rt-thread-stm32f072/rt-thread/libcpu/arm/lpc24xx/start_rvds.S

1642 lines
66 KiB
ArmAsm
Raw Permalink Normal View History

2022-10-30 15:41:02 +08:00
;/*
; * Copyright (c) 2006-2022, RT-Thread Development Team
; *
; * SPDX-License-Identifier: Apache-2.0
; *
; * Change Logs:
; * Date Author Notes
; */
;
;/*****************************************************************************/
;/* LPC2400.S: Startup file for Philips LPC2400 device series */
;/*****************************************************************************/
;/* <<< Use Configuration Wizard in Context Menu >>> */
;/*****************************************************************************/
;/* This file is part of the uVision/ARM development tools. */
;/* Copyright (c) 2007-2008 Keil - An ARM Company. All rights reserved. */
;/* This software may only be used under the terms of a valid, current, */
;/* end user licence from KEIL for a compatible version of KEIL software */
;/* development tools. Nothing else gives you the right to use this software. */
;/*****************************************************************************/
;/*
; * The LPC2400.S code is executed after CPU Reset. This file may be
; * translated with the following SET symbols. In uVision these SET
; * symbols are entered under Options - ASM - Define.
; *
; * NO_CLOCK_SETUP: when set the startup code will not initialize Clock
; * (used mostly when clock is already initialized from script .ini
; * file).
; *
; * NO_EMC_SETUP: when set the startup code will not initialize
; * External Bus Controller.
; *
; * RAM_INTVEC: when set the startup code copies exception vectors
; * from on-chip Flash to on-chip RAM.
; *
; * REMAP: when set the startup code initializes the register MEMMAP
; * which overwrites the settings of the CPU configuration pins. The
; * startup and interrupt vectors are remapped from:
; * 0x00000000 default setting (not remapped)
; * 0x40000000 when RAM_MODE is used
; * 0x80000000 when EXTMEM_MODE is used
; *
; * EXTMEM_MODE: when set the device is configured for code execution
; * from external memory starting at address 0x80000000.
; *
; * RAM_MODE: when set the device is configured for code execution
; * from on-chip RAM starting at address 0x40000000.
; */
; Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs
Mode_USR EQU 0x10
Mode_FIQ EQU 0x11
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
Mode_ABT EQU 0x17
Mode_UND EQU 0x1B
Mode_SYS EQU 0x1F
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled
;----------------------- Memory Definitions ------------------------------------
; Internal Memory Base Addresses
FLASH_BASE EQU 0x00000000
RAM_BASE EQU 0x40000000
EXTMEM_BASE EQU 0x80000000
; External Memory Base Addresses
STA_MEM0_BASE EQU 0x80000000
STA_MEM1_BASE EQU 0x81000000
STA_MEM2_BASE EQU 0x82000000
STA_MEM3_BASE EQU 0x83000000
DYN_MEM0_BASE EQU 0xA0000000
DYN_MEM1_BASE EQU 0xB0000000
DYN_MEM2_BASE EQU 0xC0000000
DYN_MEM3_BASE EQU 0xD0000000
;----------------------- Stack and Heap Definitions ----------------------------
;// <h> Stack Configuration (Stack Sizes in Bytes)
;// <o0> Undefined Mode <0x0-0xFFFFFFFF:8>
;// <o1> Supervisor Mode <0x0-0xFFFFFFFF:8>
;// <o2> Abort Mode <0x0-0xFFFFFFFF:8>
;// <o3> Fast Interrupt Mode <0x0-0xFFFFFFFF:8>
;// <o4> Interrupt Mode <0x0-0xFFFFFFFF:8>
;// <o5> User/System Mode <0x0-0xFFFFFFFF:8>
;// </h>
UND_Stack_Size EQU 0x00000000
SVC_Stack_Size EQU 0x00000100
ABT_Stack_Size EQU 0x00000000
FIQ_Stack_Size EQU 0x00000000
IRQ_Stack_Size EQU 0x00000100
USR_Stack_Size EQU 0x00000100
ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \
FIQ_Stack_Size + IRQ_Stack_Size)
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE USR_Stack_Size
__initial_sp SPACE ISR_Stack_Size
Stack_Top
;// <h> Heap Configuration
;// <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF>
;// </h>
Heap_Size EQU 0x00000000
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
;----------------------- Clock Definitions -------------------------------------
; System Control Block (SCB) Module Definitions
SCB_BASE EQU 0xE01FC000 ; SCB Base Address
PLLCON_OFS EQU 0x80 ; PLL Control Offset
PLLCFG_OFS EQU 0x84 ; PLL Configuration Offset
PLLSTAT_OFS EQU 0x88 ; PLL Status Offset
PLLFEED_OFS EQU 0x8C ; PLL Feed Offset
CCLKCFG_OFS EQU 0x104 ; CPU Clock Divider Reg Offset
USBCLKCFG_OFS EQU 0x108 ; USB Clock Divider Reg Offset
CLKSRCSEL_OFS EQU 0x10C ; Clock Source Sel Reg Offset
SCS_OFS EQU 0x1A0 ; Sys Control and Status Reg Offset
PCLKSEL0_OFS EQU 0x1A8 ; Periph Clock Sel Reg 0 Offset
PCLKSEL1_OFS EQU 0x1AC ; Periph Clock Sel Reg 0 Offset
PCON_OFS EQU 0x0C0 ; Power Mode Control Reg Offset
PCONP_OFS EQU 0x0C4 ; Power Control for Periphs Reg Offset
; Constants
OSCRANGE EQU (1<<4) ; Oscillator Range Select
OSCEN EQU (1<<5) ; Main oscillator Enable
OSCSTAT EQU (1<<6) ; Main Oscillator Status
PLLCON_PLLE EQU (1<<0) ; PLL Enable
PLLCON_PLLC EQU (1<<1) ; PLL Connect
PLLSTAT_M EQU (0x7FFF<<0) ; PLL M Value
PLLSTAT_N EQU (0xFF<<16) ; PLL N Value
PLLSTAT_PLOCK EQU (1<<26) ; PLL Lock Status
;// <e> Clock Setup
;// <h> System Controls and Status Register (SYS)
;// <o1.4> OSCRANGE: Main Oscillator Range Select
;// <0=> 1 MHz to 20 MHz
;// <1=> 15 MHz to 24 MHz
;// <e1.5> OSCEN: Main Oscillator Enable
;// </e>
;// </h>
;//
;// <h> PLL Clock Source Select Register (CLKSRCSEL)
;// <o2.0..1> CLKSRC: PLL Clock Source Selection
;// <0=> Internal RC oscillator
;// <1=> Main oscillator
;// <2=> RTC oscillator
;// </h>
;//
;// <h> PLL Configuration Register (PLLCFG)
;// <i> PLL_clk = (2* M * PLL_clk_src) / N
;// <o3.0..14> MSEL: PLL Multiplier Selection
;// <1-32768><#-1>
;// <i> M Value
;// <o3.16..23> NSEL: PLL Divider Selection
;// <1-256><#-1>
;// <i> N Value
;// </h>
;//
;// <h> CPU Clock Configuration Register (CCLKCFG)
;// <o4.0..7> CCLKSEL: Divide Value for CPU Clock from PLL
;// <1-256><#-1>
;// </h>
;//
;// <h> USB Clock Configuration Register (USBCLKCFG)
;// <o5.0..3> USBSEL: Divide Value for USB Clock from PLL
;// <1-16><#-1>
;// </h>
;//
;// <h> Peripheral Clock Selection Register 0 (PCLKSEL0)
;// <o6.0..1> PCLK_WDT: Peripheral Clock Selection for WDT
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.2..3> PCLK_TIMER0: Peripheral Clock Selection for TIMER0
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.4..5> PCLK_TIMER1: Peripheral Clock Selection for TIMER1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.6..7> PCLK_UART0: Peripheral Clock Selection for UART0
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.8..9> PCLK_UART1: Peripheral Clock Selection for UART1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.10..11> PCLK_PWM0: Peripheral Clock Selection for PWM0
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.12..13> PCLK_PWM1: Peripheral Clock Selection for PWM1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.14..15> PCLK_I2C0: Peripheral Clock Selection for I2C0
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.16..17> PCLK_SPI: Peripheral Clock Selection for SPI
