4496 lines
162 KiB
C++
4496 lines
162 KiB
C++
/**
|
||
* This file is part of ORB-SLAM3
|
||
*
|
||
* Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
||
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
||
*
|
||
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
|
||
* License as published by the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
|
||
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
|
||
* If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
|
||
#include "Tracking.h"
|
||
|
||
#include <opencv2/core/core.hpp>
|
||
#include <opencv2/features2d/features2d.hpp>
|
||
|
||
#include "ORBmatcher.h"
|
||
#include "FrameDrawer.h"
|
||
#include "Converter.h"
|
||
#include "Initializer.h"
|
||
#include "G2oTypes.h"
|
||
#include "Optimizer.h"
|
||
|
||
#include <iostream>
|
||
|
||
#include <mutex>
|
||
#include <chrono>
|
||
#include <include/CameraModels/Pinhole.h>
|
||
#include <include/CameraModels/KannalaBrandt8.h>
|
||
#include <include/MLPnPsolver.h>
|
||
|
||
|
||
using namespace std;
|
||
|
||
namespace ORB_SLAM3
|
||
{
|
||
|
||
|
||
Tracking::Tracking(System *pSys, ORBVocabulary* pVoc, FrameDrawer *pFrameDrawer, MapDrawer *pMapDrawer, Atlas *pAtlas, KeyFrameDatabase* pKFDB, const string &strSettingPath, const int sensor, const string &_nameSeq):
|
||
mState(NO_IMAGES_YET), mSensor(sensor), mTrackedFr(0), mbStep(false),
|
||
mbOnlyTracking(false), mbMapUpdated(false), mbVO(false), mpORBVocabulary(pVoc), mpKeyFrameDB(pKFDB),
|
||
mpInitializer(static_cast<Initializer*>(NULL)), mpSystem(pSys), mpViewer(NULL),
|
||
mpFrameDrawer(pFrameDrawer), mpMapDrawer(pMapDrawer), mpAtlas(pAtlas), mnLastRelocFrameId(0), time_recently_lost(5.0), time_recently_lost_visual(2.0),
|
||
mnInitialFrameId(0), mbCreatedMap(false), mnFirstFrameId(0), mpCamera2(nullptr)
|
||
{
|
||
// Load camera parameters from settings file
|
||
cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ);
|
||
|
||
bool b_parse_cam = ParseCamParamFile(fSettings);
|
||
if(!b_parse_cam)
|
||
{
|
||
std::cout << "*Error with the camera parameters in the config file*" << std::endl;
|
||
}
|
||
|
||
// Load ORB parameters
|
||
bool b_parse_orb = ParseORBParamFile(fSettings);
|
||
if(!b_parse_orb)
|
||
{
|
||
std::cout << "*Error with the ORB parameters in the config file*" << std::endl;
|
||
}
|
||
|
||
initID = 0; lastID = 0;
|
||
|
||
// Load IMU parameters
|
||
bool b_parse_imu = true;
|
||
if(sensor==System::IMU_MONOCULAR || sensor==System::IMU_STEREO)
|
||
{
|
||
b_parse_imu = ParseIMUParamFile(fSettings);
|
||
if(!b_parse_imu)
|
||
{
|
||
std::cout << "*Error with the IMU parameters in the config file*" << std::endl;
|
||
}
|
||
|
||
mnFramesToResetIMU = mMaxFrames;
|
||
}
|
||
|
||
mbInitWith3KFs = false;
|
||
|
||
mnNumDataset = 0;
|
||
|
||
if(!b_parse_cam || !b_parse_orb || !b_parse_imu)
|
||
{
|
||
std::cerr << "**ERROR in the config file, the format is not correct**" << std::endl;
|
||
try
|
||
{
|
||
throw -1;
|
||
}
|
||
catch(exception &e)
|
||
{
|
||
|
||
}
|
||
}
|
||
|
||
#ifdef REGISTER_TIMES
|
||
vdRectStereo_ms.clear();
|
||
vdORBExtract_ms.clear();
|
||
vdStereoMatch_ms.clear();
|
||
vdIMUInteg_ms.clear();
|
||
vdPosePred_ms.clear();
|
||
vdLMTrack_ms.clear();
|
||
vdNewKF_ms.clear();
|
||
vdTrackTotal_ms.clear();
|
||
|
||
vdUpdatedLM_ms.clear();
|
||
vdSearchLP_ms.clear();
|
||
vdPoseOpt_ms.clear();
|
||
#endif
|
||
|
||
vnKeyFramesLM.clear();
|
||
vnMapPointsLM.clear();
|
||
}
|
||
|
||
#ifdef REGISTER_TIMES
|
||
double calcAverage(vector<double> v_times)
|
||
{
|
||
double accum = 0;
|
||
for(double value : v_times)
|
||
{
|
||
accum += value;
|
||
}
|
||
|
||
return accum / v_times.size();
|
||
}
|
||
|
||
double calcDeviation(vector<double> v_times, double average)
|
||
{
|
||
double accum = 0;
|
||
for(double value : v_times)
|
||
{
|
||
accum += pow(value - average, 2);
|
||
}
|
||
return sqrt(accum / v_times.size());
|
||
}
|
||
|
||
double calcAverage(vector<int> v_values)
|
||
{
|
||
double accum = 0;
|
||
int total = 0;
|
||
for(double value : v_values)
|
||
{
|
||
if(value == 0)
|
||
continue;
|
||
accum += value;
|
||
total++;
|
||
}
|
||
|
||
return accum / total;
|
||
}
|
||
|
||
double calcDeviation(vector<int> v_values, double average)
|
||
{
|
||
double accum = 0;
|
||
int total = 0;
|
||
for(double value : v_values)
|
||
{
|
||
if(value == 0)
|
||
continue;
|
||
accum += pow(value - average, 2);
|
||
total++;
|
||
}
|
||
return sqrt(accum / total);
|
||
}
|
||
|
||
void Tracking::LocalMapStats2File()
|
||
{
|
||
ofstream f;
|
||
f.open("LocalMapTimeStats.txt");
|
||
f << fixed << setprecision(6);
|
||
f << "#Stereo rect[ms], MP culling[ms], MP creation[ms], LBA[ms], KF culling[ms], Total[ms]" << endl;
|
||
for(int i=0; i<mpLocalMapper->vdLMTotal_ms.size(); ++i)
|
||
{
|
||
f << mpLocalMapper->vdKFInsert_ms[i] << "," << mpLocalMapper->vdMPCulling_ms[i] << ","
|
||
<< mpLocalMapper->vdMPCreation_ms[i] << "," << mpLocalMapper->vdLBA_ms[i] << ","
|
||
<< mpLocalMapper->vdKFCulling_ms[i] << "," << mpLocalMapper->vdLMTotal_ms[i] << endl;
|
||
}
|
||
|
||
f.close();
|
||
|
||
f.open("LBA_Stats.txt");
|
||
f << fixed << setprecision(6);
|
||
f << "#LBA time[ms], KF opt[#], KF fixed[#], MP[#], Edges[#]" << endl;
|
||
for(int i=0; i<mpLocalMapper->vdLBASync_ms.size(); ++i)
|
||
{
|
||
f << mpLocalMapper->vdLBASync_ms[i] << "," << mpLocalMapper->vnLBA_KFopt[i] << ","
|
||
<< mpLocalMapper->vnLBA_KFfixed[i] << "," << mpLocalMapper->vnLBA_MPs[i] << ","
|
||
<< mpLocalMapper->vnLBA_edges[i] << endl;
|
||
}
|
||
|
||
|
||
f.close();
|
||
}
|
||
|
||
void Tracking::TrackStats2File()
|
||
{
|
||
ofstream f;
|
||
f.open("SessionInfo.txt");
|
||
f << fixed;
|
||
f << "Number of KFs: " << mpAtlas->GetAllKeyFrames().size() << endl;
|
||
f << "Number of MPs: " << mpAtlas->GetAllMapPoints().size() << endl;
|
||
|
||
f << "OpenCV version: " << CV_VERSION << endl;
|
||
|
||
f.close();
|
||
|
||
f.open("TrackingTimeStats.txt");
|
||
f << fixed << setprecision(6);
|
||
|
||
f << "#KF insert[ms], ORB ext[ms], Stereo match[ms], IMU preint[ms], Pose pred[ms], LM track[ms], KF dec[ms], Total[ms]" << endl;
|
||
|
||
for(int i=0; i<vdTrackTotal_ms.size(); ++i)
|
||
{
|
||
double stereo_rect = 0.0;
|
||
if(!vdRectStereo_ms.empty())
|
||
{
|
||
stereo_rect = vdStereoMatch_ms[i];
|
||
}
|
||
|
||
double stereo_match = 0.0;
|
||
if(!vdStereoMatch_ms.empty())
|
||
{
|
||
stereo_match = vdStereoMatch_ms[i];
|
||
}
|
||
|
||
double imu_preint = 0.0;
|
||
if(!vdIMUInteg_ms.empty())
|
||
{
|
||
imu_preint = vdIMUInteg_ms[i];
|
||
}
|
||
|
||
f << stereo_rect << "," << vdORBExtract_ms[i] << "," << stereo_match << "," << imu_preint << ","
|
||
<< vdPosePred_ms[i] << "," << vdLMTrack_ms[i] << "," << vdNewKF_ms[i] << "," << vdTrackTotal_ms[i] << endl;
|
||
}
|
||
|
||
f.close();
|
||
|
||
f.open("TrackLocalMapStats.txt");
|
||
f << fixed << setprecision(6);
|
||
|
||
f << "# number of KF, number of MP, UpdateLM[ms], SearchLP[ms], PoseOpt[ms]" << endl;
|
||
|
||
for(int i=0; i<vnKeyFramesLM.size(); ++i)
|
||
{
|
||
|
||
f << vnKeyFramesLM[i] << "," << vnMapPointsLM[i] << "," << vdUpdatedLM_ms[i] << "," << vdSearchLP_ms[i] << "," << vdPoseOpt_ms[i] << endl;
|
||
}
|
||
|
||
f.close();
|
||
}
|
||
|
||
void Tracking::PrintTimeStats()
|
||
{
|
||
// Save data in files
|
||
TrackStats2File();
|
||
LocalMapStats2File();
|
||
|
||
|
||
ofstream f;
|
||
f.open("ExecTimeMean.txt");
|
||
f << fixed;
|
||
//Report the mean and std of each one
|
||
std::cout << std::endl << " TIME STATS in ms (mean$\\pm$std)" << std::endl;
|
||
f << " TIME STATS in ms (mean$\\pm$std)" << std::endl;
|
||
cout << "OpenCV version: " << CV_VERSION << endl;
|
||
f << "OpenCV version: " << CV_VERSION << endl;
|
||
std::cout << "---------------------------" << std::endl;
|
||
std::cout << "Tracking" << std::setprecision(5) << std::endl << std::endl;
|
||
f << "---------------------------" << std::endl;
|
||
f << "Tracking" << std::setprecision(5) << std::endl << std::endl;
|
||
double average, deviation;
|
||
if(!vdRectStereo_ms.empty())
|
||
{
|
||
average = calcAverage(vdRectStereo_ms);
|
||
deviation = calcDeviation(vdRectStereo_ms, average);
|
||
std::cout << "Stereo Rectification: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Stereo Rectification: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
average = calcAverage(vdORBExtract_ms);
|
||
deviation = calcDeviation(vdORBExtract_ms, average);
|
||
std::cout << "ORB Extraction: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "ORB Extraction: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
if(!vdStereoMatch_ms.empty())
|
||
{
|
||
average = calcAverage(vdStereoMatch_ms);
|
||
deviation = calcDeviation(vdStereoMatch_ms, average);
|
||
std::cout << "Stereo Matching: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Stereo Matching: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
if(!vdIMUInteg_ms.empty())
|
||
{
|
||
average = calcAverage(vdIMUInteg_ms);
|
||
deviation = calcDeviation(vdIMUInteg_ms, average);
|
||
std::cout << "IMU Preintegration: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "IMU Preintegration: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
average = calcAverage(vdPosePred_ms);
|
||
deviation = calcDeviation(vdPosePred_ms, average);
|
||
std::cout << "Pose Prediction: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Pose Prediction: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(vdLMTrack_ms);
|
||
deviation = calcDeviation(vdLMTrack_ms, average);
|
||
std::cout << "LM Track: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "LM Track: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(vdNewKF_ms);
|
||
deviation = calcDeviation(vdNewKF_ms, average);
|
||
std::cout << "New KF decision: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "New KF decision: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(vdTrackTotal_ms);
|
||
deviation = calcDeviation(vdTrackTotal_ms, average);
|
||
std::cout << "Total Tracking: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Tracking: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
// Local Map Tracking complexity
|
||
std::cout << "---------------------------" << std::endl;
|
||
std::cout << std::endl << "Local Map Tracking complexity (mean$\\pm$std)" << std::endl;
|
||
f << "---------------------------" << std::endl;
|
||
f << std::endl << "Local Map Tracking complexity (mean$\\pm$std)" << std::endl;
|
||
|
||
average = calcAverage(vnKeyFramesLM);
|
||
deviation = calcDeviation(vnKeyFramesLM, average);
|
||
std::cout << "Local KFs: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Local KFs: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(vnMapPointsLM);
|
||
deviation = calcDeviation(vnMapPointsLM, average);
|
||
std::cout << "Local MPs: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Local MPs: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
// Local Mapping time stats
|
||
std::cout << std::endl << std::endl << std::endl;
|
||
std::cout << "Local Mapping" << std::endl << std::endl;
|
||
f << std::endl << "Local Mapping" << std::endl << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdKFInsert_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdKFInsert_ms, average);
|
||
std::cout << "KF Insertion: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "KF Insertion: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdMPCulling_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdMPCulling_ms, average);
|
||
std::cout << "MP Culling: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "MP Culling: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdMPCreation_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdMPCreation_ms, average);
|
||
std::cout << "MP Creation: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "MP Creation: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdLBASync_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdLBASync_ms, average);
|
||
std::cout << "LBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "LBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdKFCullingSync_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdKFCullingSync_ms, average);
|
||
std::cout << "KF Culling: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "KF Culling: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vdLMTotal_ms);
|
||
deviation = calcDeviation(mpLocalMapper->vdLMTotal_ms, average);
|
||
std::cout << "Total Local Mapping: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Local Mapping: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
// Local Mapping LBA complexity
|
||
std::cout << "---------------------------" << std::endl;
|
||
std::cout << std::endl << "LBA complexity (mean$\\pm$std)" << std::endl;
|
||
f << "---------------------------" << std::endl;
|
||
f << std::endl << "LBA complexity (mean$\\pm$std)" << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vnLBA_edges);
|
||
deviation = calcDeviation(mpLocalMapper->vnLBA_edges, average);
|
||
std::cout << "LBA Edges: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "LBA Edges: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vnLBA_KFopt);
|
||
deviation = calcDeviation(mpLocalMapper->vnLBA_KFopt, average);
|
||
std::cout << "LBA KF optimized: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "LBA KF optimized: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vnLBA_KFfixed);
|
||
deviation = calcDeviation(mpLocalMapper->vnLBA_KFfixed, average);
|
||
std::cout << "LBA KF fixed: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "LBA KF fixed: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
average = calcAverage(mpLocalMapper->vnLBA_MPs);
|
||
deviation = calcDeviation(mpLocalMapper->vnLBA_MPs, average);
|
||
std::cout << "LBA MP: " << average << "$\\pm$" << deviation << std::endl << std::endl;
|
||
f << "LBA MP: " << average << "$\\pm$" << deviation << std::endl << std::endl;
|
||
|
||
std::cout << "LBA executions: " << mpLocalMapper->nLBA_exec << std::endl;
|
||
std::cout << "LBA aborts: " << mpLocalMapper->nLBA_abort << std::endl;
|
||
f << "LBA executions: " << mpLocalMapper->nLBA_exec << std::endl;
|
||
f << "LBA aborts: " << mpLocalMapper->nLBA_abort << std::endl;
|
||
|
||
// Map complexity
|
||
std::cout << "---------------------------" << std::endl;
|
||
std::cout << std::endl << "Map complexity" << std::endl;
|
||
std::cout << "KFs in map: " << mpAtlas->GetAllMaps()[0]->GetAllKeyFrames().size() << std::endl;
|
||
std::cout << "MPs in map: " << mpAtlas->GetAllMaps()[0]->GetAllMapPoints().size() << std::endl;
|
||
f << "---------------------------" << std::endl;
|
||
f << std::endl << "Map complexity" << std::endl;
|
||
f << "KFs in map: " << mpAtlas->GetAllMaps()[0]->GetAllKeyFrames().size() << std::endl;
|
||
f << "MPs in map: " << mpAtlas->GetAllMaps()[0]->GetAllMapPoints().size() << std::endl;
|
||
|
||
|
||
// Place recognition time stats
|
||
std::cout << std::endl << std::endl << std::endl;
|
||
std::cout << "Place Recognition (mean$\\pm$std)" << std::endl << std::endl;
|
||
f << std::endl << "Place Recognition (mean$\\pm$std)" << std::endl << std::endl;
|
||
|
||
average = calcAverage(mpLoopClosing->vTimeBoW_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeBoW_ms, average);
|
||
std::cout << "Database Query: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Database Query: " << average << "$\\pm$" << deviation << std::endl;
|
||
average = calcAverage(mpLoopClosing->vTimeSE3_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeSE3_ms, average);
|
||
std::cout << "SE3 estimation: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "SE3 estimation: " << average << "$\\pm$" << deviation << std::endl;
|
||
