775 lines
18 KiB
C
775 lines
18 KiB
C
|
/*
|
||
|
* Copyright (c) 2006-2021, RT-Thread Development Team
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Change Logs:
|
||
|
* Date Author Notes
|
||
|
*/
|
||
|
/* @(#)xdr.c 2.1 88/07/29 4.0 RPCSRC */
|
||
|
/*
|
||
|
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
|
||
|
* unrestricted use provided that this legend is included on all tape
|
||
|
* media and as a part of the software program in whole or part. Users
|
||
|
* may copy or modify Sun RPC without charge, but are not authorized
|
||
|
* to license or distribute it to anyone else except as part of a product or
|
||
|
* program developed by the user.
|
||
|
*
|
||
|
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
|
||
|
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
||
|
*
|
||
|
* Sun RPC is provided with no support and without any obligation on the
|
||
|
* part of Sun Microsystems, Inc. to assist in its use, correction,
|
||
|
* modification or enhancement.
|
||
|
*
|
||
|
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
||
|
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
|
||
|
* OR ANY PART THEREOF.
|
||
|
*
|
||
|
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
||
|
* or profits or other special, indirect and consequential damages, even if
|
||
|
* Sun has been advised of the possibility of such damages.
|
||
|
*
|
||
|
* Sun Microsystems, Inc.
|
||
|
* 2550 Garcia Avenue
|
||
|
* Mountain View, California 94043
|
||
|
*/
|
||
|
#if !defined(lint) && defined(SCCSIDS)
|
||
|
static char sccsid[] = "@(#)xdr.c 1.35 87/08/12";
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* xdr.c, Generic XDR routines implementation.
|
||
|
*
|
||
|
* Copyright (C) 1986, Sun Microsystems, Inc.
|
||
|
*
|
||
|
* These are the "generic" xdr routines used to serialize and de-serialize
|
||
|
* most common data items. See xdr.h for more info on the interface to
|
||
|
* xdr.
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <rpc/types.h>
|
||
|
#include <rpc/xdr.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
/*
|
||
|
* constants specific to the xdr "protocol"
|
||
|
*/
|
||
|
#define XDR_FALSE ((long) 0)
|
||
|
#define XDR_TRUE ((long) 1)
|
||
|
#define LASTUNSIGNED ((unsigned int) 0-1)
|
||
|
|
||
|
/*
|
||
|
* for unit alignment
|
||
|
*/
|
||
|
static char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 };
|
||
|
|
||
|
/*
|
||
|
* Free a data structure using XDR
|
||
|
* Not a filter, but a convenient utility nonetheless
|
||
|
*/
|
||
|
void xdr_free(xdrproc_t proc, char* objp)
|
||
|
{
|
||
|
XDR x;
|
||
|
|
||
|
x.x_op = XDR_FREE;
|
||
|
(*proc) (&x, objp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR nothing
|
||
|
*/
|
||
|
bool_t xdr_void( /* xdrs, addr */ )
|
||
|
/* XDR *xdrs; */
|
||
|
/* char* addr; */
|
||
|
{
|
||
|
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR integers
|
||
|
*/
|
||
|
bool_t xdr_int(XDR* xdrs, int* ip)
|
||
|
{
|
||
|
if (sizeof(int) == sizeof(long)) {
|
||
|
return (xdr_long(xdrs, (long *) ip));
|
||
|
} else if (sizeof(int) < sizeof(long)) {
|
||
|
long l;
|
||
|
switch (xdrs->x_op) {
|
||
|
case XDR_ENCODE:
|
||
|
l = (long) *ip;
|
||
|
return XDR_PUTLONG(xdrs, &l);
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG(xdrs, &l))
|
||
|
return FALSE;
|
||
|
*ip = (int) l;
|
||
|
case XDR_FREE:
|
||
|
return TRUE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
} else {
|
||
|
return (xdr_short(xdrs, (short *) ip));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR unsigned integers
|
||
|
*/
|
||
|
bool_t xdr_u_int(XDR* xdrs, unsigned int* up)
|
||
|
{
|
||
|
if (sizeof(unsigned int) == sizeof(unsigned long)) {
|
||
|
return (xdr_u_long(xdrs, (unsigned long *) up));
|
||
|
} else if (sizeof(unsigned int) < sizeof(unsigned long)) {
|
||
|
unsigned long l;
|
||
|
switch (xdrs->x_op) {
|
||
|
case XDR_ENCODE:
|
||
|
l = (unsigned long) *up;
|
||
|
return XDR_PUTLONG(xdrs, (long*)&l);
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG(xdrs, (long*)&l))
|
||
|
return FALSE;
|
||
|
*up = (unsigned int) l;
|
||
|
case XDR_FREE:
|
||
|
return TRUE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
} else {
|
||
|
return (xdr_short(xdrs, (short *) up));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR long integers
|
||
|
* same as xdr_u_long - open coded to save a proc call!