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.18..19> PCLK_RTC: Peripheral Clock Selection for RTC
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.20..21> PCLK_SSP1: Peripheral Clock Selection for SSP1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.22..23> PCLK_DAC: Peripheral Clock Selection for DAC
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.24..25> PCLK_ADC: Peripheral Clock Selection for ADC
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o6.26..27> PCLK_CAN1: Peripheral Clock Selection for CAN1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 6
;// <o6.28..29> PCLK_CAN2: Peripheral Clock Selection for CAN2
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 6
;// <o6.30..31> PCLK_ACF: Peripheral Clock Selection for ACF
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 6
;// </h>
;//
;// <h> Peripheral Clock Selection Register 1 (PCLKSEL1)
;// <o7.0..1> PCLK_BAT_RAM: Peripheral Clock Selection for the Battery Supported RAM
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.2..3> PCLK_GPIO: Peripheral Clock Selection for GPIOs
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.4..5> PCLK_PCB: Peripheral Clock Selection for Pin Connect Block
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.6..7> PCLK_I2C1: Peripheral Clock Selection for I2C1
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.10..11> PCLK_SSP0: Peripheral Clock Selection for SSP0
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.12..13> PCLK_TIMER2: Peripheral Clock Selection for TIMER2
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.14..15> PCLK_TIMER3: Peripheral Clock Selection for TIMER3
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.16..17> PCLK_UART2: Peripheral Clock Selection for UART2
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.18..19> PCLK_UART3: Peripheral Clock Selection for UART3
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.20..21> PCLK_I2C2: Peripheral Clock Selection for I2C2
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.22..23> PCLK_I2S: Peripheral Clock Selection for I2S
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.24..25> PCLK_MCI: Peripheral Clock Selection for MCI
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// <o7.28..29> PCLK_SYSCON: Peripheral Clock Selection for System Control Block
;// <0=> Pclk = Cclk / 4
;// <1=> Pclk = Cclk
;// <2=> Pclk = Cclk / 2
;// <3=> Pclk = Cclk / 8
;// </h>
;// </e>
CLOCK_SETUP EQU 1
SCS_Val EQU 0x00000020
CLKSRCSEL_Val EQU 0x00000001
PLLCFG_Val EQU 0x0000000B
CCLKCFG_Val EQU 0x00000004
USBCLKCFG_Val EQU 0x00000005
PCLKSEL0_Val EQU 0x00000000
PCLKSEL1_Val EQU 0x00000000
;----------------------- Memory Accelerator Module (MAM) Definitions -----------
MAM_BASE EQU 0xE01FC000 ; MAM Base Address
MAMCR_OFS EQU 0x00 ; MAM Control Offset
MAMTIM_OFS EQU 0x04 ; MAM Timing Offset
;// <e> MAM Setup
;// <o1.0..1> MAM Control
;// <0=> Disabled
;// <1=> Partially Enabled
;// <2=> Fully Enabled
;// <i> Mode
;// <o2.0..2> MAM Timing
;// <0=> Reserved <1=> 1 <2=> 2 <3=> 3
;// <4=> 4 <5=> 5 <6=> 6 <7=> 7
;// <i> Fetch Cycles
;// </e>
MAM_SETUP EQU 1
MAMCR_Val EQU 0x00000002
MAMTIM_Val EQU 0x00000004
;----------------------- Pin Connect Block Definitions -------------------------
PCB_BASE EQU 0xE002C000 ; PCB Base Address
PINSEL0_OFS EQU 0x00 ; PINSEL0 Address Offset
PINSEL1_OFS EQU 0x04 ; PINSEL1 Address Offset
PINSEL2_OFS EQU 0x08 ; PINSEL2 Address Offset
PINSEL3_OFS EQU 0x0C ; PINSEL3 Address Offset
PINSEL4_OFS EQU 0x10 ; PINSEL4 Address Offset
PINSEL5_OFS EQU 0x14 ; PINSEL5 Address Offset
PINSEL6_OFS EQU 0x18 ; PINSEL6 Address Offset
PINSEL7_OFS EQU 0x1C ; PINSEL7 Address Offset
PINSEL8_OFS EQU 0x20 ; PINSEL8 Address Offset
PINSEL9_OFS EQU 0x24 ; PINSEL9 Address Offset
PINSEL10_OFS EQU 0x28 ; PINSEL10 Address Offset
;----------------------- External Memory Controller (EMC) Definitons -----------
EMC_BASE EQU 0xFFE08000 ; EMC Base Address
EMC_CTRL_OFS EQU 0x000
EMC_STAT_OFS EQU 0x004
EMC_CONFIG_OFS EQU 0x008
EMC_DYN_CTRL_OFS EQU 0x020
EMC_DYN_RFSH_OFS EQU 0x024
EMC_DYN_RD_CFG_OFS EQU 0x028
EMC_DYN_RP_OFS EQU 0x030
EMC_DYN_RAS_OFS EQU 0x034
EMC_DYN_SREX_OFS EQU 0x038
EMC_DYN_APR_OFS EQU 0x03C
EMC_DYN_DAL_OFS EQU 0x040
EMC_DYN_WR_OFS EQU 0x044
EMC_DYN_RC_OFS EQU 0x048
EMC_DYN_RFC_OFS EQU 0x04C
EMC_DYN_XSR_OFS EQU 0x050
EMC_DYN_RRD_OFS EQU 0x054
EMC_DYN_MRD_OFS EQU 0x058
EMC_DYN_CFG0_OFS EQU 0x100
EMC_DYN_RASCAS0_OFS EQU 0x104
EMC_DYN_CFG1_OFS EQU 0x140
EMC_DYN_RASCAS1_OFS EQU 0x144
EMC_DYN_CFG2_OFS EQU 0x160
EMC_DYN_RASCAS2_OFS EQU 0x164
EMC_DYN_CFG3_OFS EQU 0x180
EMC_DYN_RASCAS3_OFS EQU 0x184
EMC_STA_CFG0_OFS EQU 0x200
EMC_STA_WWEN0_OFS EQU 0x204
EMC_STA_WOEN0_OFS EQU 0x208
EMC_STA_WRD0_OFS EQU 0x20C
EMC_STA_WPAGE0_OFS EQU 0x210
EMC_STA_WWR0_OFS EQU 0x214
EMC_STA_WTURN0_OFS EQU 0x218
EMC_STA_CFG1_OFS EQU 0x220
EMC_STA_WWEN1_OFS EQU 0x224
EMC_STA_WOEN1_OFS EQU 0x228
EMC_STA_WRD1_OFS EQU 0x22C
EMC_STA_WPAGE1_OFS EQU 0x230
EMC_STA_WWR1_OFS EQU 0x234
EMC_STA_WTURN1_OFS EQU 0x238
EMC_STA_CFG2_OFS EQU 0x240
EMC_STA_WWEN2_OFS EQU 0x244
EMC_STA_WOEN2_OFS EQU 0x248
EMC_STA_WRD2_OFS EQU 0x24C
EMC_STA_WPAGE2_OFS EQU 0x250
EMC_STA_WWR2_OFS EQU 0x254
EMC_STA_WTURN2_OFS EQU 0x258
EMC_STA_CFG3_OFS EQU 0x260
EMC_STA_WWEN3_OFS EQU 0x264
EMC_STA_WOEN3_OFS EQU 0x268
EMC_STA_WRD3_OFS EQU 0x26C
EMC_STA_WPAGE3_OFS EQU 0x270
EMC_STA_WWR3_OFS EQU 0x274
EMC_STA_WTURN3_OFS EQU 0x278
EMC_STA_EXT_W_OFS EQU 0x880
; Constants
NORMAL_CMD EQU (0x0 << 7) ; NORMAL Command
MODE_CMD EQU (0x1 << 7) ; MODE Command
PALL_CMD EQU (0x2 << 7) ; Precharge All Command
NOP_CMD EQU (0x3 << 7) ; NOP Command
BUFEN_Const EQU (1 << 19) ; Buffer enable bit
EMC_PCONP_Const EQU (1 << 11) ; PCONP val to enable power for EMC
; External Memory Pins definitions
; pin functions for SDRAM, NOR and NAND flash interfacing
EMC_PINSEL5_Val EQU 0x05010115 ; !CAS, !RAS, CLKOUT0, !DYCS0, DQMOUT0, DQMOUT1
EMC_PINSEL6_Val EQU 0x55555555 ; D0 .. D15
EMC_PINSEL8_Val EQU 0x55555555 ; A0 .. A15
EMC_PINSEL9_Val EQU 0x50055555; ; A16 .. A23, !OE, !WE, !CS0, !CS1
;// External Memory Controller Setup (EMC) ---------------------------------
;// <e> External Memory Controller Setup (EMC)
EMC_SETUP EQU 0
;// <h> EMC Control Register (EMCControl)
;// <i> Controls operation of the memory controller
;// <o0.2> L: Low-power mode enable
;// <o0.1> M: Address mirror enable
;// <o0.0> E: EMC enable
;// </h>
EMC_CTRL_Val EQU 0x00000001
;// <h> EMC Configuration Register (EMCConfig)
;// <i> Configures operation of the memory controller
;// <o0.8> CCLK: CLKOUT ratio
;// <0=> 1:1
;// <1=> 1:2
;// <o0.0> Endian mode
;// <0=> Little-endian
;// <1=> Big-endian
;// </h>
EMC_CONFIG_Val EQU 0x00000000
;// Dynamic Memory Interface Setup ---------------------------------------
;// <e> Dynamic Memory Interface Setup
EMC_DYNAMIC_SETUP EQU 1
;// <h> Dynamic Memory Refresh Timer Register (EMCDynamicRefresh)
;// <i> Configures dynamic memory refresh operation
;// <o0.0..10> REFRESH: Refresh timer <0x000-0x7FF>
;// <i> 0 = refresh disabled, 0x01-0x7FF: value * 16 CCLKS
;// </h>
EMC_DYN_RFSH_Val EQU 0x0000001C