average = calcAverage(mpLoopClosing->vTimePRTotal_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimePRTotal_ms, average);
|
||
std::cout << "Total Place Recognition: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Place Recognition: " << average << "$\\pm$" << deviation << std::endl;
|
||
|
||
// Loop Closing time stats
|
||
if(mpLoopClosing->vTimeLoopTotal_ms.size() > 0)
|
||
{
|
||
std::cout << std::endl << std::endl << std::endl;
|
||
std::cout << "Loop Closing (mean$\\pm$std)" << std::endl << std::endl;
|
||
f << std::endl << "Loop Closing (mean$\\pm$std)" << std::endl << std::endl;
|
||
|
||
average = calcAverage(mpLoopClosing->vTimeLoopTotal_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeLoopTotal_ms, average);
|
||
std::cout << "Total Loop Closing: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Loop Closing: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
if(mpLoopClosing->vTimeMergeTotal_ms.size() > 0)
|
||
{
|
||
// Map Merging time stats
|
||
std::cout << std::endl << std::endl << std::endl;
|
||
std::cout << "Map Merging (mean$\\pm$std)" << std::endl << std::endl;
|
||
f << std::endl << "Map Merging (mean$\\pm$std)" << std::endl << std::endl;
|
||
|
||
average = calcAverage(mpLoopClosing->vTimeMergeTotal_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeMergeTotal_ms, average);
|
||
std::cout << "Total Map Merging: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Map Merging: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
|
||
if(mpLoopClosing->vTimeGBATotal_ms.size() > 0)
|
||
{
|
||
// Full GBA time stats
|
||
std::cout << std::endl << std::endl << std::endl;
|
||
std::cout << "Full GBA (mean$\\pm$std)" << std::endl << std::endl;
|
||
f << std::endl << "Full GBA (mean$\\pm$std)" << std::endl << std::endl;
|
||
|
||
average = calcAverage(mpLoopClosing->vTimeFullGBA_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeFullGBA_ms, average);
|
||
std::cout << "GBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "GBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
average = calcAverage(mpLoopClosing->vTimeMapUpdate_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeMapUpdate_ms, average);
|
||
std::cout << "Map Update: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Map Update: " << average << "$\\pm$" << deviation << std::endl;
|
||
average = calcAverage(mpLoopClosing->vTimeGBATotal_ms);
|
||
deviation = calcDeviation(mpLoopClosing->vTimeGBATotal_ms, average);
|
||
std::cout << "Total Full GBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
f << "Total Full GBA: " << average << "$\\pm$" << deviation << std::endl;
|
||
}
|
||
|
||
f.close();
|
||
|
||
}
|
||
|
||
#endif
|
||
|
||
Tracking::~Tracking()
|
||
{
|
||
|
||
}
|
||
|
||
bool Tracking::ParseCamParamFile(cv::FileStorage &fSettings)
|
||
{
|
||
mDistCoef = cv::Mat::zeros(4,1,CV_32F);
|
||
cout << endl << "Camera Parameters: " << endl;
|
||
bool b_miss_params = false;
|
||
|
||
string sCameraName = fSettings["Camera.type"];
|
||
if(sCameraName == "PinHole")
|
||
{
|
||
float fx, fy, cx, cy;
|
||
|
||
// Camera calibration parameters
|
||
cv::FileNode node = fSettings["Camera.fx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.fx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.fy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.fy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.cx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.cx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.cy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.cy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
// Distortion parameters
|
||
node = fSettings["Camera.k1"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDistCoef.at<float>(0) = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k1 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.k2"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDistCoef.at<float>(1) = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k2 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.p1"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDistCoef.at<float>(2) = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.p1 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.p2"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDistCoef.at<float>(3) = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.p2 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.k3"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDistCoef.resize(5);
|
||
mDistCoef.at<float>(4) = node.real();
|
||
}
|
||
|
||
if(b_miss_params)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
vector<float> vCamCalib{fx,fy,cx,cy};
|
||
|
||
mpCamera = new Pinhole(vCamCalib);
|
||
|
||
mpAtlas->AddCamera(mpCamera);
|
||
|
||
|
||
std::cout << "- Camera: Pinhole" << std::endl;
|
||
std::cout << "- fx: " << fx << std::endl;
|
||
std::cout << "- fy: " << fy << std::endl;
|
||
std::cout << "- cx: " << cx << std::endl;
|
||
std::cout << "- cy: " << cy << std::endl;
|
||
std::cout << "- k1: " << mDistCoef.at<float>(0) << std::endl;
|
||
std::cout << "- k2: " << mDistCoef.at<float>(1) << std::endl;
|
||
|
||
|
||
std::cout << "- p1: " << mDistCoef.at<float>(2) << std::endl;
|
||
std::cout << "- p2: " << mDistCoef.at<float>(3) << std::endl;
|
||
|
||
if(mDistCoef.rows==5)
|
||
std::cout << "- k3: " << mDistCoef.at<float>(4) << std::endl;
|
||
|
||
mK = cv::Mat::eye(3,3,CV_32F);
|
||
mK.at<float>(0,0) = fx;
|
||
mK.at<float>(1,1) = fy;
|
||
mK.at<float>(0,2) = cx;
|
||
mK.at<float>(1,2) = cy;
|
||
|
||
}
|
||
else if(sCameraName == "KannalaBrandt8")
|
||
{
|
||
float fx, fy, cx, cy;
|
||
float k1, k2, k3, k4;
|
||
|
||
// Camera calibration parameters
|
||
cv::FileNode node = fSettings["Camera.fx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.fx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
node = fSettings["Camera.fy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.fy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.cx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.cx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.cy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.cy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
// Distortion parameters
|
||
node = fSettings["Camera.k1"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k1 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k1 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
node = fSettings["Camera.k2"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k2 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k2 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.k3"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k3 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k3 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera.k4"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k4 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.k4 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
if(!b_miss_params)
|
||
{
|
||
vector<float> vCamCalib{fx,fy,cx,cy,k1,k2,k3,k4};
|
||
mpCamera = new KannalaBrandt8(vCamCalib);
|
||
|
||
std::cout << "- Camera: Fisheye" << std::endl;
|
||
std::cout << "- fx: " << fx << std::endl;
|
||
std::cout << "- fy: " << fy << std::endl;
|
||
std::cout << "- cx: " << cx << std::endl;
|
||
std::cout << "- cy: " << cy << std::endl;
|
||
std::cout << "- k1: " << k1 << std::endl;
|
||
std::cout << "- k2: " << k2 << std::endl;
|
||
std::cout << "- k3: " << k3 << std::endl;
|
||
std::cout << "- k4: " << k4 << std::endl;
|
||
|
||
mK = cv::Mat::eye(3,3,CV_32F);
|
||
mK.at<float>(0,0) = fx;
|
||
mK.at<float>(1,1) = fy;
|
||
mK.at<float>(0,2) = cx;
|
||
mK.at<float>(1,2) = cy;
|
||
}
|
||
|
||
if(mSensor==System::STEREO || mSensor==System::IMU_STEREO){
|
||
// Right camera
|
||
// Camera calibration parameters
|
||
cv::FileNode node = fSettings["Camera2.fx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.fx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
node = fSettings["Camera2.fy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.fy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera2.cx"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cx = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.cx parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera2.cy"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
cy = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.cy parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
// Distortion parameters
|
||
node = fSettings["Camera2.k1"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k1 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.k1 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
node = fSettings["Camera2.k2"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k2 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.k2 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera2.k3"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k3 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.k3 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["Camera2.k4"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
k4 = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera2.k4 parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
|
||
int leftLappingBegin = -1;
|
||
int leftLappingEnd = -1;
|
||
|
||
int rightLappingBegin = -1;
|
||
int rightLappingEnd = -1;
|
||
|
||
node = fSettings["Camera.lappingBegin"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
leftLappingBegin = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cout << "WARNING: Camera.lappingBegin not correctly defined" << std::endl;
|
||
}
|
||
node = fSettings["Camera.lappingEnd"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
leftLappingEnd = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cout << "WARNING: Camera.lappingEnd not correctly defined" << std::endl;
|
||
}
|
||
node = fSettings["Camera2.lappingBegin"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
rightLappingBegin = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cout << "WARNING: Camera2.lappingBegin not correctly defined" << std::endl;
|
||
}
|
||
node = fSettings["Camera2.lappingEnd"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
rightLappingEnd = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cout << "WARNING: Camera2.lappingEnd not correctly defined" << std::endl;
|
||
}
|
||
|
||
node = fSettings["Tlr"];
|
||
if(!node.empty())
|
||
{
|
||
mTlr = node.mat();
|
||
if(mTlr.rows != 3 || mTlr.cols != 4)
|
||
{
|
||
std::cerr << "*Tlr matrix have to be a 3x4 transformation matrix*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Tlr matrix doesn't exist*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
if(!b_miss_params)
|
||
{
|
||
static_cast<KannalaBrandt8*>(mpCamera)->mvLappingArea[0] = leftLappingBegin;
|
||
static_cast<KannalaBrandt8*>(mpCamera)->mvLappingArea[1] = leftLappingEnd;
|
||
|
||
mpFrameDrawer->both = true;
|
||
|
||
vector<float> vCamCalib2{fx,fy,cx,cy,k1,k2,k3,k4};
|
||
mpCamera2 = new KannalaBrandt8(vCamCalib2);
|
||
|
||
static_cast<KannalaBrandt8*>(mpCamera2)->mvLappingArea[0] = rightLappingBegin;
|
||
static_cast<KannalaBrandt8*>(mpCamera2)->mvLappingArea[1] = rightLappingEnd;
|
||
|
||
std::cout << "- Camera1 Lapping: " << leftLappingBegin << ", " << leftLappingEnd << std::endl;
|
||
|
||
std::cout << std::endl << "Camera2 Parameters:" << std::endl;
|
||
std::cout << "- Camera: Fisheye" << std::endl;
|
||
std::cout << "- fx: " << fx << std::endl;
|
||
std::cout << "- fy: " << fy << std::endl;
|
||
std::cout << "- cx: " << cx << std::endl;
|
||
std::cout << "- cy: " << cy << std::endl;
|
||
std::cout << "- k1: " << k1 << std::endl;
|
||
std::cout << "- k2: " << k2 << std::endl;
|
||
std::cout << "- k3: " << k3 << std::endl;
|
||
std::cout << "- k4: " << k4 << std::endl;
|
||
|
||
std::cout << "- mTlr: \n" << mTlr << std::endl;
|
||
|
||
std::cout << "- Camera2 Lapping: " << rightLappingBegin << ", " << rightLappingEnd << std::endl;
|
||
}
|
||
}
|
||
|
||
if(b_miss_params)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
mpAtlas->AddCamera(mpCamera);
|
||
mpAtlas->AddCamera(mpCamera2);
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Not Supported Camera Sensor*" << std::endl;
|
||
std::cerr << "Check an example configuration file with the desired sensor" << std::endl;
|
||
}
|
||
|
||
if(mSensor==System::STEREO || mSensor==System::IMU_STEREO)
|
||
{
|
||
cv::FileNode node = fSettings["Camera.bf"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mbf = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Camera.bf parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
}
|
||
|
||
float fps = fSettings["Camera.fps"];
|
||
if(fps==0)
|
||
fps=30;
|
||
|
||
// Max/Min Frames to insert keyframes and to check relocalisation
|
||
mMinFrames = 0;
|
||
mMaxFrames = fps;
|
||
|
||
cout << "- fps: " << fps << endl;
|
||
|
||
|
||
int nRGB = fSettings["Camera.RGB"];
|
||
mbRGB = nRGB;
|
||
|
||
if(mbRGB)
|
||
cout << "- color order: RGB (ignored if grayscale)" << endl;
|
||
else
|
||
cout << "- color order: BGR (ignored if grayscale)" << endl;
|
||
|
||
if(mSensor==System::STEREO || mSensor==System::RGBD || mSensor==System::IMU_STEREO)
|
||
{
|
||
float fx = mpCamera->getParameter(0);
|
||
cv::FileNode node = fSettings["ThDepth"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mThDepth = node.real();
|
||
mThDepth = mbf*mThDepth/fx;
|
||
cout << endl << "Depth Threshold (Close/Far Points): " << mThDepth << endl;
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ThDepth parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
|
||
}
|
||
|
||
if(mSensor==System::RGBD)
|
||
{
|
||
cv::FileNode node = fSettings["DepthMapFactor"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
mDepthMapFactor = node.real();
|
||
if(fabs(mDepthMapFactor)<1e-5)
|
||
mDepthMapFactor=1;
|
||
else
|
||
mDepthMapFactor = 1.0f/mDepthMapFactor;
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*DepthMapFactor parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
}
|
||
|
||
if(b_miss_params)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool Tracking::ParseORBParamFile(cv::FileStorage &fSettings)
|
||
{
|
||
bool b_miss_params = false;
|
||
int nFeatures, nLevels, fIniThFAST, fMinThFAST;
|
||
float fScaleFactor;
|
||
|
||
cv::FileNode node = fSettings["ORBextractor.nFeatures"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
nFeatures = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ORBextractor.nFeatures parameter doesn't exist or is not an integer*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["ORBextractor.scaleFactor"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
fScaleFactor = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ORBextractor.scaleFactor parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["ORBextractor.nLevels"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
nLevels = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ORBextractor.nLevels parameter doesn't exist or is not an integer*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["ORBextractor.iniThFAST"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
fIniThFAST = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ORBextractor.iniThFAST parameter doesn't exist or is not an integer*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["ORBextractor.minThFAST"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
fMinThFAST = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*ORBextractor.minThFAST parameter doesn't exist or is not an integer*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
if(b_miss_params)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
mpORBextractorLeft = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);
|
||
|
||