|
||
|
*/
|
||
|
bool_t xdr_long(XDR* xdrs, long* lp)
|
||
|
{
|
||
|
|
||
|
if (xdrs->x_op == XDR_ENCODE
|
||
|
&& (sizeof(int32_t) == sizeof(long)
|
||
|
|| (int32_t) *lp == *lp))
|
||
|
return (XDR_PUTLONG(xdrs, lp));
|
||
|
|
||
|
if (xdrs->x_op == XDR_DECODE)
|
||
|
return (XDR_GETLONG(xdrs, lp));
|
||
|
|
||
|
if (xdrs->x_op == XDR_FREE)
|
||
|
return (TRUE);
|
||
|
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR unsigned long integers
|
||
|
* same as xdr_long - open coded to save a proc call!
|
||
|
*/
|
||
|
bool_t xdr_u_long(XDR* xdrs, unsigned long* ulp)
|
||
|
{
|
||
|
|
||
|
if (xdrs->x_op == XDR_DECODE) {
|
||
|
long l;
|
||
|
if (XDR_GETLONG(xdrs, &l) == FALSE)
|
||
|
return FALSE;
|
||
|
*ulp = (uint32_t) l;
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
if (xdrs->x_op == XDR_ENCODE) {
|
||
|
if (sizeof(uint32_t) != sizeof(unsigned long)
|
||
|
&& (uint32_t) *ulp != *ulp)
|
||
|
return FALSE;
|
||
|
|
||
|
return (XDR_PUTLONG(xdrs, (long *) ulp));
|
||
|
}
|
||
|
|
||
|
if (xdrs->x_op == XDR_FREE)
|
||
|
return (TRUE);
|
||
|
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* XDR long long integers
|
||
|
*/
|
||
|
bool_t xdr_longlong_t (XDR * xdrs, long long* llp)
|
||
|
{
|
||
|
int32_t t1, t2;
|
||
|
|
||
|
switch (xdrs->x_op)
|
||
|
{
|
||
|
case XDR_ENCODE:
|
||
|
t1 = (int32_t) ((*llp) >> 32);
|
||
|
t2 = (int32_t) (*llp);
|
||
|
return (XDR_PUTLONG (xdrs, &t1) && XDR_PUTLONG (xdrs, &t2));
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG (xdrs, &t1) || !XDR_GETLONG (xdrs, &t2))
|
||
|
return FALSE;
|
||
|
*llp = ((int64_t) t1) << 32;
|
||
|
*llp |= (uint32_t) t2;
|
||
|
return TRUE;
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return TRUE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR unsigned long long integers
|
||
|
*/
|
||
|
bool_t xdr_u_longlong_t (XDR * xdrs, unsigned long long* ullp)
|
||
|
{
|
||
|
uint32_t t1, t2;
|
||
|
|
||
|
switch (xdrs->x_op)
|
||
|
{
|
||
|
case XDR_ENCODE:
|
||
|
t1 = (uint32_t) ((*ullp) >> 32);
|
||
|
t2 = (uint32_t) (*ullp);
|
||
|
return (XDR_PUTLONG (xdrs, (int32_t *)&t1) &&
|
||
|
XDR_PUTLONG (xdrs, (int32_t *)&t2));
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG (xdrs, (int32_t *)&t1) ||
|
||
|
!XDR_GETLONG (xdrs, (int32_t *)&t2))
|
||
|
return FALSE;
|
||
|
*ullp = ((uint64_t) t1) << 32;
|
||
|
*ullp |= t2;
|
||
|
return TRUE;
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return TRUE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR short integers
|
||
|
*/
|
||
|
bool_t xdr_short(XDR* xdrs, short* sp)
|
||
|
{
|
||
|
long l;
|
||
|
|
||
|
switch (xdrs->x_op) {
|
||
|
|
||
|
case XDR_ENCODE:
|
||
|
l = (long) *sp;
|
||
|
return (XDR_PUTLONG(xdrs, &l));
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG(xdrs, &l)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
*sp = (short) l;
|
||
|
return (TRUE);
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR unsigned short integers
|
||
|
*/
|
||
|