;// <h> Dynamic Memory Read Configuration Register (EMCDynamicReadConfig)
;// <i> Configures the dynamic memory read strategy
;// <o0.0..1> RD: Read data strategy
;// <0=> Clock out delayed strategy
;// <1=> Command delayed strategy
;// <2=> Command delayed strategy plus one clock cycle
;// <3=> Command delayed strategy plus two clock cycles
;// </h>
EMC_DYN_RD_CFG_Val EQU 0x00000001
;// <h> Dynamic Memory Timings
;// <h> Dynamic Memory Percentage Command Period Register (EMCDynamictRP)
;// <o0.0..3> tRP: Precharge command period <1-16> <#-1>
;// <i> The delay is in EMCCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tRP
;// </h>
;// <h> Dynamic Memory Active to Precharge Command Period Register (EMCDynamictRAS)
;// <o1.0..3> tRAS: Active to precharge command period <1-16> <#-1>
;// <i> The delay is in EMCCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tRAS
;// </h>
;// <h> Dynamic Memory Self-refresh Exit Time Register (EMCDynamictSREX)
;// <o2.0..3> tSREX: Self-refresh exit time <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tSREX,
;// <i> for devices without this parameter you use the same value as tXSR
;// </h>
;// <h> Dynamic Memory Last Data Out to Active Time Register (EMCDynamictAPR)
;// <o3.0..3> tAPR: Last-data-out to active command time <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tAPR
;// </h>
;// <h> Dynamic Memory Data-in to Active Command Time Register (EMCDynamictDAL)
;// <o4.0..3> tDAL: Data-in to active command time <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tDAL or tAPW
;// </h>
;// <h> Dynamic Memory Write Recovery Time Register (EMCDynamictWR)
;// <o5.0..3> tWR: Write recovery time <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tWR, tDPL, tRWL, or tRDL
;// </h>
;// <h> Dynamic Memory Active to Active Command Period Register (EMCDynamictRC)
;// <o6.0..4> tRC: Active to active command period <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tRC
;// </h>
;// <h> Dynamic Memory Auto-refresh Period Register (EMCDynamictRFC)
;// <o7.0..4> tRFC: Auto-refresh period and auto-refresh to active command period <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tRFC or tRC
;// </h>
;// <h> Dynamic Memory Exit Self-refresh Register (EMCDynamictXSR)
;// <o8.0..4> tXSR: Exit self-refresh to active command time <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tXSR
;// </h>
;// <h> Dynamic Memory Active Bank A to Active Bank B Time Register (EMCDynamicRRD)
;// <o9.0..3> tRRD: Active bank A to active bank B latency <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tRRD
;// </h>
;// <h> Dynamic Memory Load Mode Register to Active Command Time (EMCDynamictMRD)
;// <o10.0..3> tMRD: Load mode register to active command time <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// <i> This value is normally found in SDRAM data sheets as tMRD or tRSA
;// </h>
;// </h>
EMC_DYN_RP_Val EQU 0x00000002
EMC_DYN_RAS_Val EQU 0x00000003
EMC_DYN_SREX_Val EQU 0x00000007
EMC_DYN_APR_Val EQU 0x00000002
EMC_DYN_DAL_Val EQU 0x00000005
EMC_DYN_WR_Val EQU 0x00000001
EMC_DYN_RC_Val EQU 0x00000005
EMC_DYN_RFC_Val EQU 0x00000005
EMC_DYN_XSR_Val EQU 0x00000007
EMC_DYN_RRD_Val EQU 0x00000001
EMC_DYN_MRD_Val EQU 0x00000002
;// <e> Configure External Bus Behaviour for Dynamic CS0 Area
EMC_DYNCS0_SETUP EQU 1
;// <h> Dynamic Memory Configuration Register (EMCDynamicConfig0)
;// <i> Defines the configuration information for the dynamic memory CS0
;// <o0.20> P: Write protect
;// <o0.19> B: Buffer enable
;// <o0.14> AM 14: External bus data width
;// <0=> 16 bit
;// <1=> 32 bit
;// <o0.12> AM 12: External bus memory type
;// <0=> High-performance
;// <1=> Low-power SDRAM
;// <o0.7..11> AM 11..7: External bus address mapping (Row, Bank, Column)
;// <0x00=> 16 Mb = 2MB (2Mx8), 2 banks, row length = 11, column length = 9
;// <0x01=> 16 Mb = 2MB (1Mx16), 2 banks, row length = 11, column length = 8
;// <0x04=> 64 Mb = 8MB (8Mx8), 4 banks, row length = 12, column length = 9
;// <0x05=> 64 Mb = 8MB (4Mx16), 4 banks, row length = 12, column length = 8
;// <0x08=> 128 Mb = 16MB (16Mx8), 4 banks, row length = 12, column length = 10
;// <0x09=> 128 Mb = 16MB (8Mx16), 4 banks, row length = 12, column length = 9
;// <0x0C=> 256 Mb = 32MB (32Mx8), 4 banks, row length = 13, column length = 10
;// <0x0D=> 256 Mb = 32MB (16Mx16), 4 banks, row length = 13, column length = 9
;// <0x10=> 512 Mb = 64MB (64Mx8), 4 banks, row length = 13, column length = 11
;// <0x11=> 512 Mb = 64MB (32Mx16), 4 banks, row length = 13, column length = 10
;// <o0.3..4> MD: Memory device
;// <0=> SDRAM
;// <1=> Low-power SDRAM
;// <2=> Micron SyncFlash
;// </h>
EMC_DYN_CFG0_Val EQU 0x00080680
;// <h> Dynamic Memory RAS & CAS Delay register (EMCDynamicRASCAS0)
;// <i> Controls the RAS and CAS latencies for the dynamic memory CS0
;// <o0.8..9> CAS: CAS latency
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// <o0.0..1> RAS: RAS latency (active to read/write delay)
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// </h>
EMC_DYN_RASCAS0_Val EQU 0x00000303
;// </e> End of Dynamic Setup for CS0 Area
;// <e> Configure External Bus Behaviour for Dynamic CS1 Area
EMC_DYNCS1_SETUP EQU 0
;// <h> Dynamic Memory Configuration Register (EMCDynamicConfig1)
;// <i> Defines the configuration information for the dynamic memory CS1
;// <o0.20> P: Write protect
;// <o0.19> B: Buffer enable
;// <o0.14> AM 14: External bus data width
;// <0=> 16 bit
;// <1=> 32 bit
;// <o0.12> AM 12: External bus memory type
;// <0=> High-performance
;// <1=> Low-power SDRAM
;// <o0.7..11> AM 11..7: External bus address mapping (Row, Bank, Column)
;// <0x00=> 16 Mb = 2MB (2Mx8), 2 banks, row length = 11, column length = 9
;// <0x01=> 16 Mb = 2MB (1Mx16), 2 banks, row length = 11, column length = 8
;// <0x04=> 64 Mb = 8MB (8Mx8), 4 banks, row length = 12, column length = 9
;// <0x05=> 64 Mb = 8MB (4Mx16), 4 banks, row length = 12, column length = 8
;// <0x08=> 128 Mb = 16MB (16Mx8), 4 banks, row length = 12, column length = 10
;// <0x09=> 128 Mb = 16MB (8Mx16), 4 banks, row length = 12, column length = 9
;// <0x0C=> 256 Mb = 32MB (32Mx8), 4 banks, row length = 13, column length = 10
;// <0x0D=> 256 Mb = 32MB (16Mx16), 4 banks, row length = 13, column length = 9
;// <0x10=> 512 Mb = 64MB (64Mx8), 4 banks, row length = 13, column length = 11
;// <0x11=> 512 Mb = 64MB (32Mx16), 4 banks, row length = 13, column length = 10
;// <o0.3..4> MD: Memory device
;// <0=> SDRAM
;// <1=> Low-power SDRAM
;// <2=> Micron SyncFlash
;// </h>
EMC_DYN_CFG1_Val EQU 0x00000000
;// <h> Dynamic Memory RAS & CAS Delay register (EMCDynamicRASCAS1)
;// <i> Controls the RAS and CAS latencies for the dynamic memory CS1
;// <o0.8..9> CAS: CAS latency
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// <o0.0..1> RAS: RAS latency (active to read/write delay)
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// </h>
EMC_DYN_RASCAS1_Val EQU 0x00000303
;// </e> End of Dynamic Setup for CS1 Area
;// <e> Configure External Bus Behaviour for Dynamic CS2 Area
EMC_DYNCS2_SETUP EQU 0