if(mSensor==System::STEREO || mSensor==System::IMU_STEREO)
|
||
mpORBextractorRight = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);
|
||
|
||
if(mSensor==System::MONOCULAR || mSensor==System::IMU_MONOCULAR)
|
||
mpIniORBextractor = new ORBextractor(5*nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);
|
||
|
||
cout << endl << "ORB Extractor Parameters: " << endl;
|
||
cout << "- Number of Features: " << nFeatures << endl;
|
||
cout << "- Scale Levels: " << nLevels << endl;
|
||
cout << "- Scale Factor: " << fScaleFactor << endl;
|
||
cout << "- Initial Fast Threshold: " << fIniThFAST << endl;
|
||
cout << "- Minimum Fast Threshold: " << fMinThFAST << endl;
|
||
|
||
return true;
|
||
}
|
||
|
||
bool Tracking::ParseIMUParamFile(cv::FileStorage &fSettings)
|
||
{
|
||
bool b_miss_params = false;
|
||
|
||
cv::Mat Tbc;
|
||
cv::FileNode node = fSettings["Tbc"];
|
||
if(!node.empty())
|
||
{
|
||
Tbc = node.mat();
|
||
if(Tbc.rows != 4 || Tbc.cols != 4)
|
||
{
|
||
std::cerr << "*Tbc matrix have to be a 4x4 transformation matrix*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*Tbc matrix doesn't exist*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
cout << endl;
|
||
|
||
cout << "Left camera to Imu Transform (Tbc): " << endl << Tbc << endl;
|
||
|
||
float freq, Ng, Na, Ngw, Naw;
|
||
|
||
node = fSettings["IMU.Frequency"];
|
||
if(!node.empty() && node.isInt())
|
||
{
|
||
freq = node.operator int();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*IMU.Frequency parameter doesn't exist or is not an integer*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["IMU.NoiseGyro"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
Ng = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*IMU.NoiseGyro parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["IMU.NoiseAcc"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
Na = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*IMU.NoiseAcc parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["IMU.GyroWalk"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
Ngw = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*IMU.GyroWalk parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
node = fSettings["IMU.AccWalk"];
|
||
if(!node.empty() && node.isReal())
|
||
{
|
||
Naw = node.real();
|
||
}
|
||
else
|
||
{
|
||
std::cerr << "*IMU.AccWalk parameter doesn't exist or is not a real number*" << std::endl;
|
||
b_miss_params = true;
|
||
}
|
||
|
||
if(b_miss_params)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
const float sf = sqrt(freq);
|
||
cout << endl;
|
||
cout << "IMU frequency: " << freq << " Hz" << endl;
|
||
cout << "IMU gyro noise: " << Ng << " rad/s/sqrt(Hz)" << endl;
|
||
cout << "IMU gyro walk: " << Ngw << " rad/s^2/sqrt(Hz)" << endl;
|
||
cout << "IMU accelerometer noise: " << Na << " m/s^2/sqrt(Hz)" << endl;
|
||
cout << "IMU accelerometer walk: " << Naw << " m/s^3/sqrt(Hz)" << endl;
|
||
|
||
mpImuCalib = new IMU::Calib(Tbc,Ng*sf,Na*sf,Ngw/sf,Naw/sf);
|
||
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(IMU::Bias(),*mpImuCalib);
|
||
|
||
|
||
return true;
|
||
}
|
||
|
||
void Tracking::SetLocalMapper(LocalMapping *pLocalMapper)
|
||
{
|
||
mpLocalMapper=pLocalMapper;
|
||
}
|
||
|
||
void Tracking::SetLoopClosing(LoopClosing *pLoopClosing)
|
||
{
|
||
mpLoopClosing=pLoopClosing;
|
||
}
|
||
|
||
void Tracking::SetViewer(Viewer *pViewer)
|
||
{
|
||
mpViewer=pViewer;
|
||
}
|
||
|
||
void Tracking::SetStepByStep(bool bSet)
|
||
{
|
||
bStepByStep = bSet;
|
||
}
|
||
|
||
|
||
|
||
cv::Mat Tracking::GrabImageStereo(const cv::Mat &imRectLeft, const cv::Mat &imRectRight, const double ×tamp, string filename)
|
||
{
|
||
mImGray = imRectLeft;
|
||
cv::Mat imGrayRight = imRectRight;
|
||
mImRight = imRectRight;
|
||
|
||
if(mImGray.channels()==3)
|
||
{
|
||
if(mbRGB)
|
||
{
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGB2GRAY);
|
||
cvtColor(imGrayRight,imGrayRight,cv::COLOR_RGB2GRAY);
|
||
}
|
||
else
|
||
{
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGR2GRAY);
|
||
cvtColor(imGrayRight,imGrayRight,cv::COLOR_BGR2GRAY);
|
||
}
|
||
}
|
||
else if(mImGray.channels()==4)
|
||
{
|
||
if(mbRGB)
|
||
{
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGBA2GRAY);
|
||
cvtColor(imGrayRight,imGrayRight,cv::COLOR_RGBA2GRAY);
|
||
}
|
||
else
|
||
{
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGRA2GRAY);
|
||
cvtColor(imGrayRight,imGrayRight,cv::COLOR_BGRA2GRAY);
|
||
}
|
||
}
|
||
|
||
if (mSensor == System::STEREO && !mpCamera2)
|
||
mCurrentFrame = Frame(mImGray,imGrayRight,timestamp,mpORBextractorLeft,mpORBextractorRight,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth,mpCamera);
|
||
else if(mSensor == System::STEREO && mpCamera2)
|
||
mCurrentFrame = Frame(mImGray,imGrayRight,timestamp,mpORBextractorLeft,mpORBextractorRight,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth,mpCamera,mpCamera2,mTlr);
|
||
else if(mSensor == System::IMU_STEREO && !mpCamera2)
|
||
mCurrentFrame = Frame(mImGray,imGrayRight,timestamp,mpORBextractorLeft,mpORBextractorRight,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth,mpCamera,&mLastFrame,*mpImuCalib);
|
||
else if(mSensor == System::IMU_STEREO && mpCamera2)
|
||
mCurrentFrame = Frame(mImGray,imGrayRight,timestamp,mpORBextractorLeft,mpORBextractorRight,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth,mpCamera,mpCamera2,mTlr,&mLastFrame,*mpImuCalib);
|
||
|
||
mCurrentFrame.mNameFile = filename;
|
||
mCurrentFrame.mnDataset = mnNumDataset;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
vdORBExtract_ms.push_back(mCurrentFrame.mTimeORB_Ext);
|
||
vdStereoMatch_ms.push_back(mCurrentFrame.mTimeStereoMatch);
|
||
#endif
|
||
|
||
Track();
|
||
|
||
return mCurrentFrame.mTcw.clone();
|
||
}
|
||
|
||
|
||
cv::Mat Tracking::GrabImageRGBD(const cv::Mat &imRGB,const cv::Mat &imD, const double ×tamp, string filename)
|
||
{
|
||
mImGray = imRGB;
|
||
cv::Mat imDepth = imD;
|
||
|
||
if(mImGray.channels()==3)
|
||
{
|
||
if(mbRGB)
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGB2GRAY);
|
||
else
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGR2GRAY);
|
||
}
|
||
else if(mImGray.channels()==4)
|
||
{
|
||
if(mbRGB)
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGBA2GRAY);
|
||
else
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGRA2GRAY);
|
||
}
|
||
|
||
if((fabs(mDepthMapFactor-1.0f)>1e-5) || imDepth.type()!=CV_32F)
|
||
imDepth.convertTo(imDepth,CV_32F,mDepthMapFactor);
|
||
|
||
mCurrentFrame = Frame(mImGray,imDepth,timestamp,mpORBextractorLeft,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth,mpCamera);
|
||
|
||
mCurrentFrame.mNameFile = filename;
|
||
mCurrentFrame.mnDataset = mnNumDataset;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
vdORBExtract_ms.push_back(mCurrentFrame.mTimeORB_Ext);
|
||
#endif
|
||
|
||
Track();
|
||
|
||
return mCurrentFrame.mTcw.clone();
|
||
}
|
||
|
||
/**
|
||
* @brief 输入单目图像,输出世界坐标系到该帧相机坐标系的变换矩阵
|
||
*
|
||
* @param[in] im 单目图像
|
||
* @param[in] timestamp 时间戳
|
||
* @param[in] filename 文件名(调试用)
|
||
* @return cv::Mat 世界坐标系到相机坐标系的变换矩阵
|
||
*/
|
||
cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im, const double ×tamp, string filename)
|
||
{
|
||
mImGray = im;
|
||
|
||
// Step 1 :将彩色图像转为灰度图像
|
||
//若图片是3、4通道的,还需要转化成单通道灰度图
|
||
if(mImGray.channels()==3)
|
||
{
|
||
if(mbRGB)
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGB2GRAY);
|
||
else
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGR2GRAY);
|
||
}
|
||
else if(mImGray.channels()==4)
|
||
{
|
||
if(mbRGB)
|
||
cvtColor(mImGray,mImGray,cv::COLOR_RGBA2GRAY);
|
||
else
|
||
cvtColor(mImGray,mImGray,cv::COLOR_BGRA2GRAY);
|
||
}
|
||
|
||
// Step 2 :构造Frame
|
||
if (mSensor == System::MONOCULAR)
|
||
{
|
||
if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET ||(lastID - initID) < mMaxFrames)
|
||
mCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,mpORBVocabulary,mpCamera,mDistCoef,mbf,mThDepth);
|
||
else
|
||
mCurrentFrame = Frame(mImGray,timestamp,mpORBextractorLeft,mpORBVocabulary,mpCamera,mDistCoef,mbf,mThDepth);
|
||
}
|
||
else if(mSensor == System::IMU_MONOCULAR)
|
||
{
|
||
//判断该帧是不是初始化
|
||
if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET) //没有成功初始化的前一个状态就是NO_IMAGES_YET
|
||
{
|
||
mCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,mpORBVocabulary,mpCamera,mDistCoef,mbf,mThDepth,&mLastFrame,*mpImuCalib);
|
||
}
|
||
else
|
||
mCurrentFrame = Frame(mImGray,timestamp,mpORBextractorLeft,mpORBVocabulary,mpCamera,mDistCoef,mbf,mThDepth,&mLastFrame,*mpImuCalib);
|
||
}
|
||
|
||
// t0存储未初始化时的第1帧时间戳
|
||
if (mState==NO_IMAGES_YET)
|
||
t0=timestamp;
|
||
|
||
mCurrentFrame.mNameFile = filename;
|
||
mCurrentFrame.mnDataset = mnNumDataset;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
vdORBExtract_ms.push_back(mCurrentFrame.mTimeORB_Ext);
|
||
#endif
|
||
|
||
lastID = mCurrentFrame.mnId;
|
||
|
||
// Step 3 :跟踪
|
||
Track();
|
||
|
||
//返回当前帧的位姿
|
||
return mCurrentFrame.mTcw.clone();
|
||
}
|
||
|
||
//将imu数据存放在mlQueueImuData的list链表里
|
||
void Tracking::GrabImuData(const IMU::Point &imuMeasurement)
|
||
{
|
||
unique_lock<mutex> lock(mMutexImuQueue);
|
||
mlQueueImuData.push_back(imuMeasurement);
|
||
}
|
||
|
||
void Tracking::PreintegrateIMU()
|
||
{
|
||
// Step 1.拿到两两帧之间待处理的预积分数据,组成一个集合
|
||
// cout << "start preintegration" << endl;
|
||
// 上一帧不存在,说明两帧之间没有imu数据,不进行预积分
|
||
if(!mCurrentFrame.mpPrevFrame)
|
||
{
|
||
Verbose::PrintMess("non prev frame ", Verbose::VERBOSITY_NORMAL);
|
||
// ? 当前帧是否进行预积分标志
|
||
mCurrentFrame.setIntegrated();
|
||
return;
|
||
}
|
||
|
||
// cout << "start loop. Total meas:" << mlQueueImuData.size() << endl;
|
||
|
||
mvImuFromLastFrame.clear();
|
||
mvImuFromLastFrame.reserve(mlQueueImuData.size());
|
||
// 没有imu数据,不进行预积分
|
||
if(mlQueueImuData.size() == 0)
|
||
{
|
||
Verbose::PrintMess("Not IMU data in mlQueueImuData!!", Verbose::VERBOSITY_NORMAL);
|
||
mCurrentFrame.setIntegrated();
|
||
return;
|
||
}
|
||
|
||
while(true)
|
||
{
|
||
// 数据还没有时,会等待一段时间,直到mlQueueImuData中有imu数据.一开始不需要等待
|
||
bool bSleep = false;
|
||
{
|
||
unique_lock<mutex> lock(mMutexImuQueue);
|
||
if(!mlQueueImuData.empty())
|
||
{
|
||
// 拿到第一个imu数据作为起始数据
|
||
IMU::Point* m = &mlQueueImuData.front();
|
||
cout.precision(17);
|
||
// imu起始数据会比当前帧的前一帧时间戳早,如果相差0.001则舍弃这个imu数据
|
||
if(m->t<mCurrentFrame.mpPrevFrame->mTimeStamp-0.001l)
|
||
{
|
||
mlQueueImuData.pop_front();
|
||
}
|
||
// 同样最后一个的imu数据时间戳也不能理当前帧时间间隔多余0.001
|
||
// ? (时间戳本身的差值,单位是s秒,tum数据集里面是19位时间戳,单位为ns,这里可能只保留了10位整数和9位小数)
|
||
else if(m->t<mCurrentFrame.mTimeStamp-0.001l)
|
||
{
|
||
mvImuFromLastFrame.push_back(*m);
|
||
mlQueueImuData.pop_front();
|
||
}
|
||
else
|
||
{
|
||
// 得到两帧间的imu数据放入mvImuFromLastFrame中,得到后面预积分的处理数据
|
||
mvImuFromLastFrame.push_back(*m);
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
bSleep = true;
|
||
}
|
||
}
|
||
if(bSleep)
|
||
usleep(500);
|
||
}
|
||
|
||
// Step 2.对两帧之间进行中值积分处理
|
||
// m个imu组数据会有m-1个预积分量
|
||
const int n = mvImuFromLastFrame.size()-1;
|
||
// 构造imu预处理器,并初始化标定数据
|
||
IMU::Preintegrated* pImuPreintegratedFromLastFrame = new IMU::Preintegrated(mLastFrame.mImuBias,mCurrentFrame.mImuCalib);
|
||
// 针对预积分位置的不同做不同中值积分的处理
|
||
/**
|
||
* 根据上面imu帧的筛选,IMU与图像帧的时序如下:
|
||
* Frame---IMU0---IMU1---IMU2---IMU3---IMU4---------------IMUx---Frame---IMUx+1
|
||
* T_------T0-----T1-----T2-----T3-----T4-----------------Tx-----_T------Tx+1
|
||
* A_------A0-----A1-----A2-----A3-----A4-----------------Ax-----_T------Ax+1
|
||
* W_------W0-----W1-----W2-----W3-----W4-----------------Wx-----_T------Wx+1
|
||
* T_和_T分别表示上一图像帧和当前图像帧的时间戳,A(加速度数据),W(陀螺仪数据),同理
|
||
*/
|
||
for(int i=0; i<n; i++)
|
||
{
|
||
float tstep;
|
||
cv::Point3f acc, angVel;
|
||
// 第一帧数据但不是最后两帧,imu总帧数大于2
|
||
if((i==0) && (i<(n-1)))
|
||
{
|
||
// 时间差作为积分量
|
||
float tab = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||
// 根据上面分析的IMU与图像帧的时序分析,获取当前imu到上一帧的时间间隔
|
||
// 在加加速度不变的假设上算出第一帧图像到第二个imu数据的中值积分
|
||
float tini = mvImuFromLastFrame[i].t-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||
// ? 这里采用离散中值积分进行预积分,获取当前imu到上一帧的时间间隔
|
||
// 设当前时刻imu的加速度a0,下一时刻加速度a1,时间间隔tab 为t10,tini t0p
|
||
// 正常情况下时为了求上一帧到当前时刻imu的一个平均加速度,但是imu时间不会正好落在上一帧图像的时刻,需要做补偿,要求得a0时刻到上一帧这段时间加速度的改变量
|
||
// 有了这个改变量将其加到a0上之后就可以表示上一帧时的加速度了。其中a0 - (a1-a0)*(tini/tab) 为上一帧时刻的加速度再加上a1 之后除以2就为这段时间的加速度平均值
|
||
// 其中tstep表示a1到上一帧的时间间隔,a0 - (a1-a0)*(tini/tab)这个式子中tini可以是正也可以是负表示时间上的先后,(a1-a0)也是一样,多种情况下这个式子依然成立
|
||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a-
|
||
(mvImuFromLastFrame[i+1].a-mvImuFromLastFrame[i].a)*(tini/tab))*0.5f;
|
||
angVel = (mvImuFromLastFrame[i].w+mvImuFromLastFrame[i+1].w-
|
||
(mvImuFromLastFrame[i+1].w-mvImuFromLastFrame[i].w)*(tini/tab))*0.5f;
|
||
// 上一帧图像到下一帧imu(也就是第二个imu数据)的时间差
|
||
tstep = mvImuFromLastFrame[i+1].t-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||
}
|
||
//中间帧直接求中值
|
||
else if(i<(n-1))
|
||
{
|
||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a)*0.5f;
|
||
angVel = (mvImuFromLastFrame[i].w+mvImuFromLastFrame[i+1].w)*0.5f;
|
||
tstep = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||
}
|
||
//最后一帧,但不是第一帧
|
||
else if((i>0) && (i==(n-1)))
|
||
{
|
||
// 直到倒数第二个imu时刻时,计算过程跟第一时刻类似,都需要考虑帧与imu时刻的关系
|
||
float tab = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||
float tend = mvImuFromLastFrame[i+1].t-mCurrentFrame.mTimeStamp;
|
||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a-
|
||
(mvImuFromLastFrame[i+1].a-mvImuFromLastFrame[i].a)*(tend/tab))*0.5f;
|
||
angVel = (mvImuFromLastFrame[i].w+mvImuFromLastFrame[i+1].w-
|
||
(mvImuFromLastFrame[i+1].w-mvImuFromLastFrame[i].w)*(tend/tab))*0.5f;
|
||
tstep = mCurrentFrame.mTimeStamp-mvImuFromLastFrame[i].t;
|
||
}
|
||
//只有两帧的情况
|
||
else if((i==0) && (i==(n-1)))
|
||
{
|
||
// ? 就两个数据时使用第一个时刻的,之前size减一了,最后一帧imu好像没遍历,这时候应该还有一帧在后面,但这里直接没有算中值积分?
|
||
acc = mvImuFromLastFrame[i].a;
|
||
angVel = mvImuFromLastFrame[i].w;
|
||
tstep = mCurrentFrame.mTimeStamp-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||
}
|
||
// Step 3.依次进行预积分计算
|
||
// 应该是必存在的吧,一个是相对上一关键帧,一个是相对上一帧
|
||
if (!mpImuPreintegratedFromLastKF)
|
||
cout << "mpImuPreintegratedFromLastKF does not exist" << endl;
|
||
mpImuPreintegratedFromLastKF->IntegrateNewMeasurement(acc,angVel,tstep);
|
||
pImuPreintegratedFromLastFrame->IntegrateNewMeasurement(acc,angVel,tstep);
|
||
}
|
||
|
||
// 记录当前预积分的图像帧
|
||
mCurrentFrame.mpImuPreintegratedFrame = pImuPreintegratedFromLastFrame;
|
||
mCurrentFrame.mpImuPreintegrated = mpImuPreintegratedFromLastKF;
|
||
mCurrentFrame.mpLastKeyFrame = mpLastKeyFrame;
|
||
|
||
// ? 设置为已预积分状态
|
||
mCurrentFrame.setIntegrated();
|
||
|
||
Verbose::PrintMess("Preintegration is finished!! ", Verbose::VERBOSITY_DEBUG);
|
||
}
|
||
|
||
/**
|
||
* @brief 跟踪不成功的时候,用初始化好的imu数据做跟踪处理,通过IMU预测状态
|
||
* 两个地方用到:
|
||
* 1. 匀速模型计算速度,但并没有给当前帧位姿赋值;
|
||
* 2. 跟踪丢失时不直接判定丢失,通过这个函数预测当前帧位姿看看能不能拽回来,代替纯视觉中的重定位
|
||
*
|
||
* @return true
|
||
* @return false
|
||
*/
|
||
bool Tracking::PredictStateIMU()
|
||
{
|
||
if(!mCurrentFrame.mpPrevFrame)
|
||
{
|
||
Verbose::PrintMess("No last frame", Verbose::VERBOSITY_NORMAL);
|
||
return false;
|
||
}
|
||
// 总结下都在什么时候地图更新,也就是mbMapUpdated为true
|
||
// 1. 回环或融合
|
||
// 2. 局部地图LocalBundleAdjustment
|
||
// 3. IMU三阶段的初始化
|
||
// 下面的代码流程一模一样,只不过计算时相对的帧不同,地图有更新后相对于上一关键帧做的,反之相对于上一帧
|
||
// 地图更新后会更新关键帧与MP,所以相对于关键帧更准
|
||
// 而没更新的话,距离上一帧更近,计算起来误差更小
|
||
// 地图更新时,并且上一个图像关键帧存在
|
||
if(mbMapUpdated && mpLastKeyFrame)
|
||
{
|
||
const cv::Mat twb1 = mpLastKeyFrame->GetImuPosition();
|
||
const cv::Mat Rwb1 = mpLastKeyFrame->GetImuRotation();
|
||
const cv::Mat Vwb1 = mpLastKeyFrame->GetVelocity();
|
||
|
||
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
|
||
// ? mpImuPreintegratedFromLastKF是上一帧关键帧?
