Fast-Lio/README.md

123 lines
5.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

**Noted: Ubuntu 16.04 and lower is not supported**
## FAST-LIO
**FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. Our package address many key issues:
1. Fast iterated Kalman filter for odometry optimization;
2. Automaticaly initialized at most steady environments;
3. Parallel KD-Tree Search to decrease the computation;
## FAST-LIO 2.0 (2021-07-04 Update)
<!-- ![image](doc/real_experiment2.gif) -->
<!-- [![Watch the video](doc/real_exp_2.png)](https://youtu.be/2OvjGnxszf8) -->
<div align="left">
<img src="doc/real_experiment2.gif" width=49% />
<img src="doc/ulhkwh_fastlio.gif" width = 49% >
</div>
**Related video:**
[FAST-LIO2](https://youtu.be/2OvjGnxszf8)
[FAST-LIO1](https://youtu.be/iYCY6T79oNU)
**New features:**
1. Incremental mapping using ikd-Tree, achieve faster speed and over 100Hz LiDAR rate.
2. Direct odometry on Raw LiDAR points (feature extraction can be closed), achieving better accuracy.
3. Since no need for feature extraction, FAST-LIO2 can support different LiDAR Types including spinning (Velodyne, Ouster) and solid-state (Avia, horizon) LiDARs. And most of LiDARs can be easily supported.
4. Support external IMU.
5. Support ARM-based platforms including Khadas VIM3, Nivida TX2, Raspberry 4B with 8G RAM.
**Contributors**
[Wei Xu 徐威](https://github.com/XW-HKU)[Yixi Cai 蔡逸熙](https://github.com/Ecstasy-EC)[Dongjiao He 贺东娇](https://github.com/Joanna-HE)[Fangcheng Zhu 朱方程](https://github.com/zfc-zfc)[Jiarong Lin 林家荣](https://github.com/ziv-lin)[Zheng Liu 刘政](https://github.com/Zale-Liu)
To know more about the details, please refer to our related paper:)
**Related papers**:
our related papers are now available on arxiv:
[FAST-LIO2: Fast Direct LiDAR-inertial Odometry (Currently Uavailable)]()
[FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter](https://arxiv.org/abs/2010.08196)
<!-- <div align="center">
<img src="doc/results/HKU_HW.png" width = 49% >
<img src="doc/results/HKU_MB_001.png" width = 49% >
</div> -->
## 1. Prerequisites
### 1.1 **Ubuntu** and **ROS**
**Ubuntu >= 18.04 (Ubuntu 16.04 is not supported)**
ROS >= Melodic. [ROS Installation](http://wiki.ros.org/ROS/Installation)
### 1.2. **PCL && Eigen && openCV**
PCL >= 1.8, Follow [PCL Installation](http://www.pointclouds.org/downloads/linux.html).
Eigen >= 3.3.4, Follow [Eigen Installation](http://eigen.tuxfamily.org/index.php?title=Main_Page).
### 1.3. **livox_ros_driver**
Follow [livox_ros_driver Installation](https://github.com/Livox-SDK/livox_ros_driver).
## 2. Build
Clone the repository and catkin_make:
```
cd ~/catkin_ws/src
git clone https://github.com/XW-HKU/fast_lio.git
git submodule update --init
cd ..
catkin_make
source devel/setup.bash
```
*Remarks:*
- If you want to use a custom build of PCL, add the following line to ~/.bashrc
```export PCL_ROOT={CUSTOM_PCL_PATH}```
## 3. Directly run
### 3.1 For Avia
Connect to your PC to Livox Avia LiDAR by following [Livox-ros-driver installation](https://github.com/Livox-SDK/livox_ros_driver), then
```
....
cd ~/catkin_ws
roslaunch fast_lio mapping_avia.launch
roslaunch livox_ros_driver livox_lidar_msg.launch
```
*Remarks:*
- If you want to change the frame rate, please modify the **publish_freq** parameter in the [livox_lidar_msg.launch](https://github.com/Livox-SDK/livox_ros_driver/blob/master/livox_ros_driver/launch/livox_lidar_msg.launch) of [Livox-ros-driver](https://github.com/Livox-SDK/livox_ros_driver) before make the livox_ros_driver pakage.
## 4. Rosbag Example
### 4.1 Indoor rosbag (Livox Avia LiDAR)
<div align="center"><img src="doc/results/HKU_LG_Indoor.png" width=100% /></div>
Download [avia_indoor_quick_shake_example1](https://drive.google.com/file/d/1SWmrwlUD5FlyA-bTr1rakIYx1GxS4xNl/view?usp=sharing) or [avia_indoor_quick_shake_example2](https://drive.google.com/file/d/1wD485CIbzZlNs4z8e20Dv2Q1q-7Gv_AT/view?usp=sharing) and then
```
roslaunch fast_lio mapping_avia.launch
rosbag play YOUR_DOWNLOADED.bag
```
### 4.2 Outdoor rosbag (Livox Avia LiDAR)
<div align="center"><img src="doc/results/HKU_MB_002.png" width=100% /></div>
<!-- <div align="center"><img src="doc/results/mid40_outdoor.png" width=90% /></div> -->
Download [avia_hku_main building_mapping](https://drive.google.com/file/d/1GSb9eLQuwqmgI3VWSB5ApEUhOCFG_Sv5/view?usp=sharing) and then
```
roslaunch fast_lio mapping_avia_outdoor.launch
rosbag play YOUR_DOWNLOADED.bag
```
## 5.Implementation on UAV
In order to validate the robustness and computational efficiency of FAST-LIO in actual mobile robots, we build a small-scale quadrotor which can carry a Livox Avia LiDAR with 70 degree FoV and a DJI Manifold 2-C onboard computer with a 1.8 GHz Intel i7-8550U CPU and 8 G RAM, as shown in below.
<div align="center">
<img src="doc/uav01.jpg" width=40.5% >
<img src="doc/uav_system.png" width=57% >
</div>
## 6.Acknowledgments
Thanks for LOAM(J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time), [Livox_Mapping](https://github.com/Livox-SDK/livox_mapping) and [Loam_Livox](https://github.com/hku-mars/loam_livox).