;// <h> Dynamic Memory Configuration Register (EMCDynamicConfig2)
;// <i> Defines the configuration information for the dynamic memory CS2
;// <o0.20> P: Write protect
;// <o0.19> B: Buffer enable
;// <o0.14> AM 14: External bus data width
;// <0=> 16 bit
;// <1=> 32 bit
;// <o0.12> AM 12: External bus memory type
;// <0=> High-performance
;// <1=> Low-power SDRAM
;// <o0.7..11> AM 11..7: External bus address mapping (Row, Bank, Column)
;// <0x00=> 16 Mb = 2MB (2Mx8), 2 banks, row length = 11, column length = 9
;// <0x01=> 16 Mb = 2MB (1Mx16), 2 banks, row length = 11, column length = 8
;// <0x04=> 64 Mb = 8MB (8Mx8), 4 banks, row length = 12, column length = 9
;// <0x05=> 64 Mb = 8MB (4Mx16), 4 banks, row length = 12, column length = 8
;// <0x08=> 128 Mb = 16MB (16Mx8), 4 banks, row length = 12, column length = 10
;// <0x09=> 128 Mb = 16MB (8Mx16), 4 banks, row length = 12, column length = 9
;// <0x0C=> 256 Mb = 32MB (32Mx8), 4 banks, row length = 13, column length = 10
;// <0x0D=> 256 Mb = 32MB (16Mx16), 4 banks, row length = 13, column length = 9
;// <0x10=> 512 Mb = 64MB (64Mx8), 4 banks, row length = 13, column length = 11
;// <0x11=> 512 Mb = 64MB (32Mx16), 4 banks, row length = 13, column length = 10
;// <o0.3..4> MD: Memory device
;// <0=> SDRAM
;// <1=> Low-power SDRAM
;// <2=> Micron SyncFlash
;// </h>
EMC_DYN_CFG2_Val EQU 0x00000000
;// <h> Dynamic Memory RAS & CAS Delay register (EMCDynamicRASCAS2)
;// <i> Controls the RAS and CAS latencies for the dynamic memory CS2
;// <o0.8..9> CAS: CAS latency
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// <o0.0..1> RAS: RAS latency (active to read/write delay)
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// </h>
EMC_DYN_RASCAS2_Val EQU 0x00000303
;// </e> End of Dynamic Setup for CS2 Area
;// <e> Configure External Bus Behaviour for Dynamic CS3 Area
EMC_DYNCS3_SETUP EQU 0
;// <h> Dynamic Memory Configuration Register (EMCDynamicConfig3)
;// <i> Defines the configuration information for the dynamic memory CS3
;// <o0.20> P: Write protect
;// <o0.19> B: Buffer enable
;// <o0.14> AM 14: External bus data width
;// <0=> 16 bit
;// <1=> 32 bit
;// <o0.12> AM 12: External bus memory type
;// <0=> High-performance
;// <1=> Low-power SDRAM
;// <o0.7..11> AM 11..7: External bus address mapping (Row, Bank, Column)
;// <0x00=> 16 Mb = 2MB (2Mx8), 2 banks, row length = 11, column length = 9
;// <0x01=> 16 Mb = 2MB (1Mx16), 2 banks, row length = 11, column length = 8
;// <0x04=> 64 Mb = 8MB (8Mx8), 4 banks, row length = 12, column length = 9
;// <0x05=> 64 Mb = 8MB (4Mx16), 4 banks, row length = 12, column length = 8
;// <0x08=> 128 Mb = 16MB (16Mx8), 4 banks, row length = 12, column length = 10
;// <0x09=> 128 Mb = 16MB (8Mx16), 4 banks, row length = 12, column length = 9
;// <0x0C=> 256 Mb = 32MB (32Mx8), 4 banks, row length = 13, column length = 10
;// <0x0D=> 256 Mb = 32MB (16Mx16), 4 banks, row length = 13, column length = 9
;// <0x10=> 512 Mb = 64MB (64Mx8), 4 banks, row length = 13, column length = 11
;// <0x11=> 512 Mb = 64MB (32Mx16), 4 banks, row length = 13, column length = 10
;// <o0.3..4> MD: Memory device
;// <0=> SDRAM
;// <1=> Low-power SDRAM
;// <2=> Micron SyncFlash
;// </h>
EMC_DYN_CFG3_Val EQU 0x00000000
;// <h> Dynamic Memory RAS & CAS Delay register (EMCDynamicRASCAS3)
;// <i> Controls the RAS and CAS latencies for the dynamic memory CS3
;// <o0.8..9> CAS: CAS latency
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// <o0.0..1> RAS: RAS latency (active to read/write delay)
;// <1=> One CCLK cycle
;// <2=> Two CCLK cycles
;// <3=> Three CCLK cycles
;// </h>
EMC_DYN_RASCAS3_Val EQU 0x00000303
;// </e> End of Dynamic Setup for CS3 Area
;// </e> End of Dynamic Setup
;// Static Memory Interface Setup ----------------------------------------
;// <e> Static Memory Interface Setup
EMC_STATIC_SETUP EQU 1
;// Configure External Bus Behaviour for Static CS0 Area ---------------
;// <e> Configure External Bus Behaviour for Static CS0 Area
EMC_STACS0_SETUP EQU 1
;// <h> Static Memory Configuration Register (EMCStaticConfig0)
;// <i> Defines the configuration information for the static memory CS0
;// <o0.20> WP: Write protect
;// <o0.19> B: Buffer enable
;// <o0.8> EW: Extended wait enable
;// <o0.7> PB: Byte lane state
;// <0=> For reads BLSn are HIGH, for writes BLSn are LOW
;// <1=> For reads BLSn are LOW, for writes BLSn are LOW
;// <o0.6> PC: Chip select polarity
;// <0=> Active LOW chip select
;// <1=> Active HIGH chip select
;// <o0.3> PM: Page mode enable
;// <o0.0..1> MW: Memory width
;// <0=> 8 bit
;// <1=> 16 bit
;// <2=> 32 bit
;// </h>
EMC_STA_CFG0_Val EQU 0x00000081
;// <h> Static Memory Write Enable Delay Register (EMCStaticWaitWen0)
;// <i> Selects the delay from CS0 to write enable
;// <o.0..3> WAITWEN: Wait write enable <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWEN0_Val EQU 0x00000002
;// <h> Static Memory Output Enable Delay register (EMCStaticWaitOen0)
;// <i> Selects the delay from CS0 or address change, whichever is later, to output enable
;// <o.0..3> WAITOEN: Wait output enable <0-15>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WOEN0_Val EQU 0x00000002
;// <h> Static Memory Read Delay Register (EMCStaticWaitRd0)
;// <i> Selects the delay from CS0 to a read access
;// <o.0..4> WAITRD: Non-page mode read wait states or asynchronous page mode read first access wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WRD0_Val EQU 0x0000001F
;// <h> Static Memory Page Mode Read Delay Register (EMCStaticWaitPage0)
;// <i> Selects the delay for asynchronous page mode sequential accesses for CS0
;// <o.0..4> WAITPAGE: Asynchronous page mode read after the first read wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WPAGE0_Val EQU 0x0000001F
;// <h> Static Memory Write Delay Register (EMCStaticWaitWr0)
;// <i> Selects the delay from CS0 to a write access
;// <o.0..4> WAITWR: Write wait states <2-33> <#-2>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWR0_Val EQU 0x0000001F
;// <h> Static Memory Turn Round Delay Register (EMCStaticWaitTurn0)
;// <i> Selects the number of bus turnaround cycles for CS0
;// <o.0..4> WAITTURN: Bus turnaround cycles <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WTURN0_Val EQU 0x0000000F
;// </e> End of Static Setup for Static CS0 Area
;// Configure External Bus Behaviour for Static CS1 Area ---------------
;// <e> Configure External Bus Behaviour for Static CS1 Area
EMC_STACS1_SETUP EQU 0
;// <h> Static Memory Configuration Register (EMCStaticConfig1)
;// <i> Defines the configuration information for the static memory CS1
;// <o0.20> WP: Write protect
;// <o0.19> B: Buffer enable
;// <o0.8> EW: Extended wait enable
;// <o0.7> PB: Byte lane state
;// <0=> For reads BLSn are HIGH, for writes BLSn are LOW
;// <1=> For reads BLSn are LOW, for writes BLSn are LOW
;// <o0.6> PC: Chip select polarity
;// <0=> Active LOW chip select
;// <1=> Active HIGH chip select
;// <o0.3> PM: Page mode enable
;// <o0.0..1> MW: Memory width
;// <0=> 8 bit
;// <1=> 16 bit
;// <2=> 32 bit
;// </h>
EMC_STA_CFG1_Val EQU 0x00000000