|
||
const float t12 = mpImuPreintegratedFromLastKF->dT;
|
||
// 计算当前帧在世界坐标系的位姿,原理都是用预积分的位姿(预积分的值不会变化)与上一帧的位姿(会迭代变化)进行更新
|
||
// 旋转 R_wb2 = R_wb1 * R_b1b2
|
||
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mpImuPreintegratedFromLastKF->GetDeltaRotation(mpLastKeyFrame->GetImuBias()));
|
||
// 位移 公式可见Forster论文公式32,只是要变化一下,邱笑晨的那篇文档有详细推导
|
||
cv::Mat twb2 = twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mpImuPreintegratedFromLastKF->GetDeltaPosition(mpLastKeyFrame->GetImuBias());
|
||
// 速度 公式可见Forster论文公式32,只是要变化一下,邱笑晨的那篇文档有详细推导
|
||
cv::Mat Vwb2 = Vwb1 + t12*Gz + Rwb1*mpImuPreintegratedFromLastKF->GetDeltaVelocity(mpLastKeyFrame->GetImuBias());
|
||
// 设置当前帧的世界坐标系的相机位姿
|
||
mCurrentFrame.SetImuPoseVelocity(Rwb2,twb2,Vwb2);
|
||
// ? 预测当前帧imu在世界坐标系的位姿,以及记录偏置bias和bias更新
|
||
mCurrentFrame.mPredRwb = Rwb2.clone();
|
||
mCurrentFrame.mPredtwb = twb2.clone();
|
||
mCurrentFrame.mPredVwb = Vwb2.clone();
|
||
mCurrentFrame.mImuBias = mpLastKeyFrame->GetImuBias();
|
||
mCurrentFrame.mPredBias = mCurrentFrame.mImuBias;
|
||
return true;
|
||
}
|
||
// 地图未更新时
|
||
else if(!mbMapUpdated)
|
||
{
|
||
const cv::Mat twb1 = mLastFrame.GetImuPosition();
|
||
const cv::Mat Rwb1 = mLastFrame.GetImuRotation();
|
||
const cv::Mat Vwb1 = mLastFrame.mVw;
|
||
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
|
||
// mpImuPreintegratedFrame是当前帧上一帧,不一定是关键帧
|
||
const float t12 = mCurrentFrame.mpImuPreintegratedFrame->dT;
|
||
|
||
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaRotation(mLastFrame.mImuBias));
|
||
cv::Mat twb2 = twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaPosition(mLastFrame.mImuBias);
|
||
cv::Mat Vwb2 = Vwb1 + t12*Gz + Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaVelocity(mLastFrame.mImuBias);
|
||
|
||
mCurrentFrame.SetImuPoseVelocity(Rwb2,twb2,Vwb2);
|
||
mCurrentFrame.mPredRwb = Rwb2.clone();
|
||
mCurrentFrame.mPredtwb = twb2.clone();
|
||
mCurrentFrame.mPredVwb = Vwb2.clone();
|
||
mCurrentFrame.mImuBias =mLastFrame.mImuBias;
|
||
mCurrentFrame.mPredBias = mCurrentFrame.mImuBias;
|
||
return true;
|
||
}
|
||
else
|
||
cout << "not IMU prediction!!" << endl;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
void Tracking::ComputeGyroBias(const vector<Frame*> &vpFs, float &bwx, float &bwy, float &bwz)
|
||
{
|
||
const int N = vpFs.size();
|
||
vector<float> vbx;
|
||
vbx.reserve(N);
|
||
vector<float> vby;
|
||
vby.reserve(N);
|
||
vector<float> vbz;
|
||
vbz.reserve(N);
|
||
|
||
cv::Mat H = cv::Mat::zeros(3,3,CV_32F);
|
||
cv::Mat grad = cv::Mat::zeros(3,1,CV_32F);
|
||
for(int i=1;i<N;i++)
|
||
{
|
||
Frame* pF2 = vpFs[i];
|
||
Frame* pF1 = vpFs[i-1];
|
||
cv::Mat VisionR = pF1->GetImuRotation().t()*pF2->GetImuRotation();
|
||
cv::Mat JRg = pF2->mpImuPreintegratedFrame->JRg;
|
||
cv::Mat E = pF2->mpImuPreintegratedFrame->GetUpdatedDeltaRotation().t()*VisionR;
|
||
cv::Mat e = IMU::LogSO3(E);
|
||
assert(fabs(pF2->mTimeStamp-pF1->mTimeStamp-pF2->mpImuPreintegratedFrame->dT)<0.01);
|
||
|
||
cv::Mat J = -IMU::InverseRightJacobianSO3(e)*E.t()*JRg;
|
||
grad += J.t()*e;
|
||
H += J.t()*J;
|
||
}
|
||
|
||
cv::Mat bg = -H.inv(cv::DECOMP_SVD)*grad;
|
||
bwx = bg.at<float>(0);
|
||
bwy = bg.at<float>(1);
|
||
bwz = bg.at<float>(2);
|
||
|
||
for(int i=1;i<N;i++)
|
||
{
|
||
Frame* pF = vpFs[i];
|
||
pF->mImuBias.bwx = bwx;
|
||
pF->mImuBias.bwy = bwy;
|
||
pF->mImuBias.bwz = bwz;
|
||
pF->mpImuPreintegratedFrame->SetNewBias(pF->mImuBias);
|
||
pF->mpImuPreintegratedFrame->Reintegrate();
|
||
}
|
||
}
|
||
|
||
void Tracking::ComputeVelocitiesAccBias(const vector<Frame*> &vpFs, float &bax, float &bay, float &baz)
|
||
{
|
||
const int N = vpFs.size();
|
||
const int nVar = 3*N +3; // 3 velocities/frame + acc bias
|
||
const int nEqs = 6*(N-1);
|
||
|
||
cv::Mat J(nEqs,nVar,CV_32F,cv::Scalar(0));
|
||
cv::Mat e(nEqs,1,CV_32F,cv::Scalar(0));
|
||
cv::Mat g = (cv::Mat_<float>(3,1)<<0,0,-IMU::GRAVITY_VALUE);
|
||
|
||
for(int i=0;i<N-1;i++)
|
||
{
|
||
Frame* pF2 = vpFs[i+1];
|
||
Frame* pF1 = vpFs[i];
|
||
cv::Mat twb1 = pF1->GetImuPosition();
|
||
cv::Mat twb2 = pF2->GetImuPosition();
|
||
cv::Mat Rwb1 = pF1->GetImuRotation();
|
||
cv::Mat dP12 = pF2->mpImuPreintegratedFrame->GetUpdatedDeltaPosition();
|
||
cv::Mat dV12 = pF2->mpImuPreintegratedFrame->GetUpdatedDeltaVelocity();
|
||
cv::Mat JP12 = pF2->mpImuPreintegratedFrame->JPa;
|
||
cv::Mat JV12 = pF2->mpImuPreintegratedFrame->JVa;
|
||
float t12 = pF2->mpImuPreintegratedFrame->dT;
|
||
// Position p2=p1+v1*t+0.5*g*t^2+R1*dP12
|
||
J.rowRange(6*i,6*i+3).colRange(3*i,3*i+3) += cv::Mat::eye(3,3,CV_32F)*t12;
|
||
J.rowRange(6*i,6*i+3).colRange(3*N,3*N+3) += Rwb1*JP12;
|
||
e.rowRange(6*i,6*i+3) = twb2-twb1-0.5f*g*t12*t12-Rwb1*dP12;
|
||
// Velocity v2=v1+g*t+R1*dV12
|
||
J.rowRange(6*i+3,6*i+6).colRange(3*i,3*i+3) += -cv::Mat::eye(3,3,CV_32F);
|
||
J.rowRange(6*i+3,6*i+6).colRange(3*(i+1),3*(i+1)+3) += cv::Mat::eye(3,3,CV_32F);
|
||
J.rowRange(6*i+3,6*i+6).colRange(3*N,3*N+3) -= Rwb1*JV12;
|
||
e.rowRange(6*i+3,6*i+6) = g*t12+Rwb1*dV12;
|
||
}
|
||
|
||
cv::Mat H = J.t()*J;
|
||
cv::Mat B = J.t()*e;
|
||
cv::Mat x(nVar,1,CV_32F);
|
||
cv::solve(H,B,x);
|
||
|
||
bax = x.at<float>(3*N);
|
||
bay = x.at<float>(3*N+1);
|
||
baz = x.at<float>(3*N+2);
|
||
|
||
for(int i=0;i<N;i++)
|
||
{
|
||
Frame* pF = vpFs[i];
|
||
x.rowRange(3*i,3*i+3).copyTo(pF->mVw);
|
||
if(i>0)
|
||
{
|
||
pF->mImuBias.bax = bax;
|
||
pF->mImuBias.bay = bay;
|
||
pF->mImuBias.baz = baz;
|
||
pF->mpImuPreintegratedFrame->SetNewBias(pF->mImuBias);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief 跟踪过程,包括恒速模型跟踪、参考关键帧跟踪、局部地图跟踪
|
||
* track包含两部分:估计运动、跟踪局部地图
|
||
*
|
||
* Step 1:初始化
|
||
* Step 2:跟踪
|
||
* Step 3:记录位姿信息,用于轨迹复现
|
||
*/
|
||
void Tracking::Track()
|
||
{
|
||
|
||
if (bStepByStep)
|
||
{
|
||
while(!mbStep)
|
||
usleep(500);
|
||
mbStep = false;
|
||
}
|
||
|
||
// Step 1 如局部建图里认为IMU有问题,重置地图
|
||
if(mpLocalMapper->mbBadImu)
|
||
{
|
||
cout << "TRACK: Reset map because local mapper set the bad imu flag " << endl;
|
||
mpSystem->ResetActiveMap();
|
||
return;
|
||
}
|
||
|
||
// 从Atlas中取出当前active的地图
|
||
Map* pCurrentMap = mpAtlas->GetCurrentMap();
|
||
|
||
// Step 2 处理时间戳异常的情况
|
||
if(mState!=NO_IMAGES_YET)
|
||
{
|
||
// 进入以下两个if语句都是不正常的情况,不进行跟踪直接返回
|
||
if(mLastFrame.mTimeStamp>mCurrentFrame.mTimeStamp)
|
||
{
|
||
// 如果当前图像时间戳比前一帧图像时间戳小,说明出错了,清除imu数据,创建新的子地图
|
||
cerr << "ERROR: Frame with a timestamp older than previous frame detected!" << endl;
|
||
unique_lock<mutex> lock(mMutexImuQueue);
|
||
mlQueueImuData.clear();
|
||
CreateMapInAtlas();
|
||
return;
|
||
}
|
||
else if(mCurrentFrame.mTimeStamp>mLastFrame.mTimeStamp+1.0)
|
||
{
|
||
// 如果当前图像时间戳和前一帧图像时间戳大于1s,说明时间戳明显跳变了,重置地图后直接返回
|
||
cout << "id last: " << mLastFrame.mnId << " id curr: " << mCurrentFrame.mnId << endl;
|
||
//根据是否是imu模式,进行imu的补偿
|
||
if(mpAtlas->isInertial())
|
||
{
|
||
// 如果当前地图imu成功初始化
|
||
if(mpAtlas->isImuInitialized())
|
||
{
|
||
cout << "Timestamp jump detected. State set to LOST. Reseting IMU integration..." << endl;
|
||
// ? BA2标志代表什么?,BA优化成功?
|
||
if(!pCurrentMap->GetIniertialBA2())
|
||
{
|
||
// 如果当前子图中imu没有经过BA2,重置active地图
|
||
mpSystem->ResetActiveMap();
|
||
}
|
||
else
|
||
{
|
||
// 如果当前子图中imu进行了BA2,重新创建新的子图
|
||
CreateMapInAtlas();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// 如果当前子图中imu没有初始化,重置active地图
|
||
cout << "Timestamp jump detected, before IMU initialization. Reseting..." << endl;
|
||
mpSystem->ResetActiveMap();
|
||
}
|
||
}
|
||
// 不跟踪直接返回
|
||
return;
|
||
}
|
||
}
|
||
|
||
// Step 3 IMU模式下设置IMU的Bias参数,还要保证上一帧存在非空
|
||
if ((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO) && mpLastKeyFrame)
|
||
//认为bias在两帧间不变
|
||
mCurrentFrame.SetNewBias(mpLastKeyFrame->GetImuBias());
|
||
|
||
if(mState==NO_IMAGES_YET)
|
||
{
|
||
mState = NOT_INITIALIZED;
|
||
}
|
||
|
||
mLastProcessedState=mState;
|
||
// Step 4 IMU模式下对IMU数据进行预积分 -> // ? 没有创建地图的情况下
|
||
if ((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO) && !mbCreatedMap)
|
||
{
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartPreIMU = std::chrono::steady_clock::now();
|
||
#endif
|
||
// IMU数据进行预积分
|
||
PreintegrateIMU();
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_EndPreIMU = std::chrono::steady_clock::now();
|
||
|
||
double timePreImu = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_EndPreIMU - time_StartPreIMU).count();
|
||
vdIMUInteg_ms.push_back(timePreImu);
|
||
#endif
|
||
|
||
|
||
}
|
||
mbCreatedMap = false;
|
||
|
||
// Get Map Mutex -> Map cannot be changed
|
||
// 地图更新时加锁。保证地图不会发生变化
|
||
// 疑问:这样子会不会影响地图的实时更新?
|
||
// 回答:主要耗时在构造帧中特征点的提取和匹配部分,在那个时候地图是没有被上锁的,有足够的时间更新地图
|
||
unique_lock<mutex> lock(pCurrentMap->mMutexMapUpdate);
|
||
|
||
mbMapUpdated = false;
|
||
|
||
// 判断地图id是否更新了
|
||
int nCurMapChangeIndex = pCurrentMap->GetMapChangeIndex();
|
||
int nMapChangeIndex = pCurrentMap->GetLastMapChange();
|
||
if(nCurMapChangeIndex>nMapChangeIndex)
|
||
{
|
||
// cout << "Map update detected" << endl;
|
||
pCurrentMap->SetLastMapChange(nCurMapChangeIndex);
|
||
mbMapUpdated = true;
|
||
}
|
||
|
||
|
||
if(mState==NOT_INITIALIZED)
|
||
{
|
||
// Step 5 初始化
|
||
if(mSensor==System::STEREO || mSensor==System::RGBD || mSensor==System::IMU_STEREO)
|
||
{
|
||
//双目RGBD相机的初始化共用一个函数
|
||
StereoInitialization();
|
||
}
|
||
else
|
||
{
|
||
//单目初始化
|
||
MonocularInitialization();
|
||
}
|
||
|
||
mpFrameDrawer->Update(this);
|
||
|
||
if(mState!=OK) // If rightly initialized, mState=OK
|
||
{
|
||
// 如果没有成功初始化,直接返回
|
||
mLastFrame = Frame(mCurrentFrame);
|
||
return;
|
||
}
|
||
|
||
if(mpAtlas->GetAllMaps().size() == 1)
|
||
{
|
||
// 如果当前地图是第一个地图,记录当前帧id为第一帧
|
||
mnFirstFrameId = mCurrentFrame.mnId;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// System is initialized. Track Frame.
|
||
// Step 6 系统成功初始化,下面是具体跟踪过程
|
||
bool bOK;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartPosePred = std::chrono::steady_clock::now();
|
||
#endif
|
||
|
||
// Initial camera pose estimation using motion model or relocalization (if tracking is lost)
|
||
// mbOnlyTracking等于false表示正常SLAM模式(定位+地图更新),mbOnlyTracking等于true表示仅定位模式
|
||
// tracking 类构造时默认为false。在viewer中有个开关ActivateLocalizationMode,可以控制是否开启mbOnlyTracking
|
||
if(!mbOnlyTracking)
|
||
{
|
||
|
||
// State OK
|
||
// Local Mapping is activated. This is the normal behaviour, unless
|
||
// you explicitly activate the "only tracking" mode.