bool_t xdr_u_short(XDR* xdrs, unsigned short* usp)
|
||
|
{
|
||
|
unsigned long l;
|
||
|
|
||
|
switch (xdrs->x_op) {
|
||
|
|
||
|
case XDR_ENCODE:
|
||
|
l = (unsigned long) * usp;
|
||
|
return (XDR_PUTLONG(xdrs, (long*)&l));
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG(xdrs, (long*)&l)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
*usp = (unsigned short) l;
|
||
|
return (TRUE);
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* XDR a char
|
||
|
*/
|
||
|
bool_t xdr_char(XDR* xdrs, char* cp)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
i = (*cp);
|
||
|
if (!xdr_int(xdrs, &i)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
*cp = i;
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR an unsigned char
|
||
|
*/
|
||
|
bool_t xdr_u_char(XDR* xdrs, unsigned char* cp)
|
||
|
{
|
||
|
unsigned int u;
|
||
|
|
||
|
u = (*cp);
|
||
|
if (!xdr_u_int(xdrs, &u)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
*cp = u;
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR booleans
|
||
|
*/
|
||
|
bool_t xdr_bool(XDR *xdrs, bool_t *bp)
|
||
|
{
|
||
|
long lb;
|
||
|
|
||
|
switch (xdrs->x_op) {
|
||
|
|
||
|
case XDR_ENCODE:
|
||
|
lb = *bp ? XDR_TRUE : XDR_FALSE;
|
||
|
return (XDR_PUTLONG(xdrs, &lb));
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (!XDR_GETLONG(xdrs, &lb)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
*bp = (lb == XDR_FALSE) ? FALSE : TRUE;
|
||
|
return (TRUE);
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR enumerations
|
||
|
*/
|
||
|
bool_t xdr_enum(XDR *xdrs, enum_t *ep)
|
||
|
{
|
||
|
/*
|
||
|
* enums are treated as ints
|
||
|
*/
|
||
|
return (xdr_long(xdrs, (long *) ep));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR opaque data
|
||
|
* Allows the specification of a fixed size sequence of opaque bytes.
|
||
|
* cp points to the opaque object and cnt gives the byte length.
|
||
|
*/
|
||
|
bool_t xdr_opaque(XDR *xdrs, char* cp, unsigned int cnt)
|
||
|
{
|
||
|
register unsigned int rndup;
|
||
|
static char crud[BYTES_PER_XDR_UNIT];
|
||
|
|
||
|
/*
|
||
|
* if no data we are done
|
||
|
*/
|
||
|
if (cnt == 0)
|
||
|
return (TRUE);
|
||
|
|
||
|
/*
|
||
|
* round byte count to full xdr units
|
||
|
*/
|
||
|
rndup = cnt % BYTES_PER_XDR_UNIT;
|
||
|
if (rndup > 0)
|
||
|
rndup = BYTES_PER_XDR_UNIT - rndup;
|
||
|
|
||
|
if (xdrs->x_op == XDR_DECODE) {
|
||
|
if (!XDR_GETBYTES(xdrs, cp, cnt)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
if (rndup == 0)
|
||
|
return (TRUE);
|
||
|
return (XDR_GETBYTES(xdrs, crud, rndup));
|
||
|
}
|
||
|
|
||
|
if (xdrs->x_op == XDR_ENCODE) {
|
||
|
if (!XDR_PUTBYTES(xdrs, cp, cnt)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
if (rndup == 0)
|
||
|
return (TRUE);
|
||
|
return (XDR_PUTBYTES(xdrs, xdr_zero, rndup));
|
||
|
}
|
||
|
|
||
|
if (xdrs->x_op == XDR_FREE) {
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR counted bytes
|
||
|
* *cpp is a pointer to the bytes, *sizep is the count.