;// <h> Static Memory Write Enable Delay Register (EMCStaticWaitWen1)
;// <i> Selects the delay from CS1 to write enable
;// <o.0..3> WAITWEN: Wait write enable <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWEN1_Val EQU 0x00000000
;// <h> Static Memory Output Enable Delay register (EMCStaticWaitOen1)
;// <i> Selects the delay from CS1 or address change, whichever is later, to output enable
;// <o.0..3> WAITOEN: Wait output enable <0-15>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WOEN1_Val EQU 0x00000000
;// <h> Static Memory Read Delay Register (EMCStaticWaitRd1)
;// <i> Selects the delay from CS1 to a read access
;// <o.0..4> WAITRD: Non-page mode read wait states or asynchronous page mode read first access wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WRD1_Val EQU 0x0000001F
;// <h> Static Memory Page Mode Read Delay Register (EMCStaticWaitPage0)
;// <i> Selects the delay for asynchronous page mode sequential accesses for CS1
;// <o.0..4> WAITPAGE: Asynchronous page mode read after the first read wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WPAGE1_Val EQU 0x0000001F
;// <h> Static Memory Write Delay Register (EMCStaticWaitWr1)
;// <i> Selects the delay from CS1 to a write access
;// <o.0..4> WAITWR: Write wait states <2-33> <#-2>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWR1_Val EQU 0x0000001F
;// <h> Static Memory Turn Round Delay Register (EMCStaticWaitTurn1)
;// <i> Selects the number of bus turnaround cycles for CS1
;// <o.0..4> WAITTURN: Bus turnaround cycles <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WTURN1_Val EQU 0x0000000F
;// </e> End of Static Setup for Static CS1 Area
;// Configure External Bus Behaviour for Static CS2 Area ---------------
;// <e> Configure External Bus Behaviour for Static CS2 Area
EMC_STACS2_SETUP EQU 0
;// <h> Static Memory Configuration Register (EMCStaticConfig2)
;// <i> Defines the configuration information for the static memory CS2
;// <o0.20> WP: Write protect
;// <o0.19> B: Buffer enable
;// <o0.8> EW: Extended wait enable
;// <o0.7> PB: Byte lane state
;// <0=> For reads BLSn are HIGH, for writes BLSn are LOW
;// <1=> For reads BLSn are LOW, for writes BLSn are LOW
;// <o0.6> PC: Chip select polarity
;// <0=> Active LOW chip select
;// <1=> Active HIGH chip select
;// <o0.3> PM: Page mode enable
;// <o0.0..1> MW: Memory width
;// <0=> 8 bit
;// <1=> 16 bit
;// <2=> 32 bit
;// </h>
EMC_STA_CFG2_Val EQU 0x00000000
;// <h> Static Memory Write Enable Delay Register (EMCStaticWaitWen2)
;// <i> Selects the delay from CS2 to write enable
;// <o.0..3> WAITWEN: Wait write enable <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWEN2_Val EQU 0x00000000
;// <h> Static Memory Output Enable Delay register (EMCStaticWaitOen2)
;// <i> Selects the delay from CS2 or address change, whichever is later, to output enable
;// <o.0..3> WAITOEN: Wait output enable <0-15>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WOEN2_Val EQU 0x00000000
;// <h> Static Memory Read Delay Register (EMCStaticWaitRd2)
;// <i> Selects the delay from CS2 to a read access
;// <o.0..4> WAITRD: Non-page mode read wait states or asynchronous page mode read first access wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WRD2_Val EQU 0x0000001F
;// <h> Static Memory Page Mode Read Delay Register (EMCStaticWaitPage2)
;// <i> Selects the delay for asynchronous page mode sequential accesses for CS2
;// <o.0..4> WAITPAGE: Asynchronous page mode read after the first read wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WPAGE2_Val EQU 0x0000001F
;// <h> Static Memory Write Delay Register (EMCStaticWaitWr2)
;// <i> Selects the delay from CS2 to a write access
;// <o.0..4> WAITWR: Write wait states <2-33> <#-2>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWR2_Val EQU 0x0000001F
;// <h> Static Memory Turn Round Delay Register (EMCStaticWaitTurn2)
;// <i> Selects the number of bus turnaround cycles for CS2
;// <o.0..4> WAITTURN: Bus turnaround cycles <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WTURN2_Val EQU 0x0000000F
;// </e> End of Static Setup for Static CS2 Area
;// Configure External Bus Behaviour for Static CS3 Area ---------------
;// <e> Configure External Bus Behaviour for Static CS3 Area
EMC_STACS3_SETUP EQU 0
;// <h> Static Memory Configuration Register (EMCStaticConfig3)
;// <i> Defines the configuration information for the static memory CS3
;// <o0.20> WP: Write protect
;// <o0.19> B: Buffer enable
;// <o0.8> EW: Extended wait enable
;// <o0.7> PB: Byte lane state
;// <0=> For reads BLSn are HIGH, for writes BLSn are LOW
;// <1=> For reads BLSn are LOW, for writes BLSn are LOW
;// <o0.6> PC: Chip select polarity
;// <0=> Active LOW chip select
;// <1=> Active HIGH chip select
;// <o0.3> PM: Page mode enable
;// <o0.0..1> MW: Memory width
;// <0=> 8 bit
;// <1=> 16 bit
;// <2=> 32 bit
;// </h>
EMC_STA_CFG3_Val EQU 0x00000000
;// <h> Static Memory Write Enable Delay Register (EMCStaticWaitWen3)
;// <i> Selects the delay from CS3 to write enable
;// <o.0..3> WAITWEN: Wait write enable <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWEN3_Val EQU 0x00000000
;// <h> Static Memory Output Enable Delay register (EMCStaticWaitOen3)
;// <i> Selects the delay from CS3 or address change, whichever is later, to output enable
;// <o.0..3> WAITOEN: Wait output enable <0-15>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WOEN3_Val EQU 0x00000000
;// <h> Static Memory Read Delay Register (EMCStaticWaitRd3)
;// <i> Selects the delay from CS3 to a read access
;// <o.0..4> WAITRD: Non-page mode read wait states or asynchronous page mode read first access wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WRD3_Val EQU 0x0000001F
;// <h> Static Memory Page Mode Read Delay Register (EMCStaticWaitPage3)
;// <i> Selects the delay for asynchronous page mode sequential accesses for CS3
;// <o.0..4> WAITPAGE: Asynchronous page mode read after the first read wait states <1-32> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WPAGE3_Val EQU 0x0000001F
;// <h> Static Memory Write Delay Register (EMCStaticWaitWr3)
;// <i> Selects the delay from CS3 to a write access
;// <o.0..4> WAITWR: Write wait states <2-33> <#-2>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WWR3_Val EQU 0x0000001F
;// <h> Static Memory Turn Round Delay Register (EMCStaticWaitTurn3)
;// <i> Selects the number of bus turnaround cycles for CS3
;// <o.0..4> WAITTURN: Bus turnaround cycles <1-16> <#-1>
;// <i> The delay is in CCLK cycles
;// </h>
EMC_STA_WTURN3_Val EQU 0x0000000F
;// </e> End of Static Setup for Static CS3 Area
;// <h> Static Memory Extended Wait Register (EMCStaticExtendedWait)
;// <i> Time long static memory read and write transfers
;// <o.0..9> EXTENDEDWAIT: Extended wait time out <0-1023>
;// <i> The delay is in (16 * CCLK) cycles
;// </h>
EMC_STA_EXT_W_Val EQU 0x00000000
;// </e> End of Static Setup
;// </e> End of EMC Setup
PRESERVE8
; Area Definition and Entry Point
; Startup Code must be linked first at Address at which it expects to run.