|
||
// 跟踪进入正常SLAM模式,有地图更新
|
||
|
||
// 如果正常跟踪
|
||
if(mState==OK)
|
||
{
|
||
|
||
// Local Mapping might have changed some MapPoints tracked in last frame
|
||
// Step 6.1 检查并更新上一帧被替换的MapPoints
|
||
// 局部建图线程则可能会对原有的地图点进行替换.在这里进行检查
|
||
CheckReplacedInLastFrame();
|
||
|
||
|
||
// Step 6.2 运动模型是空的并且imu未初始化或刚完成重定位,跟踪参考关键帧;否则恒速模型跟踪
|
||
// 第一个条件,如果运动模型为空并且imu未初始化,说明是刚开始第一帧跟踪,或者已经跟丢了。
|
||
// 第二个条件,如果当前帧紧紧地跟着在重定位的帧的后面,我们用重定位帧来恢复位姿
|
||
// mnLastRelocFrameId 上一次重定位的那一帧
|
||
if((mVelocity.empty() && !pCurrentMap->isImuInitialized()) || mCurrentFrame.mnId<mnLastRelocFrameId+2)
|
||
{
|
||
//Verbose::PrintMess("TRACK: Track with respect to the reference KF ", Verbose::VERBOSITY_DEBUG);
|
||
bOK = TrackReferenceKeyFrame();
|
||
}
|
||
else
|
||
{
|
||
//Verbose::PrintMess("TRACK: Track with motion model", Verbose::VERBOSITY_DEBUG);
|
||
// 用恒速模型跟踪。所谓的恒速就是假设上上帧到上一帧的位姿=上一帧的位姿到当前帧位姿
|
||
// 根据恒速模型设定当前帧的初始位姿,用最近的普通帧来跟踪当前的普通帧
|
||
// 通过投影的方式在参考帧中找当前帧特征点的匹配点,优化每个特征点所对应3D点的投影误差即可得到位姿
|
||
bOK = TrackWithMotionModel();
|
||
if(!bOK)
|
||
//根据恒速模型失败了,只能根据参考关键帧来跟踪
|
||
bOK = TrackReferenceKeyFrame();
|
||
}
|
||
|
||
// Step 6.3 如果经过跟踪参考关键帧、恒速模型跟踪都失败的话,并满足一定条件就要标记为LOST了
|
||
if (!bOK)
|
||
{
|
||
// 条件1:如果当前帧距离上次重定位帧不久(时间在1s内)
|
||
// mnFramesToResetIMU 表示经过多少帧后可以重置IMU,一般设置为和帧率相同,对应的时间是1s
|
||
// 条件2:单目+IMU 或者 双目+IMU模式
|
||
if ( mCurrentFrame.mnId<=(mnLastRelocFrameId+mnFramesToResetIMU) &&
|
||
(mSensor==System::IMU_MONOCULAR || mSensor==System::IMU_STEREO))
|
||
{
|
||
mState = LOST;
|
||
}
|
||
else if(pCurrentMap->KeyFramesInMap()>10)
|
||
{
|
||
// 当前地图中关键帧数目大于10 并且 当前帧距离上次重定位帧超过1s(隐藏条件)
|
||
// 状态标记为RECENTLY_LOST
|
||
cout << "KF in map: " << pCurrentMap->KeyFramesInMap() << endl;
|
||
mState = RECENTLY_LOST;
|
||
mTimeStampLost = mCurrentFrame.mTimeStamp;
|
||
//mCurrentFrame.SetPose(mLastFrame.mTcw);
|
||
}
|
||
else
|
||
{
|
||
mState = LOST;
|
||
}
|
||
}
|
||
}
|
||
else //跟踪不正常按照下面处理
|
||
{
|
||
|
||
if (mState == RECENTLY_LOST)
|
||
{
|
||
// 如果是RECENTLY_LOST状态(仅存在IMU模式下,纯视觉模式无此状态)
|
||
Verbose::PrintMess("Lost for a short time", Verbose::VERBOSITY_NORMAL);
|
||
// bOK先置为true
|
||
bOK = true;
|
||
|
||
if((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)) // IMU模式
|
||
{
|
||
// Step 6.4 如果当前地图中IMU已经成功初始化,就用IMU数据预测位姿
|
||
if(pCurrentMap->isImuInitialized())
|
||
PredictStateIMU();
|
||
else
|
||
bOK = false;
|
||
|
||
// 如果当前帧距离跟丢帧已经超过了5s(time_recently_lost默认为5)
|
||
// 将RECENTLY_LOST状态改为LOST
|
||
if (mCurrentFrame.mTimeStamp-mTimeStampLost>time_recently_lost)
|
||
{
|
||
mState = LOST;
|
||
Verbose::PrintMess("Track Lost...", Verbose::VERBOSITY_NORMAL);
|
||
bOK=false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// Step 6.5 纯视觉模式则进行重定位。主要是BOW搜索,EPnP求解位姿
|
||
// TODO fix relocalization
|
||
bOK = Relocalization();
|
||
if(!bOK)
|
||
{
|
||
// 纯视觉模式下重定位失败,状态为LOST
|
||
mState = LOST;
|
||
Verbose::PrintMess("Track Lost...", Verbose::VERBOSITY_NORMAL);
|
||
bOK=false;
|
||
}
|
||
}
|
||
}
|
||
else if (mState == LOST) // 上一帧为最近丢失且重定位失败时
|
||
{
|
||
// Step 6.6 如果是LOST状态
|
||
// 开启一个新地图
|
||
Verbose::PrintMess("A new map is started...", Verbose::VERBOSITY_NORMAL);
|
||
|
||
if (pCurrentMap->KeyFramesInMap()<10)
|
||
{
|
||
// 当前地图中关键帧数目小于10,重置当前地图
|
||
mpSystem->ResetActiveMap();
|
||
cout << "Reseting current map..." << endl;
|
||
}else
|
||
// 当前地图中关键帧数目超过10,创建新地图
|
||
CreateMapInAtlas();
|
||
// 干掉上一个关键帧
|
||
if(mpLastKeyFrame)
|
||
mpLastKeyFrame = static_cast<KeyFrame*>(NULL);
|
||
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
|
||
return;
|
||
}
|
||
}
|
||
|
||
}
|
||
else // 纯定位模式,时间关系暂时不看 TOSEE
|
||
{
|
||
// Localization Mode: Local Mapping is deactivated (TODO Not available in inertial mode)
|
||
// 只进行跟踪tracking,局部地图不工作
|
||
if(mState==LOST)
|
||
{
|
||
if(mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
Verbose::PrintMess("IMU. State LOST", Verbose::VERBOSITY_NORMAL);
|
||
// Step 6.1 LOST状态进行重定位
|
||
bOK = Relocalization();
|
||
}
|
||
else
|
||
{
|
||
// mbVO是mbOnlyTracking为true时的才有的一个变量
|
||
// mbVO为false表示此帧匹配了很多的MapPoints,跟踪很正常 (注意有点反直觉)
|
||
// mbVO为true表明此帧匹配了很少的MapPoints,少于10个,要跟丢
|
||
if(!mbVO)
|
||
{
|
||
// In last frame we tracked enough MapPoints in the map
|
||
// Step 6.2 如果跟踪状态正常,使用恒速模型或参考关键帧跟踪
|
||
if(!mVelocity.empty())
|
||
{
|
||
// 优先使用恒速模型跟踪
|
||
bOK = TrackWithMotionModel();
|
||
}
|
||
else
|
||
{
|
||
// 如果恒速模型不被满足,那么就只能够通过参考关键帧来跟踪
|
||
bOK = TrackReferenceKeyFrame();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// In last frame we tracked mainly "visual odometry" points.
|
||
|
||
// We compute two camera poses, one from motion model and one doing relocalization.
|
||
// If relocalization is sucessfull we choose that solution, otherwise we retain
|
||
// the "visual odometry" solution.
|
||
|
||
// mbVO为true,表明此帧匹配了很少(小于10)的地图点,要跟丢的节奏,既做跟踪又做重定位
|
||
|
||
// MM=Motion Model,通过运动模型进行跟踪的结果
|
||
bool bOKMM = false;
|
||
// 通过重定位方法来跟踪的结果
|
||
bool bOKReloc = false;
|
||
// 运动模型中构造的地图点
|
||
vector<MapPoint*> vpMPsMM;
|
||
// 在追踪运动模型后发现的外点
|
||
vector<bool> vbOutMM;
|
||
// 运动模型得到的位姿
|
||
cv::Mat TcwMM;
|
||
// Step 6.3 当运动模型有效的时候,根据运动模型计算位姿
|
||
if(!mVelocity.empty())
|
||
{
|
||
bOKMM = TrackWithMotionModel();
|
||
// 将恒速模型跟踪结果暂存到这几个变量中,因为后面重定位会改变这些变量
|
||
vpMPsMM = mCurrentFrame.mvpMapPoints;
|
||
vbOutMM = mCurrentFrame.mvbOutlier;
|
||
TcwMM = mCurrentFrame.mTcw.clone();
|
||
}
|
||
// Step 6.4 使用重定位的方法来得到当前帧的位姿
|
||
bOKReloc = Relocalization();
|
||
|
||
// Step 6.5 根据前面的恒速模型、重定位结果来更新状态
|
||
if(bOKMM && !bOKReloc)
|
||
{
|
||
// 恒速模型成功、重定位失败,重新使用之前暂存的恒速模型结果
|
||
mCurrentFrame.SetPose(TcwMM);
|
||
mCurrentFrame.mvpMapPoints = vpMPsMM;
|
||
mCurrentFrame.mvbOutlier = vbOutMM;
|
||
|
||
//? 疑似bug!这段代码是不是重复增加了观测次数?后面 TrackLocalMap 函数中会有这些操作
|
||
// 如果当前帧匹配的3D点很少,增加当前可视地图点的被观测次数
|
||
if(mbVO)
|
||
{
|
||
// 更新当前帧的地图点被观测次数
|
||
for(int i =0; i<mCurrentFrame.N; i++)
|
||
{
|
||
// 如果这个特征点形成了地图点,并且也不是外点的时候
|
||
if(mCurrentFrame.mvpMapPoints[i] && !mCurrentFrame.mvbOutlier[i])
|
||
{
|
||
// 增加能观测到该地图点的帧数
|
||
mCurrentFrame.mvpMapPoints[i]->IncreaseFound();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if(bOKReloc)
|
||
{
|
||
// 只要重定位成功整个跟踪过程正常进行(重定位与跟踪,更相信重定位)
|
||
mbVO = false;
|
||
}
|
||
// 有一个成功我们就认为执行成功了
|
||
bOK = bOKReloc || bOKMM;
|
||
}
|
||
}
|
||
}
|
||
// 将最新的关键帧作为当前帧的参考关键帧
|
||
// mpReferenceKF先是上一时刻的参考关键帧,如果当前为新关键帧则变成当前关键帧,如果不是新的关键帧则先为上一帧的参考关键帧,而后经过更新局部关键帧重新确定
|
||
if(!mCurrentFrame.mpReferenceKF)
|
||
mCurrentFrame.mpReferenceKF = mpReferenceKF;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_EndPosePred = std::chrono::steady_clock::now();
|
||
|
||
double timePosePred = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_EndPosePred - time_StartPosePred).count();
|
||
vdPosePred_ms.push_back(timePosePred);
|
||
#endif
|
||
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartLMTrack = std::chrono::steady_clock::now();
|
||
#endif
|
||
|
||
// Step 7 在跟踪得到当前帧初始姿态后,现在对local map进行跟踪得到更多的匹配,并优化当前位姿
|
||
// 前面只是跟踪一帧得到初始位姿,这里搜索局部关键帧、局部地图点,和当前帧进行投影匹配,得到更多匹配的MapPoints后进行Pose优化
|
||
// 在帧间匹配得到初始的姿态后,现在对local map进行跟踪得到更多的匹配,并优化当前位姿
|
||
// local map:当前帧、当前帧的MapPoints、当前关键帧与其它关键帧共视关系
|
||
// 前面主要是两两跟踪(恒速模型跟踪上一帧、跟踪参考帧),这里搜索局部关键帧后搜集所有局部MapPoints,
|
||
// 然后将局部MapPoints和当前帧进行投影匹配,得到更多匹配的MapPoints后进行Pose优化
|
||
// If we have an initial estimation of the camera pose and matching. Track the local map.
|
||
if(!mbOnlyTracking)
|
||
{
|
||
if(bOK)
|
||
{
|
||
// 局部地图跟踪
|
||
bOK = TrackLocalMap();
|
||
|
||
}
|
||
if(!bOK)
|
||
cout << "Fail to track local map!" << endl;
|
||
}
|
||
else
|
||
{
|
||
// mbVO true means that there are few matches to MapPoints in the map. We cannot retrieve
|
||
// a local map and therefore we do not perform TrackLocalMap(). Once the system relocalizes
|
||
// the camera we will use the local map again.