|
||
|
* If *cpp is NULL maxsize bytes are allocated
|
||
|
*/
|
||
|
bool_t xdr_bytes(XDR *xdrs, char** cpp, unsigned int *sizep, unsigned int maxsize)
|
||
|
{
|
||
|
register char *sp = *cpp; /* sp is the actual string pointer */
|
||
|
register unsigned int nodesize;
|
||
|
|
||
|
/*
|
||
|
* first deal with the length since xdr bytes are counted
|
||
|
*/
|
||
|
if (!xdr_u_int(xdrs, sizep)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
nodesize = *sizep;
|
||
|
if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* now deal with the actual bytes
|
||
|
*/
|
||
|
switch (xdrs->x_op) {
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (nodesize == 0) {
|
||
|
return (TRUE);
|
||
|
}
|
||
|
if (sp == NULL) {
|
||
|
*cpp = sp = (char *) rt_malloc(nodesize);
|
||
|
}
|
||
|
if (sp == NULL) {
|
||
|
rt_kprintf("xdr_bytes: out of memory\n");
|
||
|
return (FALSE);
|
||
|
}
|
||
|
/* fall into ... */
|
||
|
|
||
|
case XDR_ENCODE:
|
||
|
return (xdr_opaque(xdrs, sp, nodesize));
|
||
|
|
||
|
case XDR_FREE:
|
||
|
if (sp != NULL) {
|
||
|
rt_free(sp);
|
||
|
*cpp = NULL;
|
||
|
}
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Implemented here due to commonality of the object.
|
||
|
*/
|
||
|
bool_t xdr_netobj(XDR *xdrs, struct netobj *np)
|
||
|
{
|
||
|
return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR a descriminated union
|
||
|
* Support routine for discriminated unions.
|
||
|
* You create an array of xdrdiscrim structures, terminated with
|
||
|
* an entry with a null procedure pointer. The routine gets
|
||
|
* the discriminant value and then searches the array of xdrdiscrims
|
||
|
* looking for that value. It calls the procedure given in the xdrdiscrim
|
||
|
* to handle the discriminant. If there is no specific routine a default
|
||
|
* routine may be called.
|
||
|
* If there is no specific or default routine an error is returned.
|
||
|
*/
|
||
|
bool_t xdr_union(XDR* xdrs, enum_t* dscmp, char* unp, const struct xdr_discrim* choices, xdrproc_t dfault)
|
||
|
{
|
||
|
register enum_t dscm;
|
||
|
|
||
|
/*
|
||
|
* we deal with the discriminator; it's an enum
|
||
|
*/
|
||
|
if (!xdr_enum(xdrs, dscmp)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
dscm = *dscmp;
|
||
|
|
||
|
/*
|
||
|
* search choices for a value that matches the discriminator.
|
||
|
* if we find one, execute the xdr routine for that value.
|
||
|
*/
|
||
|
for (; choices->proc != NULL_xdrproc_t; choices++) {
|
||
|
if (choices->value == dscm)
|
||
|
return ((*(choices->proc)) (xdrs, unp, LASTUNSIGNED));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* no match - execute the default xdr routine if there is one
|
||
|
*/
|
||
|
return ((dfault == NULL_xdrproc_t) ? FALSE :
|
||
|
(*dfault) (xdrs, unp, LASTUNSIGNED));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Non-portable xdr primitives.
|
||
|
* Care should be taken when moving these routines to new architectures.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* XDR null terminated ASCII strings
|
||
|
* xdr_string deals with "C strings" - arrays of bytes that are
|
||
|
* terminated by a NULL character. The parameter cpp references a
|
||
|
* pointer to storage; If the pointer is null, then the necessary
|
||
|
* storage is allocated. The last parameter is the max allowed length
|
||
|
* of the string as specified by a protocol.
