference or provide reference waypoint
|
||||
and reference_state.
|
||||
:return temporal state equivalent to self.spatial_state or provided
|
||||
reference state
|
||||
"""
|
||||
|
||||
if reference_state is None and reference_waypoint is None:
|
||||
# Get pose information from base class implementation
|
||||
x, y, psi = super(BicycleModel, self).s2t()
|
||||
# Compute simplified velocities
|
||||
else:
|
||||
# Get pose information from base class implementation
|
||||
x, y, psi = super(BicycleModel, self).s2t(reference_waypoint,
|
||||
reference_state)
|
||||
|
||||
return TemporalState(x, y, psi)
|
||||
self.temporal_state = self.s2t(reference_state=self.spatial_state,
|
||||
reference_waypoint=self.current_waypoint)
|
||||
|
||||
def get_temporal_derivatives(self, state, input, kappa):
|
||||
"""
|
||||
|
@ -380,6 +355,7 @@ class BicycleModel(SpatialBicycleModel):
|
|||
:return: temporal derivatives of distance, angle and velocity
|
||||
"""
|
||||
|
||||
# Get state and input variables
|
||||
e_y, e_psi, t = state
|
||||
v, delta = input
|
||||
|
||||
|
@ -387,7 +363,7 @@ class BicycleModel(SpatialBicycleModel):
|
|||
s_dot = 1 / (1 - (e_y * kappa)) * v * np.cos(e_psi)
|
||||
|
||||
# Compute yaw angle rate of change
|
||||
psi_dot = v / self.l * np.tan(delta)
|
||||
psi_dot = v / self.length * np.tan(delta)
|
||||
|
||||
return s_dot, psi_dot
|
||||
|
||||
|
@ -400,6 +376,7 @@ class BicycleModel(SpatialBicycleModel):
|
|||
:return: numpy array with spatial derivatives for all state variables
|
||||
"""
|
||||
|
||||
# Get state and input variables
|
||||
e_y, e_psi, t = state
|
||||
v, delta = input
|
||||
|
||||
|
@ -413,36 +390,30 @@ class BicycleModel(SpatialBicycleModel):
|
|||
|
||||
return np.array([d_e_y_d_s, d_e_psi_d_s, d_t_d_s])
|
||||
|
||||
def linearize(self, v=None, kappa_r=None, delta_s=None):
|
||||
def linearize(self, v_ref, kappa_ref, delta_s):
|
||||
"""
|
||||
Linearize the system equations around the current state and waypoint.
|
||||
:param kappa_r: kappa of waypoint around which to linearize
|
||||
Linearize the system equations around provided reference values.
|
||||
:param v_ref: velocity reference around which to linearize
|
||||
:param kappa_ref: kappa of waypoint around which to linearize
|
||||
:param delta_s: distance between current waypoint and next waypoint
|
||||
"""
|
||||
|
||||
# Get linearization state
|
||||
if kappa_r is None and delta_s is None:
|
||||
# Get curvature of linearization waypoint
|
||||
kappa_r = self.reference_path.waypoints[self.wp_id].kappa
|
||||
# Get delta_s
|
||||
next_waypoint = self.reference_path.waypoints[self.wp_id + 1]
|
||||
delta_s = next_waypoint - self.current_waypoint
|
||||
|
||||
###################
|
||||
# System Matrices #
|
||||
###################
|
||||
|
||||
# Construct Jacobian Matrix
|
||||
a_1 = np.array([1, delta_s, 0])
|
||||
a_2 = np.array([-kappa_r**2*delta_s, 1, 0])
|
||||
a_3 = np.array([-kappa_r/v*delta_s, 0, 1])
|
||||
a_1 = np.array([1, delta_s, 0])
|
||||
a_2 = np.array([-kappa_ref ** 2 * delta_s, 1, 0])
|
||||
a_3 = np.array([-kappa_ref / v_ref * delta_s, 0, 1])
|
||||
|
||||
b_1 = np.array([0, 0])
|
||||
b_2 = np.array([0, delta_s])
|
||||
b_3 = np.array([-1/(v**2)*delta_s, 0])
|
||||
b_1 = np.array([0, 0])
|
||||
b_2 = np.array([0, delta_s])
|
||||
b_3 = np.array([-1 / (v_ref ** 2) * delta_s, 0])
|
||||
|
||||
f = np.array([0.0, 0.0, 1/v*delta_s])
|
||||
f = np.array([0.0, 0.0, 1 / v_ref * delta_s])
|
||||
|
||||
A = np.stack((a_1, a_2, a_3), axis=0)
|
||||
B = np.stack((b_1, b_2, b_3), axis=0)
|
||||
|
||||
return f, A, B
|
||||
return f, A, B
|
||||
|
|
Loading…
Reference in New Issue