AREA RESET, CODE, READONLY
ARM
; Exception Vectors
; Mapped to Address 0.
; Absolute addressing mode must be used.
; Dummy Handlers are implemented as infinite loops which can be modified.
Vectors LDR PC, Reset_Addr
LDR PC, Undef_Addr
LDR PC, SWI_Addr
LDR PC, PAbt_Addr
LDR PC, DAbt_Addr
NOP ; Reserved Vector
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr
Reset_Addr DCD Reset_Handler
Undef_Addr DCD Undef_Handler
SWI_Addr DCD SWI_Handler
PAbt_Addr DCD PAbt_Handler
DAbt_Addr DCD DAbt_Handler
DCD 0 ; Reserved Address
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler
; Exception Handler
IMPORT rt_hw_trap_udef
IMPORT rt_hw_trap_swi
IMPORT rt_hw_trap_pabt
IMPORT rt_hw_trap_dabt
IMPORT rt_hw_trap_fiq
; Prepare Fatal Context
MACRO
prepare_fatal
STMFD sp!, {r0-r3}
MOV r1, sp
ADD sp, sp, #16
SUB r2, lr, #4
MRS r3, spsr
; switch to SVC mode and no interrupt
MSR cpsr_c, #I_Bit :OR: F_Bit :OR: Mode_SVC
STMFD sp!, {r0} ; old r0
; get sp
ADD r0, sp, #4
STMFD sp!, {r3} ; cpsr
STMFD sp!, {r2} ; pc
STMFD sp!, {lr} ; lr
STMFD sp!, {r0} ; sp
STMFD sp!, {r4-r12}
MOV r4, r1
LDMFD r4!, {r0-r3}
STMFD sp!, {r0-r3}
MOV r0, sp
MEND
Undef_Handler
prepare_fatal
BL rt_hw_trap_irq
B .
SWI_Handler
prepare_fatal
BL rt_hw_trap_swi
B .
PAbt_Handler
prepare_fatal
BL rt_hw_trap_pabt
B .
DAbt_Handler
prepare_fatal
BL rt_hw_trap_dabt
B .
FIQ_Handler
prepare_fatal
BL rt_hw_trap_fiq
B .
; Reset Handler
EXPORT Reset_Handler
Reset_Handler
; Clock Setup ------------------------------------------------------------------
IF (:LNOT:(:DEF:NO_CLOCK_SETUP)):LAND:(CLOCK_SETUP != 0)
LDR R0, =SCB_BASE
MOV R1, #0xAA
MOV R2, #0x55
; Configure and Enable PLL
LDR R3, =SCS_Val ; Enable main oscillator
STR R3, [R0, #SCS_OFS]
IF (SCS_Val:AND:OSCEN) != 0
OSC_Loop LDR R3, [R0, #SCS_OFS] ; Wait for main osc stabilize
ANDS R3, R3, #OSCSTAT
BEQ OSC_Loop
ENDIF
LDR R3, =CLKSRCSEL_Val ; Select PLL source clock
STR R3, [R0, #CLKSRCSEL_OFS]
LDR R3, =PLLCFG_Val
STR R3, [R0, #PLLCFG_OFS]
STR R1, [R0, #PLLFEED_OFS]
STR R2, [R0, #PLLFEED_OFS]
MOV R3, #PLLCON_PLLE
STR R3, [R0, #PLLCON_OFS]
STR R1, [R0, #PLLFEED_OFS]
STR R2, [R0, #PLLFEED_OFS]
IF (CLKSRCSEL_Val:AND:3) != 2
; Wait until PLL Locked (if source is not RTC oscillator)
PLL_Loop LDR R3, [R0, #PLLSTAT_OFS]
ANDS R3, R3, #PLLSTAT_PLOCK
BEQ PLL_Loop
ELSE
; Wait at least 200 cycles (if source is RTC oscillator)
MOV R3, #(200/4)
PLL_Loop SUBS R3, R3, #1
BNE PLL_Loop
ENDIF
M_N_Lock LDR R3, [R0, #PLLSTAT_OFS]
LDR R4, =(PLLSTAT_M:OR:PLLSTAT_N)
AND R3, R3, R4
LDR R4, =PLLCFG_Val
EORS R3, R3, R4
BNE M_N_Lock
; Setup CPU clock divider
MOV R3, #CCLKCFG_Val
STR R3, [R0, #CCLKCFG_OFS]
; Setup USB clock divider
LDR R3, =USBCLKCFG_Val
STR R3, [R0, #USBCLKCFG_OFS]
; Setup Peripheral Clock
LDR R3, =PCLKSEL0_Val
STR R3, [R0, #PCLKSEL0_OFS]
LDR R3, =PCLKSEL1_Val
STR R3, [R0, #PCLKSEL1_OFS]
; Switch to PLL Clock
MOV R3, #(PLLCON_PLLE:OR:PLLCON_PLLC)
STR R3, [R0, #PLLCON_OFS]
STR R1, [R0, #PLLFEED_OFS]
STR R2, [R0, #PLLFEED_OFS]
ENDIF ; CLOCK_SETUP
; Setup Memory Accelerator Module ----------------------------------------------
IF MAM_SETUP != 0
LDR R0, =MAM_BASE
MOV R1, #MAMTIM_Val
STR R1, [R0, #MAMTIM_OFS]
MOV R1, #MAMCR_Val
STR R1, [R0, #MAMCR_OFS]
ENDIF ; MAM_SETUP
; Setup External Memory Controller ---------------------------------------------
IF (:LNOT:(:DEF:NO_EMC_SETUP)):LAND:(EMC_SETUP != 0)
LDR R0, =EMC_BASE
LDR R1, =SCB_BASE
LDR R2, =PCB_BASE
LDR R4, =EMC_PCONP_Const ; Enable EMC
LDR R3, [R1, #PCONP_OFS]
ORR R4, R4, R3
STR R4, [R1, #PCONP_OFS]
LDR R4, =EMC_CTRL_Val
STR R4, [R0, #EMC_CTRL_OFS]
LDR R4, =EMC_CONFIG_Val
STR R4, [R0, #EMC_CONFIG_OFS]
; Setup pin functions for External Bus functionality
LDR R4, =EMC_PINSEL5_Val
STR R4, [R2, #PINSEL5_OFS]
LDR R4, =EMC_PINSEL6_Val
STR R4, [R2, #PINSEL6_OFS]
LDR R4, =EMC_PINSEL8_Val
STR R4, [R2, #PINSEL8_OFS]
LDR R4, =EMC_PINSEL9_Val
STR R4, [R2, #PINSEL9_OFS]
; Setup Dynamic Memory Interface
IF (EMC_DYNAMIC_SETUP != 0)
LDR R4, =EMC_DYN_RP_Val
STR R4, [R0, #EMC_DYN_RP_OFS]
LDR R4, =EMC_DYN_RAS_Val
STR R4, [R0, #EMC_DYN_RAS_OFS]
LDR R4, =EMC_DYN_SREX_Val
STR R4, [R0, #EMC_DYN_SREX_OFS]
LDR R4, =EMC_DYN_APR_Val
STR R4, [R0, #EMC_DYN_APR_OFS]
LDR R4, =EMC_DYN_DAL_Val
STR R4, [R0, #EMC_DYN_DAL_OFS]
LDR R4, =EMC_DYN_WR_Val
STR R4, [R0, #EMC_DYN_WR_OFS]
LDR R4, =EMC_DYN_RC_Val