|
||
|
*/
|
||
|
bool_t xdr_string(XDR *xdrs, char **cpp, unsigned int maxsize)
|
||
|
{
|
||
|
register char *sp = *cpp; /* sp is the actual string pointer */
|
||
|
unsigned int size;
|
||
|
unsigned int nodesize;
|
||
|
|
||
|
/*
|
||
|
* first deal with the length since xdr strings are counted-strings
|
||
|
*/
|
||
|
switch (xdrs->x_op) {
|
||
|
case XDR_FREE:
|
||
|
if (sp == NULL) {
|
||
|
return (TRUE); /* already free */
|
||
|
}
|
||
|
/* fall through... */
|
||
|
case XDR_ENCODE:
|
||
|
size = strlen(sp);
|
||
|
break;
|
||
|
}
|
||
|
if (!xdr_u_int(xdrs, &size)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
if (size > maxsize) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
nodesize = size + 1;
|
||
|
|
||
|
/*
|
||
|
* now deal with the actual bytes
|
||
|
*/
|
||
|
switch (xdrs->x_op) {
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
if (nodesize == 0) {
|
||
|
return (TRUE);
|
||
|
}
|
||
|
if (sp == NULL)
|
||
|
*cpp = sp = (char *) rt_malloc(nodesize);
|
||
|
if (sp == NULL) {
|
||
|
rt_kprintf("xdr_string: out of memory\n");
|
||
|
return (FALSE);
|
||
|
}
|
||
|
sp[size] = 0;
|
||
|
/* fall into ... */
|
||
|
|
||
|
case XDR_ENCODE:
|
||
|
return (xdr_opaque(xdrs, sp, size));
|
||
|
|
||
|
case XDR_FREE:
|
||
|
rt_free(sp);
|
||
|
*cpp = NULL;
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wrapper for xdr_string that can be called directly from
|
||
|
* routines like clnt_call
|
||
|
*/
|
||
|
bool_t xdr_wrapstring(XDR *xdrs, char **cpp)
|
||
|
{
|
||
|
if (xdr_string(xdrs, cpp, LASTUNSIGNED)) {
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (FALSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XDR an array of arbitrary elements
|
||
|
* *addrp is a pointer to the array, *sizep is the number of elements.
|
||
|
* If addrp is NULL (*sizep * elsize) bytes are allocated.
|
||
|
* elsize is the size (in bytes) of each element, and elproc is the
|
||
|
* xdr procedure to call to handle each element of the array.
|
||
|
*/
|
||
|
bool_t xdr_array(XDR *xdrs, char **addrp, unsigned int *sizep, unsigned int maxsize, unsigned int elsize, xdrproc_t elproc)
|
||
|
{
|
||
|
register unsigned int i;
|
||
|
register char* target = *addrp;
|
||
|
register unsigned int c; /* the actual element count */
|
||
|
register bool_t stat = TRUE;
|
||
|
register unsigned int nodesize;
|
||
|
|
||
|
/* like strings, arrays are really counted arrays */
|
||
|
if (!xdr_u_int(xdrs, sizep)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
c = *sizep;
|
||
|
if ((c > maxsize) && (xdrs->x_op != XDR_FREE)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
/* duh, look for integer overflow (fefe) */
|
||
|
{
|
||
|
unsigned int i;
|
||
|
nodesize = 0;
|
||
|
for (i=c; i; --i) {
|
||
|
unsigned int tmp=nodesize+elsize;
|
||
|
if (tmp<nodesize) /* overflow */
|
||
|
return FALSE;
|
||
|
nodesize=tmp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* if we are deserializing, we may need to allocate an array.
|
||
|
* We also save time by checking for a null array if we are freeing.
