Fast-Lio/include/common_lib.h

260 lines
7.9 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#ifndef COMMON_LIB_H
#define COMMON_LIB_H
#include <so3_math.h>
#include <Eigen/Eigen>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <fast_lio/Pose6D.h>
#include <sensor_msgs/Imu.h>
#include <nav_msgs/Odometry.h>
#include <tf/transform_broadcaster.h>
#include <eigen_conversions/eigen_msg.h>
using namespace std;
using namespace Eigen;
#define USE_IKFOM
#define PI_M (3.14159265358)
#define G_m_s2 (9.81) // Gravaty const in GuangDong/China
#define DIM_STATE (18) // Dimension of states (Let Dim(SO(3)) = 3)
#define DIM_PROC_N (12) // Dimension of process noise (Let Dim(SO(3)) = 3)
#define CUBE_LEN (6.0)
#define LIDAR_SP_LEN (2)
#define INIT_COV (1)
#define NUM_MATCH_POINTS (5)
#define MAX_MEAS_DIM (10000)
#define VEC_FROM_ARRAY(v) v[0],v[1],v[2]
#define MAT_FROM_ARRAY(v) v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8]
#define CONSTRAIN(v,min,max) ((v>min)?((v<max)?v:max):min)
#define ARRAY_FROM_EIGEN(mat) mat.data(), mat.data() + mat.rows() * mat.cols()
#define STD_VEC_FROM_EIGEN(mat) vector<decltype(mat)::Scalar> (mat.data(), mat.data() + mat.rows() * mat.cols())
#define DEBUG_FILE_DIR(name) (string(string(ROOT_DIR) + "Log/"+ name))
typedef fast_lio::Pose6D Pose6D;
typedef pcl::PointXYZINormal PointType;
typedef pcl::PointCloud<PointType> PointCloudXYZI;
typedef vector<PointType, Eigen::aligned_allocator<PointType>> PointVector;
typedef Vector3d V3D;
typedef Matrix3d M3D;
typedef Vector3f V3F;
typedef Matrix3f M3F;
#define MD(a,b) Matrix<double, (a), (b)>
#define VD(a) Matrix<double, (a), 1>
#define MF(a,b) Matrix<float, (a), (b)>
#define VF(a) Matrix<float, (a), 1>
M3D Eye3d(M3D::Identity());
M3F Eye3f(M3F::Identity());
V3D Zero3d(0, 0, 0);
V3F Zero3f(0, 0, 0);
// 当前处理的激光雷达数据和IMU数据
struct MeasureGroup // Lidar data and imu dates for the curent process
{
MeasureGroup()
{
lidar_beg_time = 0.0; // 初始化激光雷达开始时间为0.0
this->lidar.reset(new PointCloudXYZI()); // 重置激光雷达点云指针,分配新的点云对象
};
double lidar_beg_time; // 激光雷达扫描开始时间
double lidar_end_time; // 激光雷达扫描结束时间
PointCloudXYZI::Ptr lidar; // 激光雷达点云数据指针
deque<sensor_msgs::Imu::ConstPtr> imu; // IMU数据队列存储IMU消息的常量指针
};
struct StatesGroup
{
StatesGroup() {
this->rot_end = M3D::Identity();
this->pos_end = Zero3d;
this->vel_end = Zero3d;
this->bias_g = Zero3d;
this->bias_a = Zero3d;
this->gravity = Zero3d;
this->cov = MD(DIM_STATE,DIM_STATE)::Identity() * INIT_COV;
this->cov.block<9,9>(9,9) = MD(9,9)::Identity() * 0.00001;
};
StatesGroup(const StatesGroup& b) {
this->rot_end = b.rot_end;
this->pos_end = b.pos_end;
this->vel_end = b.vel_end;
this->bias_g = b.bias_g;
this->bias_a = b.bias_a;
this->gravity = b.gravity;
this->cov = b.cov;
};
StatesGroup& operator=(const StatesGroup& b)
{
this->rot_end = b.rot_end;
this->pos_end = b.pos_end;
this->vel_end = b.vel_end;
this->bias_g = b.bias_g;
this->bias_a = b.bias_a;
this->gravity = b.gravity;
this->cov = b.cov;
return *this;
};
StatesGroup operator+(const Matrix<double, DIM_STATE, 1> &state_add)
{
StatesGroup a;
a.rot_end = this->rot_end * Exp(state_add(0,0), state_add(1,0), state_add(2,0));
a.pos_end = this->pos_end + state_add.block<3,1>(3,0);
a.vel_end = this->vel_end + state_add.block<3,1>(6,0);
a.bias_g = this->bias_g + state_add.block<3,1>(9,0);
a.bias_a = this->bias_a + state_add.block<3,1>(12,0);
a.gravity = this->gravity + state_add.block<3,1>(15,0);
a.cov = this->cov;
return a;
};
StatesGroup& operator+=(const Matrix<double, DIM_STATE, 1> &state_add)