|
||
if(bOK && !mbVO)
|
||
bOK = TrackLocalMap();
|
||
}
|
||
// 到此为止跟踪确定位姿阶段结束,下面开始做收尾工作和为下一帧做准备
|
||
|
||
// 查看到此为止时的两个状态变化
|
||
// bOK的历史变化---上一帧跟踪成功---当前帧跟踪成功---局部地图跟踪成功---true -->OK 1 跟踪局部地图成功
|
||
// \ \ \---局部地图跟踪失败---false
|
||
// \ \---当前帧跟踪失败---false
|
||
// \---上一帧跟踪失败---重定位成功---局部地图跟踪成功---true -->OK 2 重定位
|
||
// \ \---局部地图跟踪失败---false
|
||
// \---重定位失败---false
|
||
|
||
//
|
||
// mState的历史变化---上一帧跟踪成功---当前帧跟踪成功---局部地图跟踪成功---OK -->OK 1 跟踪局部地图成功
|
||
// \ \ \---局部地图跟踪失败---OK -->OK 3 正常跟踪
|
||
// \ \---当前帧跟踪失败---非OK
|
||
// \---上一帧跟踪失败---重定位成功---局部地图跟踪成功---非OK
|
||
// \ \---局部地图跟踪失败---非OK
|
||
// \---重定位失败---非OK(传不到这里,因为直接return了)
|
||
// 由上图可知当前帧的状态OK的条件是跟踪局部地图成功,重定位或正常跟踪都可
|
||
// Step 8 根据上面的操作来判断是否追踪成功
|
||
if(bOK)
|
||
// 此时还OK才说明跟踪成功了
|
||
mState = OK;
|
||
else if (mState == OK) // 由上图可知只有当正常跟踪成功,但局部地图跟踪失败时执行
|
||
{
|
||
// 带有IMU时状态变为最近丢失,否则直接丢失
|
||
if (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
{
|
||
Verbose::PrintMess("Track lost for less than one second...", Verbose::VERBOSITY_NORMAL);
|
||
if(!pCurrentMap->isImuInitialized() || !pCurrentMap->GetIniertialBA2())
|
||
{
|
||
// IMU模式下IMU没有成功初始化或者没有完成IMU BA,则重置当前地图
|
||
cout << "IMU is not or recently initialized. Reseting active map..." << endl;
|
||
mpSystem->ResetActiveMap();
|
||
}
|
||
|
||
mState=RECENTLY_LOST;
|
||
}
|
||
else
|
||
mState=LOST; // visual to lost
|
||
|
||
// 如果当前帧距离上次重定位帧超过1s,用当前帧时间戳更新lost帧时间戳
|
||
if(mCurrentFrame.mnId>mnLastRelocFrameId+mMaxFrames)
|
||
{
|
||
mTimeStampLost = mCurrentFrame.mTimeStamp;
|
||
}
|
||
}
|
||
|
||
// Save frame if recent relocalization, since they are used for IMU reset (as we are making copy, it shluld be once mCurrFrame is completely modified)
|
||
if((mCurrentFrame.mnId<(mnLastRelocFrameId+mnFramesToResetIMU)) && // 当前帧距离上次重定位帧小于1s
|
||
(mCurrentFrame.mnId > mnFramesToResetIMU) && // 当前帧已经运行了超过1s
|
||
((mSensor == System::IMU_MONOCULAR) || (mSensor == System::IMU_STEREO)) && // IMU模式
|
||
pCurrentMap->isImuInitialized()) // IMU已经成功初始化
|
||
{
|
||
// TODO check this situation
|
||
Verbose::PrintMess("Saving pointer to frame. imu needs reset...", Verbose::VERBOSITY_NORMAL);
|
||
Frame* pF = new Frame(mCurrentFrame);
|
||
pF->mpPrevFrame = new Frame(mLastFrame);
|
||
|
||
// Load preintegration
|
||
// 构造预积分处理器
|
||
pF->mpImuPreintegratedFrame = new IMU::Preintegrated(mCurrentFrame.mpImuPreintegratedFrame);
|
||
}
|
||
|
||
if(pCurrentMap->isImuInitialized()) // IMU成功初始化
|
||
{
|
||
if(bOK) // 跟踪成功
|
||
{
|
||
// 当前帧距离上次重定位帧刚好等于1s,重置IMU(还未实现 TODO)
|
||
if(mCurrentFrame.mnId==(mnLastRelocFrameId+mnFramesToResetIMU))
|
||
{
|
||
cout << "RESETING FRAME!!!" << endl;
|
||
}
|
||
else if(mCurrentFrame.mnId>(mnLastRelocFrameId+30))
|
||
mLastBias = mCurrentFrame.mImuBias; // 没啥用,后面会重新赋值后传给普通帧
|
||
}
|
||
}
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_EndLMTrack = std::chrono::steady_clock::now();
|
||
|
||
double timeLMTrack = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_EndLMTrack - time_StartLMTrack).count();
|
||
vdLMTrack_ms.push_back(timeLMTrack);
|
||
#endif
|
||
|
||
// Update drawer
|
||
// 更新显示线程中的图像、特征点、地图点等信息
|
||
mpFrameDrawer->Update(this);
|
||
if(!mCurrentFrame.mTcw.empty())
|
||
mpMapDrawer->SetCurrentCameraPose(mCurrentFrame.mTcw);
|
||
// 查看到此为止时的两个状态变化
|
||
// bOK的历史变化---上一帧跟踪成功---当前帧跟踪成功---局部地图跟踪成功---true
|
||
// \ \ \---局部地图跟踪失败---false
|
||
// \ \---当前帧跟踪失败---false
|
||
// \---上一帧跟踪失败---重定位成功---局部地图跟踪成功---true
|
||
// \ \---局部地图跟踪失败---false
|
||
// \---重定位失败---false
|
||
|
||
// mState的历史变化---上一帧跟踪成功---当前帧跟踪成功---局部地图跟踪成功---OK
|
||
// \ \ \---局部地图跟踪失败---非OK(IMU时为RECENTLY_LOST)
|
||
// \ \---当前帧跟踪失败---非OK(地图超过10个关键帧时 RECENTLY_LOST)
|
||
// \---上一帧跟踪失败(RECENTLY_LOST)---重定位成功---局部地图跟踪成功---OK
|
||
// \ \ \---局部地图跟踪失败---LOST
|
||
// \ \---重定位失败---LOST(传不到这里,因为直接return了)
|
||
// \--上一帧跟踪失败(LOST)--LOST(传不到这里,因为直接return了)
|
||
// Step 9 如果跟踪成功 或 最近刚刚跟丢,更新速度,清除无效地图点,按需创建关键帧
|
||
if(bOK || mState==RECENTLY_LOST)
|
||
{
|
||
// Update motion model
|
||
// Step 9.1 更新恒速运动模型 TrackWithMotionModel 中的mVelocity
|
||
if(!mLastFrame.mTcw.empty() && !mCurrentFrame.mTcw.empty())
|
||
{
|
||
cv::Mat LastTwc = cv::Mat::eye(4,4,CV_32F);
|
||
mLastFrame.GetRotationInverse().copyTo(LastTwc.rowRange(0,3).colRange(0,3));
|
||
mLastFrame.GetCameraCenter().copyTo(LastTwc.rowRange(0,3).col(3));
|
||
// mVelocity = Tcl = Tcw * Twl,表示上一帧到当前帧的变换, 其中 Twl = LastTwc
|
||
mVelocity = mCurrentFrame.mTcw*LastTwc;
|
||
}
|
||
else
|
||
// 否则速度为空
|
||
mVelocity = cv::Mat();
|
||
// 使用IMU积分的位姿显示
|
||
if(mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
mpMapDrawer->SetCurrentCameraPose(mCurrentFrame.mTcw);
|
||
|
||
// Clean VO matches
|
||
// Step 9.2 清除观测不到的地图点
|
||
for(int i=0; i<mCurrentFrame.N; i++)
|
||
{
|
||
MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
|
||
if(pMP)
|
||
if(pMP->Observations()<1)
|
||
{
|
||
mCurrentFrame.mvbOutlier[i] = false;
|
||
mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
|
||
}
|
||
}
|
||
|
||
// Delete temporal MapPoints
|
||
// Step 9.3 清除恒速模型跟踪中 UpdateLastFrame中为当前帧临时添加的MapPoints(仅双目和rgbd)
|
||
// 上个步骤中只是在当前帧中将这些MapPoints剔除,这里从MapPoints数据库中删除
|
||
// 临时地图点仅仅是为了提高双目或rgbd摄像头的帧间跟踪效果,用完以后就扔了,没有添加到地图中
|
||
for(list<MapPoint*>::iterator lit = mlpTemporalPoints.begin(), lend = mlpTemporalPoints.end(); lit!=lend; lit++)
|
||
{
|
||
MapPoint* pMP = *lit;
|
||
delete pMP;
|
||
}
|
||
// 这里不仅仅是清除mlpTemporalPoints,通过delete pMP还删除了指针指向的MapPoint
|
||
// 不能够直接执行这个是因为其中存储的都是指针,之前的操作都是为了避免内存泄露
|
||
mlpTemporalPoints.clear();
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartNewKF = std::chrono::steady_clock::now();
|
||
#endif
|
||
// 判断是否需要插入关键帧
|
||
bool bNeedKF = NeedNewKeyFrame();
|
||
|
||
|
||
|
||
|
||
// Check if we need to insert a new keyframe
|
||
// Step 9.4 根据条件来判断是否插入关键帧
|
||
// 需要同时满足下面条件1和2
|
||
// 条件1:bNeedKF=true,需要插入关键帧
|
||
// 条件2:bOK=true跟踪成功 或 IMU模式下的RECENTLY_LOST模式
|
||
if(bNeedKF && (bOK|| (mState==RECENTLY_LOST && (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO))))
|
||
// 创建关键帧,对于双目或RGB-D会产生新的地图点
|
||
CreateNewKeyFrame();
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_EndNewKF = std::chrono::steady_clock::now();
|
||
|
||
double timeNewKF = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_EndNewKF - time_StartNewKF).count();
|
||
vdNewKF_ms.push_back(timeNewKF);
|
||
#endif
|
||
|
||
// We allow points with high innovation (considererd outliers by the Huber Function)
|
||
// pass to the new keyframe, so that bundle adjustment will finally decide
|
||
// if they are outliers or not. We don't want next frame to estimate its position
|
||
// with those points so we discard them in the frame. Only has effect if lastframe is tracked
|
||
// 作者这里说允许在BA中被Huber核函数判断为外点的传入新的关键帧中,让后续的BA来审判他们是不是真正的外点
|
||
// 但是估计下一帧位姿的时候我们不想用这些外点,所以删掉
|
||
|
||
// Step 9.5 删除那些在BA中检测为外点的地图点
|
||
for(int i=0; i<mCurrentFrame.N;i++)
|
||
{
|
||
// 这里第一个条件还要执行判断是因为, 前面的操作中可能删除了其中的地图点
|
||
if(mCurrentFrame.mvpMapPoints[i] && mCurrentFrame.mvbOutlier[i])
|
||
mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
|
||
}
|
||
}
|
||
|
||
// Reset if the camera get lost soon after initialization
|
||
// Step 10 如果跟踪失败,复位
|
||
if(mState==LOST)
|
||
{
|
||
// 如果地图中关键帧小于5,重置当前地图,退出当前跟踪
|
||
if(pCurrentMap->KeyFramesInMap()<=5)
|
||
{
|
||
mpSystem->ResetActiveMap();
|
||
return;
|
||
}
|
||
if ((mSensor == System::IMU_MONOCULAR) || (mSensor == System::IMU_STEREO))
|
||
if (!pCurrentMap->isImuInitialized())
|
||
{
|
||
// 如果是IMU模式并且还未进行IMU初始化,重置当前地图,退出当前跟踪
|
||
Verbose::PrintMess("Track lost before IMU initialisation, reseting...", Verbose::VERBOSITY_QUIET);
|
||
mpSystem->ResetActiveMap();
|
||
return;
|
||
}
|
||
// 如果地图中关键帧超过5 并且 纯视觉模式 或 虽然是IMU模式但是已经完成IMU初始化了,创建新的地图
|
||
CreateMapInAtlas();
|
||
}
|
||
//确保已经设置了参考关键帧
|
||
if(!mCurrentFrame.mpReferenceKF)
|
||
mCurrentFrame.mpReferenceKF = mpReferenceKF;
|
||
// 保存上一帧的数据,当前帧变上一帧
|
||
mLastFrame = Frame(mCurrentFrame);
|
||
}
|
||
// 查看到此为止
|
||
// mState的历史变化---上一帧跟踪成功---当前帧跟踪成功---局部地图跟踪成功---OK
|
||
// \ \ \---局部地图跟踪失败---非OK(IMU时为RECENTLY_LOST)
|
||
// \ \---当前帧跟踪失败---非OK(地图超过10个关键帧时 RECENTLY_LOST)
|
||
// \---上一帧跟踪失败(RECENTLY_LOST)---重定位成功---局部地图跟踪成功---OK
|
||
// \ \ \---局部地图跟踪失败---LOST
|
||
// \ \---重定位失败---LOST(传不到这里,因为直接return了)
|
||
// \--上一帧跟踪失败(LOST)--LOST(传不到这里,因为直接return了)
|
||
// last.记录位姿信息,用于轨迹复现
|
||
// Step 11 记录位姿信息,用于最后保存所有的轨迹
|
||
if(mState==OK || mState==RECENTLY_LOST)
|
||
{
|
||
// Store frame pose information to retrieve the complete camera trajectory afterwards.
|
||
if(!mCurrentFrame.mTcw.empty())
|
||
{
|
||
// 计算相对姿态Tcr = Tcw * Twr, Twr = Trw^-1
|
||
cv::Mat Tcr = mCurrentFrame.mTcw*mCurrentFrame.mpReferenceKF->GetPoseInverse();
|
||
mlRelativeFramePoses.push_back(Tcr);
|
||
mlpReferences.push_back(mCurrentFrame.mpReferenceKF);
|
||
mlFrameTimes.push_back(mCurrentFrame.mTimeStamp);
|
||
mlbLost.push_back(mState==LOST);
|
||
}
|
||
else
|
||
{
|
||
// This can happen if tracking is lost
|
||
// 如果跟踪失败,则相对位姿使用上一次值
|
||
mlRelativeFramePoses.push_back(mlRelativeFramePoses.back());
|
||
mlpReferences.push_back(mlpReferences.back());
|
||
mlFrameTimes.push_back(mlFrameTimes.back());
|
||
mlbLost.push_back(mState==LOST);
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
|
||
void Tracking::StereoInitialization()
|
||
{
|
||
if(mCurrentFrame.N>500)
|
||
{
|
||
if (mSensor == System::IMU_STEREO)
|
||
{
|
||
if (!mCurrentFrame.mpImuPreintegrated || !mLastFrame.mpImuPreintegrated)
|
||
{
|
||
cout << "not IMU meas" << endl;
|
||
return;
|
||
}
|
||
|
||
if (cv::norm(mCurrentFrame.mpImuPreintegratedFrame->avgA-mLastFrame.mpImuPreintegratedFrame->avgA)<0.5)
|
||
{
|
||
cout << "not enough acceleration" << endl;
|
||
return;
|
||
}
|
||
|
||
if(mpImuPreintegratedFromLastKF)
|
||
delete mpImuPreintegratedFromLastKF;
|
||
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(IMU::Bias(),*mpImuCalib);
|
||
mCurrentFrame.mpImuPreintegrated = mpImuPreintegratedFromLastKF;
|
||
}
|
||
|
||
// Set Frame pose to the origin (In case of inertial SLAM to imu)
|
||
if (mSensor == System::IMU_STEREO)
|
||
{
|
||
cv::Mat Rwb0 = mCurrentFrame.mImuCalib.Tcb.rowRange(0,3).colRange(0,3).clone();
|
||
cv::Mat twb0 = mCurrentFrame.mImuCalib.Tcb.rowRange(0,3).col(3).clone();
|
||
mCurrentFrame.SetImuPoseVelocity(Rwb0, twb0, cv::Mat::zeros(3,1,CV_32F));
|
||
}
|
||
else
|
||
mCurrentFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
|
||
|
||
// Create KeyFrame
|
||
KeyFrame* pKFini = new KeyFrame(mCurrentFrame,mpAtlas->GetCurrentMap(),mpKeyFrameDB);
|
||
|
||
// Insert KeyFrame in the map
|
||
mpAtlas->AddKeyFrame(pKFini);
|
||
|
||
// Create MapPoints and asscoiate to KeyFrame
|
||
if(!mpCamera2){
|
||
for(int i=0; i<mCurrentFrame.N;i++)
|
||
{
|
||
float z = mCurrentFrame.mvDepth[i];
|
||
if(z>0)
|
||
{
|
||
cv::Mat x3D = mCurrentFrame.UnprojectStereo(i);
|
||
MapPoint* pNewMP = new MapPoint(x3D,pKFini,mpAtlas->GetCurrentMap());
|
||
pNewMP->AddObservation(pKFini,i);
|
||
pKFini->AddMapPoint(pNewMP,i);
|
||
pNewMP->ComputeDistinctiveDescriptors();
|
||
pNewMP->UpdateNormalAndDepth();
|
||
mpAtlas->AddMapPoint(pNewMP);
|
||
|
||
mCurrentFrame.mvpMapPoints[i]=pNewMP;
|
||
}
|
||
}
|
||
} else{
|
||
for(int i = 0; i < mCurrentFrame.Nleft; i++){
|
||
int rightIndex = mCurrentFrame.mvLeftToRightMatch[i];
|
||
if(rightIndex != -1){
|
||
cv::Mat x3D = mCurrentFrame.mvStereo3Dpoints[i];
|
||
|
||
MapPoint* pNewMP = new MapPoint(x3D,pKFini,mpAtlas->GetCurrentMap());
|
||
|
||
pNewMP->AddObservation(pKFini,i);
|
||
pNewMP->AddObservation(pKFini,rightIndex + mCurrentFrame.Nleft);
|
||
|
||
pKFini->AddMapPoint(pNewMP,i);
|
||
pKFini->AddMapPoint(pNewMP,rightIndex + mCurrentFrame.Nleft);
|
||
|
||
pNewMP->ComputeDistinctiveDescriptors();
|
||
pNewMP->UpdateNormalAndDepth();
|
||
mpAtlas->AddMapPoint(pNewMP);
|
||
|
||
mCurrentFrame.mvpMapPoints[i]=pNewMP;
|
||
mCurrentFrame.mvpMapPoints[rightIndex + mCurrentFrame.Nleft]=pNewMP;
|
||
}
|
||
}
|
||
}
|
||
|
||
Verbose::PrintMess("New Map created with " + to_string(mpAtlas->MapPointsInMap()) + " points", Verbose::VERBOSITY_QUIET);
|
||
|
||
mpLocalMapper->InsertKeyFrame(pKFini);
|
||
|
||
mLastFrame = Frame(mCurrentFrame);
|
||
mnLastKeyFrameId=mCurrentFrame.mnId;
|
||
mpLastKeyFrame = pKFini;
|
||
mnLastRelocFrameId = mCurrentFrame.mnId;
|
||
|
||
mvpLocalKeyFrames.push_back(pKFini);
|
||
mvpLocalMapPoints=mpAtlas->GetAllMapPoints();
|
||
mpReferenceKF = pKFini;
|
||
mCurrentFrame.mpReferenceKF = pKFini;
|
||
|
||
mpAtlas->SetReferenceMapPoints(mvpLocalMapPoints);
|
||
|
||
mpAtlas->GetCurrentMap()->mvpKeyFrameOrigins.push_back(pKFini);
|
||
|
||
mpMapDrawer->SetCurrentCameraPose(mCurrentFrame.mTcw);
|
||
|
||
mState=OK;
|
||
}
|
||
}
|
||
|
||
|
||
void Tracking::MonocularInitialization()
|
||
{
|
||
|
||
if(!mpInitializer)
|
||
{
|
||
// Set Reference Frame
|
||
if(mCurrentFrame.mvKeys.size()>100)
|
||
{
|
||
|
||
mInitialFrame = Frame(mCurrentFrame);
|
||
mLastFrame = Frame(mCurrentFrame);
|
||
mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
|
||
for(size_t i=0; i<mCurrentFrame.mvKeysUn.size(); i++)
|
||
mvbPrevMatched[i]=mCurrentFrame.mvKeysUn[i].pt;
|
||
|
||
if(mpInitializer)
|
||
delete mpInitializer;
|
||
|
||
mpInitializer = new Initializer(mCurrentFrame,1.0,200);
|
||
|
||
fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
|
||
|
||
if (mSensor == System::IMU_MONOCULAR)
|
||
{
|
||
if(mpImuPreintegratedFromLastKF)
|
||
{
|
||
delete mpImuPreintegratedFromLastKF;
|
||
}
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(IMU::Bias(),*mpImuCalib);
|
||
mCurrentFrame.mpImuPreintegrated = mpImuPreintegratedFromLastKF;
|
||
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (((int)mCurrentFrame.mvKeys.size()<=100)||((mSensor == System::IMU_MONOCULAR)&&(mLastFrame.mTimeStamp-mInitialFrame.mTimeStamp>1.0)))
|
||
{
|
||
delete mpInitializer;
|
||
mpInitializer = static_cast<Initializer*>(NULL);
|
||
fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
|
||
|
||
return;
|
||
}
|
||
|
||
// Find correspondences
|
||
ORBmatcher matcher(0.9,true);
|
||
int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);
|
||
|
||
// Check if there are enough correspondences
|
||
if(nmatches<100)
|
||
{
|
||
delete mpInitializer;
|
||
mpInitializer = static_cast<Initializer*>(NULL);
|
||
fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
|
||
return;
|
||
}
|
||
|
||
cv::Mat Rcw; // Current Camera Rotation
|
||
cv::Mat tcw; // Current Camera Translation
|
||
vector<bool> vbTriangulated; // Triangulated Correspondences (mvIniMatches)
|
||
|
||
if(mpCamera->ReconstructWithTwoViews(mInitialFrame.mvKeysUn,mCurrentFrame.mvKeysUn,mvIniMatches,Rcw,tcw,mvIniP3D,vbTriangulated))
|
||
{
|
||
for(size_t i=0, iend=mvIniMatches.size(); i<iend;i++)
|
||
{
|
||
if(mvIniMatches[i]>=0 && !vbTriangulated[i])
|
||
{
|
||
mvIniMatches[i]=-1;
|
||
nmatches--;
|
||
}
|
||
}
|
||
|
||
// Set Frame Poses
|
||
mInitialFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
|
||
cv::Mat Tcw = cv::Mat::eye(4,4,CV_32F);
|
||
Rcw.copyTo(Tcw.rowRange(0,3).colRange(0,3));
|
||
tcw.copyTo(Tcw.rowRange(0,3).col(3));
|
||
mCurrentFrame.SetPose(Tcw);
|
||
|
||
CreateInitialMapMonocular();
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void Tracking::CreateInitialMapMonocular()
|
||
{
|
||
// Create KeyFrames
|
||
KeyFrame* pKFini = new KeyFrame(mInitialFrame,mpAtlas->GetCurrentMap(),mpKeyFrameDB);
|
||
KeyFrame* pKFcur = new KeyFrame(mCurrentFrame,mpAtlas->GetCurrentMap(),mpKeyFrameDB);
|
||
|
||
if(mSensor == System::IMU_MONOCULAR)
|
||
pKFini->mpImuPreintegrated = (IMU::Preintegrated*)(NULL);
|
||
|
||
|
||
pKFini->ComputeBoW();
|
||
pKFcur->ComputeBoW();
|
||
|
||
// Insert KFs in the map
|
||
mpAtlas->AddKeyFrame(pKFini);
|
||
mpAtlas->AddKeyFrame(pKFcur);
|
||
|
||
for(size_t i=0; i<mvIniMatches.size();i++)
|
||
{
|
||
if(mvIniMatches[i]<0)
|
||
continue;
|
||
|
||
//Create MapPoint.