|
||
|
*/
|
||
|
if (target == NULL)
|
||
|
switch (xdrs->x_op) {
|
||
|
case XDR_DECODE:
|
||
|
if (c == 0)
|
||
|
return (TRUE);
|
||
|
*addrp = target = rt_malloc(nodesize);
|
||
|
if (target == NULL) {
|
||
|
rt_kprintf("xdr_array: out of memory\n");
|
||
|
return (FALSE);
|
||
|
}
|
||
|
memset(target, 0, nodesize);
|
||
|
break;
|
||
|
|
||
|
case XDR_FREE:
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* now we xdr each element of array
|
||
|
*/
|
||
|
for (i = 0; (i < c) && stat; i++) {
|
||
|
stat = (*elproc) (xdrs, target, LASTUNSIGNED);
|
||
|
target += elsize;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* the array may need freeing
|
||
|
*/
|
||
|
if (xdrs->x_op == XDR_FREE) {
|
||
|
rt_free(*addrp);
|
||
|
*addrp = NULL;
|
||
|
}
|
||
|
return (stat);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* xdr_vector():
|
||
|
*
|
||
|
* XDR a fixed length array. Unlike variable-length arrays,
|
||
|
* the storage of fixed length arrays is static and unfreeable.
|
||
|
* > basep: base of the array
|
||
|
* > size: size of the array
|
||
|
* > elemsize: size of each element
|
||
|
* > xdr_elem: routine to XDR each element
|
||
|
*/
|
||
|
bool_t xdr_vector(XDR *xdrs, char *basep, unsigned int nelem, unsigned int elemsize, xdrproc_t xdr_elem)
|
||
|
{
|
||
|
register unsigned int i;
|
||
|
register char *elptr;
|
||
|
|
||
|
elptr = basep;
|
||
|
for (i = 0; i < nelem; i++) {
|
||
|
if (!(*xdr_elem) (xdrs, elptr, LASTUNSIGNED)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
elptr += elemsize;
|
||
|
}
|
||
|
return (TRUE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* XDR an indirect pointer
|
||
|
* xdr_reference is for recursively translating a structure that is
|
||
|
* referenced by a pointer inside the structure that is currently being
|
||
|
* translated. pp references a pointer to storage. If *pp is null
|
||
|
* the necessary storage is allocated.
|
||
|
* size is the sizeof the referneced structure.
|
||
|
* proc is the routine to handle the referenced structure.
|
||
|
*/
|
||
|
bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size, xdrproc_t proc)
|
||
|
{
|
||
|
register char* loc = *pp;
|
||
|
register bool_t stat;
|
||
|
|
||
|
if (loc == NULL)
|
||
|
switch (xdrs->x_op) {
|
||
|
case XDR_FREE:
|
||
|
return (TRUE);
|
||
|
|
||
|
case XDR_DECODE:
|
||
|
*pp = loc = (char*) rt_malloc(size);
|
||
|
if (loc == NULL) {
|
||
|
rt_kprintf("xdr_reference: out of memory\n");
|
||
|
return (FALSE);
|
||
|
}
|
||
|
memset(loc, 0, (int) size);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
stat = (*proc) (xdrs, loc, LASTUNSIGNED);
|
||
|
|
||
|
if (xdrs->x_op == XDR_FREE) {
|
||
|
rt_free(loc);
|
||
|
*pp = NULL;
|
||
|
}
|
||
|
return (stat);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* xdr_pointer():
|
||
|
*
|
||
|
* XDR a pointer to a possibly recursive data structure. This
|
||
|
* differs with xdr_reference in that it can serialize/deserialiaze
|
||
|
* trees correctly.
|
||
|
*
|
||
|
* What's sent is actually a union:
|
||
|
*
|
||
|
* union object_pointer switch (boolean b) {
|
||
|
* case TRUE: object_data data;
|
||
|
* case FALSE: void nothing;
|
||
|
* }
|
||
|
*
|
||
|
* > objpp: Pointer to the pointer to the object.
|
||
|
* > obj_size: size of the object.
|
||
|
* > xdr_obj: routine to XDR an object.
|
||
|
*
|
||
|
*/
|
||
|
bool_t xdr_pointer(XDR *xdrs, char **objpp, unsigned int obj_size, xdrproc_t xdr_obj)
|
||
|
{
|
||
|
|
||
|
bool_t more_data;
|
||
|
|
||
|
more_data = (*objpp != NULL);
|
||
|
if (!xdr_bool(xdrs, &more_data)) {
|
||
|
return (FALSE);
|
||
|
}
|
||
|
if (!more_data) {
|
||
|
*objpp = NULL;
|
||
|
return (TRUE);
|
||
|
}
|
||
|
return (xdr_reference(xdrs, objpp, obj_size, xdr_obj));
|
||
|
}
|