{
this->rot_end = this->rot_end * Exp(state_add(0,0), state_add(1,0), state_add(2,0));
this->pos_end += state_add.block<3,1>(3,0);
this->vel_end += state_add.block<3,1>(6,0);
this->bias_g += state_add.block<3,1>(9,0);
this->bias_a += state_add.block<3,1>(12,0);
this->gravity += state_add.block<3,1>(15,0);
return *this;
};
Matrix<double, DIM_STATE, 1> operator-(const StatesGroup& b)
{
Matrix<double, DIM_STATE, 1> a;
M3D rotd(b.rot_end.transpose() * this->rot_end);
a.block<3,1>(0,0) = Log(rotd);
a.block<3,1>(3,0) = this->pos_end - b.pos_end;
a.block<3,1>(6,0) = this->vel_end - b.vel_end;
a.block<3,1>(9,0) = this->bias_g - b.bias_g;
a.block<3,1>(12,0) = this->bias_a - b.bias_a;
a.block<3,1>(15,0) = this->gravity - b.gravity;
return a;
};
void resetpose()
{
this->rot_end = M3D::Identity();
this->pos_end = Zero3d;
this->vel_end = Zero3d;
}
M3D rot_end; // the estimated attitude (rotation matrix) at the end lidar point
V3D pos_end; // the estimated position at the end lidar point (world frame)
V3D vel_end; // the estimated velocity at the end lidar point (world frame)
V3D bias_g; // gyroscope bias
V3D bias_a; // accelerator bias
V3D gravity; // the estimated gravity acceleration
Matrix<double, DIM_STATE, DIM_STATE> cov; // states covariance
};
template<typename T>
T rad2deg(T radians)
{
return radians * 180.0 / PI_M;
}
template<typename T>
T deg2rad(T degrees)
{
return degrees * PI_M / 180.0;
}
template<typename T>
auto set_pose6d(const double t, const Matrix<T, 3, 1> &a, const Matrix<T, 3, 1> &g, \
const Matrix<T, 3, 1> &v, const Matrix<T, 3, 1> &p, const Matrix<T, 3, 3> &R)
{
Pose6D rot_kp;
rot_kp.offset_time = t;
for (int i = 0; i < 3; i++)
{
rot_kp.acc[i] = a(i);
rot_kp.gyr[i] = g(i);
rot_kp.vel[i] = v(i);
rot_kp.pos[i] = p(i);
for (int j = 0; j < 3; j++) rot_kp.rot[i*3+j] = R(i,j);
}
return move(rot_kp);
}
/* comment
plane equation: Ax + By + Cz + D = 0
convert to: A/D*x + B/D*y + C/D*z = -1
solve: A0*x0 = b0
where A0_i = [x_i, y_i, z_i], x0 = [A/D, B/D, C/D]^T, b0 = [-1, ..., -1]^T
normvec: normalized x0
*/
template<typename T>
bool esti_normvector(Matrix<T, 3, 1> &normvec, const PointVector &point, const T &threshold, const int &point_num)
{
MatrixXf A(point_num, 3);
MatrixXf b(point_num, 1);
b.setOnes();
b *= -1.0f;
for (int j = 0; j < point_num; j++)
{
A(j,0) = point[j].x;
A(j,1) = point[j].y;
A(j,2) = point[j].z;
}
normvec = A.colPivHouseholderQr().solve(b);
for (int j = 0; j < point_num; j++)
{
if (fabs(normvec(0) * point[j].x + normvec(1) * point[j].y + normvec(2) * point[j].z + 1.0f) > threshold)
{
return false;
}
}
normvec.normalize();
return true;
}
float calc_dist(PointType p1, PointType p2){
float d = (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z);
return d;
}
template<typename T>
bool esti_plane(Matrix<T, 4, 1> &pca_result, const PointVector &point, const T &threshold)
{
Matrix<T, NUM_MATCH_POINTS, 3> A;
Matrix<T, NUM_MATCH_POINTS, 1> b;
A.setZero();
b.setOnes();
b *= -1.0f;
for (int j = 0; j < NUM_MATCH_POINTS; j++)
{
A(j,0) = point[j].x;
A(j,1) = point[j].y;
A(j,2) = point[j].z;
}
Matrix<T, 3, 1> normvec = A.colPivHouseholderQr().solve(b);
T n = normvec.norm();
pca_result(0) = normvec(0) / n;
pca_result(1) = normvec(1) / n;
pca_result(2) = normvec(2) / n;
pca_result(3) = 1.0 / n;
for (int j = 0; j < NUM_MATCH_POINTS; j++)
{
if (fabs(pca_result(0) * point[j].x + pca_result(1) * point[j].y + pca_result(2) * point[j].z + pca_result(3)) > threshold)
{
return false;
}
}
return true;
}
#endif