|
||
cv::Mat worldPos(mvIniP3D[i]);
|
||
MapPoint* pMP = new MapPoint(worldPos,pKFcur,mpAtlas->GetCurrentMap());
|
||
|
||
pKFini->AddMapPoint(pMP,i);
|
||
pKFcur->AddMapPoint(pMP,mvIniMatches[i]);
|
||
|
||
pMP->AddObservation(pKFini,i);
|
||
pMP->AddObservation(pKFcur,mvIniMatches[i]);
|
||
|
||
pMP->ComputeDistinctiveDescriptors();
|
||
pMP->UpdateNormalAndDepth();
|
||
|
||
//Fill Current Frame structure
|
||
mCurrentFrame.mvpMapPoints[mvIniMatches[i]] = pMP;
|
||
mCurrentFrame.mvbOutlier[mvIniMatches[i]] = false;
|
||
|
||
//Add to Map
|
||
mpAtlas->AddMapPoint(pMP);
|
||
}
|
||
|
||
|
||
// Update Connections
|
||
pKFini->UpdateConnections();
|
||
pKFcur->UpdateConnections();
|
||
|
||
std::set<MapPoint*> sMPs;
|
||
sMPs = pKFini->GetMapPoints();
|
||
|
||
// Bundle Adjustment
|
||
Verbose::PrintMess("New Map created with " + to_string(mpAtlas->MapPointsInMap()) + " points", Verbose::VERBOSITY_QUIET);
|
||
Optimizer::GlobalBundleAdjustemnt(mpAtlas->GetCurrentMap(),20);
|
||
|
||
pKFcur->PrintPointDistribution();
|
||
|
||
float medianDepth = pKFini->ComputeSceneMedianDepth(2);
|
||
float invMedianDepth;
|
||
if(mSensor == System::IMU_MONOCULAR)
|
||
invMedianDepth = 4.0f/medianDepth; // 4.0f
|
||
else
|
||
invMedianDepth = 1.0f/medianDepth;
|
||
|
||
if(medianDepth<0 || pKFcur->TrackedMapPoints(1)<50) // TODO Check, originally 100 tracks
|
||
{
|
||
Verbose::PrintMess("Wrong initialization, reseting...", Verbose::VERBOSITY_NORMAL);
|
||
mpSystem->ResetActiveMap();
|
||
return;
|
||
}
|
||
|
||
// Scale initial baseline
|
||
cv::Mat Tc2w = pKFcur->GetPose();
|
||
Tc2w.col(3).rowRange(0,3) = Tc2w.col(3).rowRange(0,3)*invMedianDepth;
|
||
pKFcur->SetPose(Tc2w);
|
||
|
||
// Scale points
|
||
vector<MapPoint*> vpAllMapPoints = pKFini->GetMapPointMatches();
|
||
for(size_t iMP=0; iMP<vpAllMapPoints.size(); iMP++)
|
||
{
|
||
if(vpAllMapPoints[iMP])
|
||
{
|
||
MapPoint* pMP = vpAllMapPoints[iMP];
|
||
pMP->SetWorldPos(pMP->GetWorldPos()*invMedianDepth);
|
||
pMP->UpdateNormalAndDepth();
|
||
}
|
||
}
|
||
|
||
if (mSensor == System::IMU_MONOCULAR)
|
||
{
|
||
pKFcur->mPrevKF = pKFini;
|
||
pKFini->mNextKF = pKFcur;
|
||
pKFcur->mpImuPreintegrated = mpImuPreintegratedFromLastKF;
|
||
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(pKFcur->mpImuPreintegrated->GetUpdatedBias(),pKFcur->mImuCalib);
|
||
}
|
||
|
||
|
||
mpLocalMapper->InsertKeyFrame(pKFini);
|
||
mpLocalMapper->InsertKeyFrame(pKFcur);
|
||
mpLocalMapper->mFirstTs=pKFcur->mTimeStamp;
|
||
|
||
mCurrentFrame.SetPose(pKFcur->GetPose());
|
||
mnLastKeyFrameId=mCurrentFrame.mnId;
|
||
mpLastKeyFrame = pKFcur;
|
||
mnLastRelocFrameId = mInitialFrame.mnId;
|
||
|
||
mvpLocalKeyFrames.push_back(pKFcur);
|
||
mvpLocalKeyFrames.push_back(pKFini);
|
||
mvpLocalMapPoints=mpAtlas->GetAllMapPoints();
|
||
mpReferenceKF = pKFcur;
|
||
mCurrentFrame.mpReferenceKF = pKFcur;
|
||
|
||
// Compute here initial velocity
|
||
vector<KeyFrame*> vKFs = mpAtlas->GetAllKeyFrames();
|
||
|
||
cv::Mat deltaT = vKFs.back()->GetPose()*vKFs.front()->GetPoseInverse();
|
||
mVelocity = cv::Mat();
|
||
Eigen::Vector3d phi = LogSO3(Converter::toMatrix3d(deltaT.rowRange(0,3).colRange(0,3)));
|
||
|
||
|
||
double aux = (mCurrentFrame.mTimeStamp-mLastFrame.mTimeStamp)/(mCurrentFrame.mTimeStamp-mInitialFrame.mTimeStamp);
|
||
phi *= aux;
|
||
|
||
mLastFrame = Frame(mCurrentFrame);
|
||
|
||
mpAtlas->SetReferenceMapPoints(mvpLocalMapPoints);
|
||
|
||
mpMapDrawer->SetCurrentCameraPose(pKFcur->GetPose());
|
||
|
||
mpAtlas->GetCurrentMap()->mvpKeyFrameOrigins.push_back(pKFini);
|
||
|
||
mState=OK;
|
||
|
||
initID = pKFcur->mnId;
|
||
}
|
||
|
||
|
||
void Tracking::CreateMapInAtlas()
|
||
{
|
||
mnLastInitFrameId = mCurrentFrame.mnId;
|
||
mpAtlas->CreateNewMap();
|
||
if (mSensor==System::IMU_STEREO || mSensor == System::IMU_MONOCULAR)
|
||
mpAtlas->SetInertialSensor();
|
||
mbSetInit=false;
|
||
|
||
mnInitialFrameId = mCurrentFrame.mnId+1;
|
||
mState = NO_IMAGES_YET;
|
||
|
||
// Restart the variable with information about the last KF
|
||
mVelocity = cv::Mat();
|
||
mnLastRelocFrameId = mnLastInitFrameId; // The last relocation KF_id is the current id, because it is the new starting point for new map
|
||
Verbose::PrintMess("First frame id in map: " + to_string(mnLastInitFrameId+1), Verbose::VERBOSITY_NORMAL);
|
||
mbVO = false; // Init value for know if there are enough MapPoints in the last KF
|
||
if(mSensor == System::MONOCULAR || mSensor == System::IMU_MONOCULAR)
|
||
{
|
||
if(mpInitializer)
|
||
delete mpInitializer;
|
||
mpInitializer = static_cast<Initializer*>(NULL);
|
||
}
|
||
|
||
if((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO ) && mpImuPreintegratedFromLastKF)
|
||
{
|
||
delete mpImuPreintegratedFromLastKF;
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(IMU::Bias(),*mpImuCalib);
|
||
}
|
||
|
||
if(mpLastKeyFrame)
|
||
mpLastKeyFrame = static_cast<KeyFrame*>(NULL);
|
||
|
||
if(mpReferenceKF)
|
||
mpReferenceKF = static_cast<KeyFrame*>(NULL);
|
||
|
||
mLastFrame = Frame();
|
||
mCurrentFrame = Frame();
|
||
mvIniMatches.clear();
|
||
|
||
mbCreatedMap = true;
|
||
|
||
}
|
||
|
||
void Tracking::CheckReplacedInLastFrame()
|
||
{
|
||
for(int i =0; i<mLastFrame.N; i++)
|
||
{
|
||
MapPoint* pMP = mLastFrame.mvpMapPoints[i];
|
||
|
||
if(pMP)
|
||
{
|
||
MapPoint* pRep = pMP->GetReplaced();
|
||
if(pRep)
|
||
{
|
||
mLastFrame.mvpMapPoints[i] = pRep;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
bool Tracking::TrackReferenceKeyFrame()
|
||
{
|
||
// Compute Bag of Words vector
|
||
mCurrentFrame.ComputeBoW();
|
||
|
||
// We perform first an ORB matching with the reference keyframe
|
||
// If enough matches are found we setup a PnP solver
|
||
ORBmatcher matcher(0.7,true);
|
||
vector<MapPoint*> vpMapPointMatches;
|
||
|
||
int nmatches = matcher.SearchByBoW(mpReferenceKF,mCurrentFrame,vpMapPointMatches);
|
||
|
||
if(nmatches<15)
|
||
{
|
||
cout << "TRACK_REF_KF: Less than 15 matches!!\n";
|
||
return false;
|
||
}
|
||
|
||
mCurrentFrame.mvpMapPoints = vpMapPointMatches;
|
||
mCurrentFrame.SetPose(mLastFrame.mTcw);
|
||
|
||
//mCurrentFrame.PrintPointDistribution();
|
||
|
||
|
||
// cout << " TrackReferenceKeyFrame mLastFrame.mTcw: " << mLastFrame.mTcw << endl;
|
||
Optimizer::PoseOptimization(&mCurrentFrame);
|
||
|
||
// Discard outliers
|
||
int nmatchesMap = 0;
|
||
for(int i =0; i<mCurrentFrame.N; i++)
|
||
{
|
||
if(mCurrentFrame.mvpMapPoints[i])
|
||
{
|
||
if(mCurrentFrame.mvbOutlier[i])
|
||
{
|
||
MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
|
||
|
||
mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
|
||
mCurrentFrame.mvbOutlier[i]=false;
|
||
if(i < mCurrentFrame.Nleft){
|
||
pMP->mbTrackInView = false;
|
||
}
|
||
else{
|
||
pMP->mbTrackInViewR = false;
|
||
}
|
||
pMP->mbTrackInView = false;
|
||
pMP->mnLastFrameSeen = mCurrentFrame.mnId;
|
||
nmatches--;
|
||
}
|
||
else if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
|
||
nmatchesMap++;
|
||
}
|
||
}
|
||
|
||
// TODO check these conditions
|
||
if (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
return true;
|
||
else
|
||
return nmatchesMap>=10;
|
||
}
|
||
|
||
void Tracking::UpdateLastFrame()
|
||
{
|
||
// Update pose according to reference keyframe
|
||
KeyFrame* pRef = mLastFrame.mpReferenceKF;
|
||
cv::Mat Tlr = mlRelativeFramePoses.back();
|
||
mLastFrame.SetPose(Tlr*pRef->GetPose());
|
||
|
||
if(mnLastKeyFrameId==mLastFrame.mnId || mSensor==System::MONOCULAR || mSensor==System::IMU_MONOCULAR || !mbOnlyTracking)
|
||
return;
|
||
|
||
// Create "visual odometry" MapPoints
|
||
// We sort points according to their measured depth by the stereo/RGB-D sensor
|
||
vector<pair<float,int> > vDepthIdx;
|
||
vDepthIdx.reserve(mLastFrame.N);
|
||
for(int i=0; i<mLastFrame.N;i++)
|
||
{
|
||
float z = mLastFrame.mvDepth[i];
|
||
if(z>0)
|
||
{
|
||
vDepthIdx.push_back(make_pair(z,i));
|
||
}
|
||
}
|
||
|
||
if(vDepthIdx.empty())
|
||
return;
|
||
|
||
sort(vDepthIdx.begin(),vDepthIdx.end());
|
||
|
||
// We insert all close points (depth<mThDepth)
|
||
// If less than 100 close points, we insert the 100 closest ones.
|
||
int nPoints = 0;
|
||
for(size_t j=0; j<vDepthIdx.size();j++)
|
||
{
|
||
int i = vDepthIdx[j].second;
|
||
|
||
bool bCreateNew = false;
|
||
|
||
MapPoint* pMP = mLastFrame.mvpMapPoints[i];
|
||
if(!pMP)
|
||
bCreateNew = true;
|
||
else if(pMP->Observations()<1)
|
||
{
|
||
bCreateNew = true;
|
||
}
|
||
|
||
if(bCreateNew)
|
||
{
|
||
cv::Mat x3D = mLastFrame.UnprojectStereo(i);
|
||
MapPoint* pNewMP = new MapPoint(x3D,mpAtlas->GetCurrentMap(),&mLastFrame,i);
|
||
|
||
mLastFrame.mvpMapPoints[i]=pNewMP;
|
||
|
||
mlpTemporalPoints.push_back(pNewMP);
|
||
nPoints++;
|
||
}
|
||
else
|
||
{
|
||
nPoints++;
|
||
}
|
||
|
||
if(vDepthIdx[j].first>mThDepth && nPoints>100)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool Tracking::TrackWithMotionModel()
|
||
{
|
||
ORBmatcher matcher(0.9,true);
|
||
|
||
// Update last frame pose according to its reference keyframe
|
||
// Create "visual odometry" points if in Localization Mode
|
||
UpdateLastFrame();
|
||
|
||
|
||
|
||
if (mpAtlas->isImuInitialized() && (mCurrentFrame.mnId>mnLastRelocFrameId+mnFramesToResetIMU))
|
||
{
|
||
// Predict ste with IMU if it is initialized and it doesnt need reset
|
||
PredictStateIMU();
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
mCurrentFrame.SetPose(mVelocity*mLastFrame.mTcw);
|
||
}
|
||
|
||
|
||
fill(mCurrentFrame.mvpMapPoints.begin(),mCurrentFrame.mvpMapPoints.end(),static_cast<MapPoint*>(NULL));
|
||
|
||
// Project points seen in previous frame
|
||
int th;
|
||
|
||
if(mSensor==System::STEREO)
|
||
th=7;
|
||
else
|
||
th=15;
|
||
|
||
int nmatches = matcher.SearchByProjection(mCurrentFrame,mLastFrame,th,mSensor==System::MONOCULAR || mSensor==System::IMU_MONOCULAR);
|
||
|
||
// If few matches, uses a wider window search
|
||
if(nmatches<20)
|
||
{
|
||
Verbose::PrintMess("Not enough matches, wider window search!!", Verbose::VERBOSITY_NORMAL);
|
||
fill(mCurrentFrame.mvpMapPoints.begin(),mCurrentFrame.mvpMapPoints.end(),static_cast<MapPoint*>(NULL));
|
||
|
||
nmatches = matcher.SearchByProjection(mCurrentFrame,mLastFrame,2*th,mSensor==System::MONOCULAR || mSensor==System::IMU_MONOCULAR);
|
||
Verbose::PrintMess("Matches with wider search: " + to_string(nmatches), Verbose::VERBOSITY_NORMAL);
|
||
|
||
}
|
||
|
||
if(nmatches<20)
|
||
{
|
||
Verbose::PrintMess("Not enough matches!!", Verbose::VERBOSITY_NORMAL);
|
||
if (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
// Optimize frame pose with all matches
|
||
Optimizer::PoseOptimization(&mCurrentFrame);
|
||
|
||
// Discard outliers
|
||
int nmatchesMap = 0;
|
||
for(int i =0; i<mCurrentFrame.N; i++)
|
||
{
|
||
if(mCurrentFrame.mvpMapPoints[i])
|
||
{
|
||
if(mCurrentFrame.mvbOutlier[i])
|
||
{
|
||
MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
|
||
|
||
mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
|
||
mCurrentFrame.mvbOutlier[i]=false;
|
||
if(i < mCurrentFrame.Nleft){
|
||
pMP->mbTrackInView = false;
|
||
}
|
||
else{
|
||
pMP->mbTrackInViewR = false;
|
||
}
|
||
pMP->mnLastFrameSeen = mCurrentFrame.mnId;
|
||
nmatches--;
|
||
}
|
||
else if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
|
||
nmatchesMap++;
|
||
}
|
||
}
|
||
|
||
if(mbOnlyTracking)
|
||
{
|
||
mbVO = nmatchesMap<10;
|
||
return nmatches>20;
|
||
}
|
||
|
||
if (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
return true;
|
||
else
|
||
return nmatchesMap>=10;
|
||
}
|
||
|
||
bool Tracking::TrackLocalMap()
|
||
{
|
||
|
||
// We have an estimation of the camera pose and some map points tracked in the frame.