STR R4, [R0, #EMC_DYN_RC_OFS]
LDR R4, =EMC_DYN_RFC_Val
STR R4, [R0, #EMC_DYN_RFC_OFS]
LDR R4, =EMC_DYN_XSR_Val
STR R4, [R0, #EMC_DYN_XSR_OFS]
LDR R4, =EMC_DYN_RRD_Val
STR R4, [R0, #EMC_DYN_RRD_OFS]
LDR R4, =EMC_DYN_MRD_Val
STR R4, [R0, #EMC_DYN_MRD_OFS]
LDR R4, =EMC_DYN_RD_CFG_Val
STR R4, [R0, #EMC_DYN_RD_CFG_OFS]
IF (EMC_DYNCS0_SETUP != 0)
LDR R4, =EMC_DYN_RASCAS0_Val
STR R4, [R0, #EMC_DYN_RASCAS0_OFS]
LDR R4, =EMC_DYN_CFG0_Val
MVN R5, #BUFEN_Const
AND R4, R4, R5
STR R4, [R0, #EMC_DYN_CFG0_OFS]
ENDIF
IF (EMC_DYNCS1_SETUP != 0)
LDR R4, =EMC_DYN_RASCAS1_Val
STR R4, [R0, #EMC_DYN_RASCAS1_OFS]
LDR R4, =EMC_DYN_CFG1_Val
MVN R5, =BUFEN_Const
AND R4, R4, R5
STR R4, [R0, #EMC_DYN_CFG1_OFS]
ENDIF
IF (EMC_DYNCS2_SETUP != 0)
LDR R4, =EMC_DYN_RASCAS2_Val
STR R4, [R0, #EMC_DYN_RASCAS2_OFS]
LDR R4, =EMC_DYN_CFG2_Val
MVN R5, =BUFEN_Const
AND R4, R4, R5
STR R4, [R0, #EMC_DYN_CFG2_OFS]
ENDIF
IF (EMC_DYNCS3_SETUP != 0)
LDR R4, =EMC_DYN_RASCAS3_Val
STR R4, [R0, #EMC_DYN_RASCAS3_OFS]
LDR R4, =EMC_DYN_CFG3_Val
MVN R5, =BUFEN_Const
AND R4, R4, R5
STR R4, [R0, #EMC_DYN_CFG3_OFS]
ENDIF
LDR R6, =1440000 ; Number of cycles to delay
Wait_0 SUBS R6, R6, #1 ; Delay ~100 ms proc clk 57.6 MHz
BNE Wait_0 ; BNE (3 cyc) + SUBS (1 cyc) = 4 cyc
LDR R4, =(NOP_CMD:OR:0x03) ; Write NOP Command
STR R4, [R0, #EMC_DYN_CTRL_OFS]
LDR R6, =2880000 ; Number of cycles to delay
Wait_1 SUBS R6, R6, #1 ; Delay ~200 ms proc clk 57.6 MHz
BNE Wait_1
LDR R4, =(PALL_CMD:OR:0x03) ; Write Precharge All Command
STR R4, [R0, #EMC_DYN_CTRL_OFS]
MOV R4, #2
STR R4, [R0, #EMC_DYN_RFSH_OFS]
MOV R6, #64 ; Number of cycles to delay
Wait_2 SUBS R6, R6, #1 ; Delay
BNE Wait_2
LDR R4, =EMC_DYN_RFSH_Val
STR R4, [R0, #EMC_DYN_RFSH_OFS]
LDR R4, =(MODE_CMD:OR:0x03) ; Write MODE Command
STR R4, [R0, #EMC_DYN_CTRL_OFS]
; Dummy read
IF (EMC_DYNCS0_SETUP != 0)
LDR R4, =DYN_MEM0_BASE
MOV R5, #(0x33 << 12)
ADD R4, R4, R5
LDR R4, [R4, #0]
ENDIF
IF (EMC_DYNCS1_SETUP != 0)
LDR R4, =DYN_MEM1_BASE
MOV R5, #(0x33 << 12)
ADD R4, R4, R5
LDR R4, [R4, #0]
ENDIF
IF (EMC_DYNCS2_SETUP != 0)
LDR R4, =DYN_MEM2_BASE
MOV R5, #(0x33 << 12)
ADD R4, R4, R5
LDR R4, [R4, #0]
ENDIF
IF (EMC_DYNCS3_SETUP != 0)
LDR R4, =DYN_MEM3_BASE
MOV R5, #(0x33 << 12)
ADD R4, R4, R5
LDR R4, [R4, #0]
ENDIF
LDR R4, =NORMAL_CMD ; Write NORMAL Command
STR R4, [R0, #EMC_DYN_CTRL_OFS]
; Enable buffer if requested by settings
IF (EMC_DYNCS0_SETUP != 0):LAND:((EMC_DYN_CFG0_Val:AND:BUFEN_Const) != 0)
LDR R4, =EMC_DYN_CFG0_Val
STR R4, [R0, #EMC_DYN_CFG0_OFS]
ENDIF
IF (EMC_DYNCS1_SETUP != 0):LAND:((EMC_DYN_CFG1_Val:AND:BUFEN_Const) != 0)
LDR R4, =EMC_DYN_CFG1_Val
STR R4, [R0, #EMC_DYN_CFG1_OFS]
ENDIF
IF (EMC_DYNCS2_SETUP != 0):LAND:((EMC_DYN_CFG2_Val:AND:BUFEN_Const) != 0)
LDR R4, =EMC_DYN_CFG2_Val
STR R4, [R0, #EMC_DYN_CFG2_OFS]
ENDIF
IF (EMC_DYNCS3_SETUP != 0):LAND:((EMC_DYN_CFG3_Val:AND:BUFEN_Const) != 0)
LDR R4, =EMC_DYN_CFG3_Val
STR R4, [R0, #EMC_DYN_CFG3_OFS]
ENDIF
LDR R6, =14400 ; Number of cycles to delay
Wait_3 SUBS R6, R6, #1 ; Delay ~1 ms @ proc clk 57.6 MHz
BNE Wait_3
ENDIF ; EMC_DYNAMIC_SETUP
; Setup Static Memory Interface
IF (EMC_STATIC_SETUP != 0)
LDR R6, =1440000 ; Number of cycles to delay
Wait_4 SUBS R6, R6, #1 ; Delay ~100 ms @ proc clk 57.6 MHz
BNE Wait_4
IF (EMC_STACS0_SETUP != 0)
LDR R4, =EMC_STA_CFG0_Val
STR R4, [R0, #EMC_STA_CFG0_OFS]
LDR R4, =EMC_STA_WWEN0_Val
STR R4, [R0, #EMC_STA_WWEN0_OFS]
LDR R4, =EMC_STA_WOEN0_Val
STR R4, [R0, #EMC_STA_WOEN0_OFS]
LDR R4, =EMC_STA_WRD0_Val
STR R4, [R0, #EMC_STA_WRD0_OFS]
LDR R4, =EMC_STA_WPAGE0_Val
STR R4, [R0, #EMC_STA_WPAGE0_OFS]
LDR R4, =EMC_STA_WWR0_Val
STR R4, [R0, #EMC_STA_WWR0_OFS]
LDR R4, =EMC_STA_WTURN0_Val
STR R4, [R0, #EMC_STA_WTURN0_OFS]
ENDIF
IF (EMC_STACS1_SETUP != 0)
LDR R4, =EMC_STA_CFG1_Val
STR R4, [R0, #EMC_STA_CFG1_OFS]
LDR R4, =EMC_STA_WWEN1_Val
STR R4, [R0, #EMC_STA_WWEN1_OFS]
LDR R4, =EMC_STA_WOEN1_Val
STR R4, [R0, #EMC_STA_WOEN1_OFS]
LDR R4, =EMC_STA_WRD1_Val
STR R4, [R0, #EMC_STA_WRD1_OFS]
LDR R4, =EMC_STA_WPAGE1_Val
STR R4, [R0, #EMC_STA_WPAGE1_OFS]
LDR R4, =EMC_STA_WWR1_Val
STR R4, [R0, #EMC_STA_WWR1_OFS]
LDR R4, =EMC_STA_WTURN1_Val
STR R4, [R0, #EMC_STA_WTURN1_OFS]
ENDIF
IF (EMC_STACS2_SETUP != 0)
LDR R4, =EMC_STA_CFG2_Val
STR R4, [R0, #EMC_STA_CFG2_OFS]
LDR R4, =EMC_STA_WWEN2_Val
STR R4, [R0, #EMC_STA_WWEN2_OFS]
LDR R4, =EMC_STA_WOEN2_Val
