119 lines
4.8 KiB
Markdown
119 lines
4.8 KiB
Markdown
**Noted: Ubuntu 16.04 and lower is not supported**
|
|
## FAST-LIO 2.0
|
|
Will Launch **Soon**.
|
|
|
|
New features:
|
|
1. Faster and Better;
|
|
2. Higher Frequency;
|
|
3. More LiDAR support (Horizon and Ouster 64);
|
|
4. Support ARM based embeded platforms.
|
|
|
|
## FAST-LIO
|
|
**FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. Our package address many key issues:
|
|
1. Fast iterated Kalman filter for odometry optimization;
|
|
2. Automaticaly initialized at most steady environments;
|
|
3. Parallel KD-Tree Search to decrease the computation;
|
|
4. Robust feature extraction;
|
|
|
|
**Developers**
|
|
|
|
[Wei Xu 徐威](https://github.com/XW-HKU): Laser mapping and pose optimization;
|
|
|
|
[Zheng Liu 刘政](https://github.com/Zale-Liu): Features extraction.
|
|
|
|
To know more about the details, please refer to our related paper:)
|
|
|
|
**Our related paper**: our related papers are now available on arxiv:
|
|
|
|
[FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter](https://arxiv.org/abs/2010.08196)
|
|
|
|
**Our related video**: https://youtu.be/iYCY6T79oNU
|
|
|
|
<div align="center">
|
|
<img src="doc/results/HKU_HW.png" width = 49% >
|
|
<img src="doc/results/HKU_MB_001.png" width = 49% >
|
|
</div>
|
|
|
|
## 1. Prerequisites
|
|
### 1.1 **Ubuntu** and **ROS**
|
|
**Ubuntu >= 18.04 (Ubuntu 16.04 is not supported)**
|
|
|
|
ROS >= Melodic. [ROS Installation](http://wiki.ros.org/ROS/Installation)
|
|
|
|
### 1.2. **PCL && Eigen && openCV**
|
|
PCL >= 1.8, Follow [PCL Installation](http://www.pointclouds.org/downloads/linux.html).
|
|
|
|
Eigen >= 3.3.4, Follow [Eigen Installation](http://eigen.tuxfamily.org/index.php?title=Main_Page).
|
|
|
|
OpenCV >= 3.2, Follow [openCV Installation](https://opencv.org/releases/).
|
|
|
|
### 1.3. **livox_ros_driver**
|
|
Follow [livox_ros_driver Installation](https://github.com/Livox-SDK/livox_ros_driver).
|
|
|
|
|
|
## 2. Build
|
|
Clone the repository and catkin_make:
|
|
|
|
```
|
|
cd ~/catkin_ws/src
|
|
git clone https://github.com/XW-HKU/fast_lio.git
|
|
cd ..
|
|
catkin_make
|
|
source devel/setup.bash
|
|
```
|
|
*Remarks:*
|
|
- If you want to use a custom build of PCL, add the following line to ~/.bashrc
|
|
```export PCL_ROOT={CUSTOM_PCL_PATH}```
|
|
## 3. Directly run
|
|
### 3.1 For indoor environments (support maximum 50hz frame rate)
|
|
Connect to your PC to Livox Avia LiDAR by following [Livox-ros-driver installation](https://github.com/Livox-SDK/livox_ros_driver), then
|
|
```
|
|
....
|
|
roslaunch fast_lio mapping_avia.launch
|
|
roslaunch livox_ros_driver livox_lidar_msg.launch
|
|
|
|
```
|
|
*Remarks:*
|
|
- If you want to change the frame rate, please modify the **publish_freq** parameter in the [livox_lidar_msg.launch](https://github.com/Livox-SDK/livox_ros_driver/blob/master/livox_ros_driver/launch/livox_lidar_msg.launch) of [Livox-ros-driver](https://github.com/Livox-SDK/livox_ros_driver) before make the livox_ros_driver pakage.
|
|
|
|
### 3.2 For outdoor environments
|
|
Connect to your PC to Livox Avia LiDAR following [Livox-ros-driver installation](https://github.com/Livox-SDK/livox_ros_driver), then
|
|
```
|
|
....
|
|
roslaunch fast_lio mapping_avia_outdoor.launch
|
|
roslaunch livox_ros_driver livox_lidar_msg.launch
|
|
|
|
```
|
|
## 4. Rosbag Example
|
|
### 4.1 Indoor rosbag (Livox Avia LiDAR)
|
|
|
|
<div align="center"><img src="doc/results/HKU_LG_Indoor.png" width=100% /></div>
|
|
|
|
Download [avia_indoor_quick_shake_example1](https://drive.google.com/file/d/1SWmrwlUD5FlyA-bTr1rakIYx1GxS4xNl/view?usp=sharing) or [avia_indoor_quick_shake_example2](https://drive.google.com/file/d/1wD485CIbzZlNs4z8e20Dv2Q1q-7Gv_AT/view?usp=sharing) and then
|
|
```
|
|
roslaunch fast_lio mapping_avia.launch
|
|
rosbag play YOUR_DOWNLOADED.bag
|
|
```
|
|
### 4.2 Outdoor rosbag (Livox Avia LiDAR)
|
|
|
|
<div align="center"><img src="doc/results/HKU_MB_002.png" width=100% /></div>
|
|
|
|
<!-- <div align="center"><img src="doc/results/mid40_outdoor.png" width=90% /></div> -->
|
|
|
|
Download [avia_hku_main building_mapping](https://drive.google.com/file/d/1GSb9eLQuwqmgI3VWSB5ApEUhOCFG_Sv5/view?usp=sharing) and then
|
|
```
|
|
roslaunch fast_lio mapping_avia_outdoor.launch
|
|
rosbag play YOUR_DOWNLOADED.bag
|
|
```
|
|
|
|
## 5.Implementation on UAV
|
|
In order to validate the robustness and computational efficiency of FAST-LIO in actual mobile robots, we build a small-scale quadrotor which can carry a Livox Avia LiDAR with 70 degree FoV and a DJI Manifold 2-C onboard computer with a 1.8 GHz Intel i7-8550U CPU and 8 G RAM, as shown in below.
|
|
|
|
<div align="center">
|
|
<img src="doc/uav01.jpg" width=40.5% >
|
|
<img src="doc/uav_system.png" width=57% >
|
|
</div>
|
|
|
|
## 6.Acknowledgments
|
|
Thanks for LOAM(J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time), [Livox_Mapping](https://github.com/Livox-SDK/livox_mapping) and [Loam_Livox](https://github.com/hku-mars/loam_livox).
|