STR R4, [R0, #EMC_STA_WOEN2_OFS]
LDR R4, =EMC_STA_WRD2_Val
STR R4, [R0, #EMC_STA_WRD2_OFS]
LDR R4, =EMC_STA_WPAGE2_Val
STR R4, [R0, #EMC_STA_WPAGE2_OFS]
LDR R4, =EMC_STA_WWR2_Val
STR R4, [R0, #EMC_STA_WWR2_OFS]
LDR R4, =EMC_STA_WTURN2_Val
STR R4, [R0, #EMC_STA_WTURN2_OFS]
ENDIF
IF (EMC_STACS3_SETUP != 0)
LDR R4, =EMC_STA_CFG3_Val
STR R4, [R0, #EMC_STA_CFG3_OFS]
LDR R4, =EMC_STA_WWEN3_Val
STR R4, [R0, #EMC_STA_WWEN3_OFS]
LDR R4, =EMC_STA_WOEN3_Val
STR R4, [R0, #EMC_STA_WOEN3_OFS]
LDR R4, =EMC_STA_WRD3_Val
STR R4, [R0, #EMC_STA_WRD3_OFS]
LDR R4, =EMC_STA_WPAGE3_Val
STR R4, [R0, #EMC_STA_WPAGE3_OFS]
LDR R4, =EMC_STA_WWR3_Val
STR R4, [R0, #EMC_STA_WWR3_OFS]
LDR R4, =EMC_STA_WTURN3_Val
STR R4, [R0, #EMC_STA_WTURN3_OFS]
ENDIF
LDR R6, =144000 ; Number of cycles to delay
Wait_5 SUBS R6, R6, #1 ; Delay ~10 ms @ proc clk 57.6 MHz
BNE Wait_5
LDR R4, =EMC_STA_EXT_W_Val
LDR R5, =EMC_STA_EXT_W_OFS
ADD R5, R5, R0
STR R4, [R5, #0]
ENDIF ; EMC_STATIC_SETUP
ENDIF ; EMC_SETUP
; Copy Exception Vectors to Internal RAM ---------------------------------------
IF :DEF:RAM_INTVEC
ADR R8, Vectors ; Source
LDR R9, =RAM_BASE ; Destination
LDMIA R8!, {R0-R7} ; Load Vectors
STMIA R9!, {R0-R7} ; Store Vectors
LDMIA R8!, {R0-R7} ; Load Handler Addresses
STMIA R9!, {R0-R7} ; Store Handler Addresses
ENDIF
; Memory Mapping (when Interrupt Vectors are in RAM) ---------------------------
MEMMAP EQU 0xE01FC040 ; Memory Mapping Control
IF :DEF:REMAP
LDR R0, =MEMMAP
IF :DEF:EXTMEM_MODE
MOV R1, #3
ELIF :DEF:RAM_MODE
MOV R1, #2
ELSE
MOV R1, #1
ENDIF
STR R1, [R0]
ENDIF
; Setup Stack for each mode ----------------------------------------------------
LDR R0, =Stack_Top
; Enter Undefined Instruction Mode and set its Stack Pointer
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #UND_Stack_Size
; Enter Abort Mode and set its Stack Pointer
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #ABT_Stack_Size
; Enter FIQ Mode and set its Stack Pointer
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #FIQ_Stack_Size
; Enter IRQ Mode and set its Stack Pointer
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #IRQ_Stack_Size
; Enter Supervisor Mode and set its Stack Pointer
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #SVC_Stack_Size
IF :DEF:__MICROLIB
EXPORT __initial_sp
ELSE
ENDIF
; Enter the C code -------------------------------------------------------------
IMPORT __main
LDR R0, =__main
BX R0
IMPORT rt_interrupt_enter
IMPORT rt_interrupt_leave
IMPORT rt_thread_switch_interrupt_flag
IMPORT rt_interrupt_from_thread
IMPORT rt_interrupt_to_thread
IMPORT rt_hw_trap_irq
IRQ_Handler PROC
EXPORT IRQ_Handler
STMFD sp!, {r0-r12,lr}
BL rt_interrupt_enter
BL rt_hw_trap_irq
BL rt_interrupt_leave
; if rt_thread_switch_interrupt_flag set, jump to
; rt_hw_context_switch_interrupt_do and don't return
LDR r0, =rt_thread_switch_interrupt_flag
LDR r1, [r0]
CMP r1, #1
BEQ rt_hw_context_switch_interrupt_do
LDMFD sp!, {r0-r12,lr}
SUBS pc, lr, #4
ENDP
; /*
; * void rt_hw_context_switch_interrupt_do(rt_base_t flag)
; */
rt_hw_context_switch_interrupt_do PROC
EXPORT rt_hw_context_switch_interrupt_do
MOV r1, #0 ; clear flag
STR r1, [r0]
LDMFD sp!, {r0-r12,lr}; reload saved registers
STMFD sp!, {r0-r3} ; save r0-r3
MOV r1, sp
ADD sp, sp, #16 ; restore sp
SUB r2, lr, #4 ; save old task's pc to r2
MRS r3, spsr ; get cpsr of interrupt thread
; switch to SVC mode and no interrupt
MSR cpsr_c, #I_Bit :OR: F_Bit :OR: Mode_SVC
STMFD sp!, {r2} ; push old task's pc
STMFD sp!, {r4-r12,lr}; push old task's lr,r12-r4
MOV r4, r1 ; Special optimised code below
MOV r5, r3
LDMFD r4!, {r0-r3}
STMFD sp!, {r0-r3} ; push old task's r3-r0
STMFD sp!, {r5} ; push old task's cpsr
LDR r4, =rt_interrupt_from_thread
LDR r5, [r4]
STR sp, [r5] ; store sp in preempted tasks's TCB
LDR r6, =rt_interrupt_to_thread
LDR r6, [r6]
LDR sp, [r6] ; get new task's stack pointer
LDMFD sp!, {r4} ; pop new task's cpsr to spsr
MSR spsr_cxsf, r4
BIC r4, r4, #0x20 ; must be ARM mode
MSR cpsr_cxsf, r4
LDMFD sp!, {r0-r12,lr,pc}^ ; pop new task's r0-r12,lr & pc, copy spsr to cpsr
ENDP
IF :DEF:__MICROLIB
EXPORT __heap_base
EXPORT __heap_limit
ELSE
; User Initial Stack & Heap
AREA |.text|, CODE, READONLY
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + USR_Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDIF
END