|
||
// We retrieve the local map and try to find matches to points in the local map.
|
||
mTrackedFr++;
|
||
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartLMUpdate = std::chrono::steady_clock::now();
|
||
#endif
|
||
UpdateLocalMap();
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartSearchLP = std::chrono::steady_clock::now();
|
||
|
||
double timeUpdatedLM_ms = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_StartSearchLP - time_StartLMUpdate).count();
|
||
vdUpdatedLM_ms.push_back(timeUpdatedLM_ms);
|
||
#endif
|
||
|
||
SearchLocalPoints();
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_StartPoseOpt = std::chrono::steady_clock::now();
|
||
|
||
double timeSearchLP_ms = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_StartPoseOpt - time_StartSearchLP).count();
|
||
vdSearchLP_ms.push_back(timeSearchLP_ms);
|
||
#endif
|
||
|
||
// TOO check outliers before PO
|
||
int aux1 = 0, aux2=0;
|
||
for(int i=0; i<mCurrentFrame.N; i++)
|
||
if( mCurrentFrame.mvpMapPoints[i])
|
||
{
|
||
aux1++;
|
||
if(mCurrentFrame.mvbOutlier[i])
|
||
aux2++;
|
||
}
|
||
|
||
int inliers;
|
||
if (!mpAtlas->isImuInitialized())
|
||
Optimizer::PoseOptimization(&mCurrentFrame);
|
||
else
|
||
{
|
||
if(mCurrentFrame.mnId<=mnLastRelocFrameId+mnFramesToResetIMU)
|
||
{
|
||
Verbose::PrintMess("TLM: PoseOptimization ", Verbose::VERBOSITY_DEBUG);
|
||
Optimizer::PoseOptimization(&mCurrentFrame);
|
||
}
|
||
else
|
||
{
|
||
if(!mbMapUpdated)
|
||
{
|
||
Verbose::PrintMess("TLM: PoseInertialOptimizationLastFrame ", Verbose::VERBOSITY_DEBUG);
|
||
inliers = Optimizer::PoseInertialOptimizationLastFrame(&mCurrentFrame); // , !mpLastKeyFrame->GetMap()->GetIniertialBA1());
|
||
}
|
||
else
|
||
{
|
||
Verbose::PrintMess("TLM: PoseInertialOptimizationLastKeyFrame ", Verbose::VERBOSITY_DEBUG);
|
||
inliers = Optimizer::PoseInertialOptimizationLastKeyFrame(&mCurrentFrame); // , !mpLastKeyFrame->GetMap()->GetIniertialBA1());
|
||
}
|
||
}
|
||
}
|
||
#ifdef REGISTER_TIMES
|
||
std::chrono::steady_clock::time_point time_EndPoseOpt = std::chrono::steady_clock::now();
|
||
|
||
double timePoseOpt_ms = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(time_EndPoseOpt - time_StartPoseOpt).count();
|
||
vdPoseOpt_ms.push_back(timePoseOpt_ms);
|
||
#endif
|
||
|
||
vnKeyFramesLM.push_back(mvpLocalKeyFrames.size());
|
||
vnMapPointsLM.push_back(mvpLocalMapPoints.size());
|
||
|
||
aux1 = 0, aux2 = 0;
|
||
for(int i=0; i<mCurrentFrame.N; i++)
|
||
if( mCurrentFrame.mvpMapPoints[i])
|
||
{
|
||
aux1++;
|
||
if(mCurrentFrame.mvbOutlier[i])
|
||
aux2++;
|
||
}
|
||
|
||
mnMatchesInliers = 0;
|
||
|
||
// Update MapPoints Statistics
|
||
for(int i=0; i<mCurrentFrame.N; i++)
|
||
{
|
||
if(mCurrentFrame.mvpMapPoints[i])
|
||
{
|
||
if(!mCurrentFrame.mvbOutlier[i])
|
||
{
|
||
mCurrentFrame.mvpMapPoints[i]->IncreaseFound();
|
||
if(!mbOnlyTracking)
|
||
{
|
||
if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
|
||
mnMatchesInliers++;
|
||
}
|
||
else
|
||
mnMatchesInliers++;
|
||
}
|
||
else if(mSensor==System::STEREO)
|
||
mCurrentFrame.mvpMapPoints[i] = static_cast<MapPoint*>(NULL);
|
||
}
|
||
}
|
||
|
||
// Decide if the tracking was succesful
|
||
// More restrictive if there was a relocalization recently
|
||
mpLocalMapper->mnMatchesInliers=mnMatchesInliers;
|
||
if(mCurrentFrame.mnId<mnLastRelocFrameId+mMaxFrames && mnMatchesInliers<50)
|
||
return false;
|
||
|
||
if((mnMatchesInliers>10)&&(mState==RECENTLY_LOST))
|
||
return true;
|
||
|
||
|
||
if (mSensor == System::IMU_MONOCULAR)
|
||
{
|
||
if(mnMatchesInliers<15)
|
||
{
|
||
return false;
|
||
}
|
||
else
|
||
return true;
|
||
}
|
||
else if (mSensor == System::IMU_STEREO)
|
||
{
|
||
if(mnMatchesInliers<15)
|
||
{
|
||
return false;
|
||
}
|
||
else
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if(mnMatchesInliers<30)
|
||
return false;
|
||
else
|
||
return true;
|
||
}
|
||
}
|
||
|
||
bool Tracking::NeedNewKeyFrame()
|
||
{
|
||
if(((mSensor == System::IMU_MONOCULAR) || (mSensor == System::IMU_STEREO)) && !mpAtlas->GetCurrentMap()->isImuInitialized())
|
||
{
|
||
if (mSensor == System::IMU_MONOCULAR && (mCurrentFrame.mTimeStamp-mpLastKeyFrame->mTimeStamp)>=0.25)
|
||
return true;
|
||
else if (mSensor == System::IMU_STEREO && (mCurrentFrame.mTimeStamp-mpLastKeyFrame->mTimeStamp)>=0.25)
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
if(mbOnlyTracking)
|
||
return false;
|
||
|
||
// If Local Mapping is freezed by a Loop Closure do not insert keyframes
|
||
if(mpLocalMapper->isStopped() || mpLocalMapper->stopRequested())
|
||
{
|
||
return false;
|
||
}
|
||
|
||
// Return false if IMU is initialazing
|
||
if (mpLocalMapper->IsInitializing())
|
||
return false;
|
||
const int nKFs = mpAtlas->KeyFramesInMap();
|
||
|
||
// Do not insert keyframes if not enough frames have passed from last relocalisation
|
||
if(mCurrentFrame.mnId<mnLastRelocFrameId+mMaxFrames && nKFs>mMaxFrames)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
// Tracked MapPoints in the reference keyframe
|
||
int nMinObs = 3;
|
||
if(nKFs<=2)
|
||
nMinObs=2;
|
||
int nRefMatches = mpReferenceKF->TrackedMapPoints(nMinObs);
|
||
|
||
// Local Mapping accept keyframes?
|
||
bool bLocalMappingIdle = mpLocalMapper->AcceptKeyFrames();
|
||
|
||
// Check how many "close" points are being tracked and how many could be potentially created.
|
||
int nNonTrackedClose = 0;
|
||
int nTrackedClose= 0;
|
||
|
||
if(mSensor!=System::MONOCULAR && mSensor!=System::IMU_MONOCULAR)
|
||
{
|
||
int N = (mCurrentFrame.Nleft == -1) ? mCurrentFrame.N : mCurrentFrame.Nleft;
|
||
for(int i =0; i<N; i++)
|
||
{
|
||
if(mCurrentFrame.mvDepth[i]>0 && mCurrentFrame.mvDepth[i]<mThDepth)
|
||
{
|
||
if(mCurrentFrame.mvpMapPoints[i] && !mCurrentFrame.mvbOutlier[i])
|
||
nTrackedClose++;
|
||
else
|
||
nNonTrackedClose++;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
bool bNeedToInsertClose;
|
||
bNeedToInsertClose = (nTrackedClose<100) && (nNonTrackedClose>70);
|
||
|
||
// Thresholds
|
||
float thRefRatio = 0.75f;
|
||
if(nKFs<2)
|
||
thRefRatio = 0.4f;
|
||
|
||
if(mSensor==System::MONOCULAR)
|
||
thRefRatio = 0.9f;
|
||
|
||
if(mpCamera2) thRefRatio = 0.75f;
|
||
|
||
if(mSensor==System::IMU_MONOCULAR)
|
||
{
|
||
if(mnMatchesInliers>350) // Points tracked from the local map
|
||
thRefRatio = 0.75f;
|
||
else
|
||
thRefRatio = 0.90f;
|
||
}
|
||
|
||
// Condition 1a: More than "MaxFrames" have passed from last keyframe insertion
|
||
const bool c1a = mCurrentFrame.mnId>=mnLastKeyFrameId+mMaxFrames;
|
||
// Condition 1b: More than "MinFrames" have passed and Local Mapping is idle
|
||
const bool c1b = ((mCurrentFrame.mnId>=mnLastKeyFrameId+mMinFrames) && bLocalMappingIdle);
|
||
//Condition 1c: tracking is weak
|
||
const bool c1c = mSensor!=System::MONOCULAR && mSensor!=System::IMU_MONOCULAR && mSensor!=System::IMU_STEREO && (mnMatchesInliers<nRefMatches*0.25 || bNeedToInsertClose) ;
|
||
// Condition 2: Few tracked points compared to reference keyframe. Lots of visual odometry compared to map matches.
|
||
const bool c2 = (((mnMatchesInliers<nRefMatches*thRefRatio || bNeedToInsertClose)) && mnMatchesInliers>15);
|
||
|
||
// Temporal condition for Inertial cases
|
||
bool c3 = false;
|
||
if(mpLastKeyFrame)
|
||
{
|
||
if (mSensor==System::IMU_MONOCULAR)
|
||
{
|
||
if ((mCurrentFrame.mTimeStamp-mpLastKeyFrame->mTimeStamp)>=0.5)
|
||
c3 = true;
|
||
}
|
||
else if (mSensor==System::IMU_STEREO)
|
||
{
|
||
if ((mCurrentFrame.mTimeStamp-mpLastKeyFrame->mTimeStamp)>=0.5)
|
||
c3 = true;
|
||
}
|
||
}
|
||
|
||
bool c4 = false;
|
||
if ((((mnMatchesInliers<75) && (mnMatchesInliers>15)) || mState==RECENTLY_LOST) && ((mSensor == System::IMU_MONOCULAR))) // MODIFICATION_2, originally ((((mnMatchesInliers<75) && (mnMatchesInliers>15)) || mState==RECENTLY_LOST) && ((mSensor == System::IMU_MONOCULAR)))
|
||
c4=true;
|
||
else
|
||
c4=false;
|
||
|
||
if(((c1a||c1b||c1c) && c2)||c3 ||c4)
|
||
{
|
||
// If the mapping accepts keyframes, insert keyframe.
|
||
// Otherwise send a signal to interrupt BA
|
||
if(bLocalMappingIdle)
|
||
{
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
mpLocalMapper->InterruptBA();
|
||
if(mSensor!=System::MONOCULAR && mSensor!=System::IMU_MONOCULAR)
|
||
{
|
||
if(mpLocalMapper->KeyframesInQueue()<3)
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
void Tracking::CreateNewKeyFrame()
|
||
{
|
||
if(mpLocalMapper->IsInitializing())
|
||
return;
|
||
|
||
if(!mpLocalMapper->SetNotStop(true))
|
||
return;
|
||
|
||
KeyFrame* pKF = new KeyFrame(mCurrentFrame,mpAtlas->GetCurrentMap(),mpKeyFrameDB);
|
||
|
||
if(mpAtlas->isImuInitialized())
|
||
pKF->bImu = true;
|
||
|
||
pKF->SetNewBias(mCurrentFrame.mImuBias);
|
||
mpReferenceKF = pKF;
|
||
mCurrentFrame.mpReferenceKF = pKF;
|
||
|
||
if(mpLastKeyFrame)
|
||
{
|
||
pKF->mPrevKF = mpLastKeyFrame;
|
||
mpLastKeyFrame->mNextKF = pKF;
|
||
}
|
||
else
|
||
Verbose::PrintMess("No last KF in KF creation!!", Verbose::VERBOSITY_NORMAL);
|
||
|
||
// Reset preintegration from last KF (Create new object)
|
||
if (mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO)
|
||
{
|
||
mpImuPreintegratedFromLastKF = new IMU::Preintegrated(pKF->GetImuBias(),pKF->mImuCalib);
|
||
}
|
||
|
||
if(mSensor!=System::MONOCULAR && mSensor != System::IMU_MONOCULAR) // TODO check if incluide imu_stereo
|
||
{
|
||
mCurrentFrame.UpdatePoseMatrices();
|
||
// cout << "create new MPs" << endl;
|
||
// We sort points by the measured depth by the stereo/RGBD sensor.
|
||
// We create all those MapPoints whose depth < mThDepth.
|
||
// If there are less than 100 close points we create the 100 closest.
|
||
int maxPoint = 100;
|
||
if(mSensor == System::IMU_STEREO)
|
||
maxPoint = 100;
|
||
|
||
vector<pair<float,int> > vDepthIdx;
|
||
int N = (mCurrentFrame.Nleft != -1) ? mCurrentFrame.Nleft : mCurrentFrame.N;
|
||
vDepthIdx.reserve(mCurrentFrame.N);
|
||
for(int i=0; i<N; i++)
|
||
{
|
||
float z = mCurrentFrame.mvDepth[i];
|
||
if(z>0)
|
||
{
|
||
vDepthIdx.push_back(make_pair(z,i));
|
||
}
|
||
}
|
||
|
||
if(!vDepthIdx.empty())
|
||
{
|
||
sort(vDepthIdx.begin(),vDepthIdx.end());
|
||
|
||
int nPoints = 0;
|
||
for(size_t j=0; j<vDepthIdx.size();j++)
|
||
{
|
||
int i = vDepthIdx[j].second;
|
||
|
||
bool bCreateNew = false;
|
||
|
||
MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
|
||
if(!pMP)
|
||
bCreateNew = true;
|
||
else if(pMP->Observations()<1)
|
||
{
|
||
bCreateNew = true;
|
||
mCurrentFrame.mvpMapPoints[i] = static_cast<MapPoint*>(NULL);
|
||
}
|
||
|
||
if(bCreateNew)
|
||
{
|
||
cv::Mat x3D;
|
||
|
||
if(mCurrentFrame.Nleft == -1){
|
||
x3D = mCurrentFrame.UnprojectStereo(i);
|
||
}
|
||
else{
|
||
x3D = mCurrentFrame.UnprojectStereoFishEye(i);
|
||
}
|
||
|
||
MapPoint* pNewMP = new MapPoint(x3D,pKF,mpAtlas->GetCurrentMap());
|
||
pNewMP->AddObservation(pKF,i);
|
||
|
||
//Check if it is a stereo observation in order to not
|
||
//duplicate mappoints
|
||
if(mCurrentFrame.Nleft != -1 && mCurrentFrame.mvLeftToRightMatch[i] >= 0){
|
||
mCurrentFrame.mvpMapPoints[mCurrentFrame.Nleft + mCurrentFrame.mvLeftToRightMatch[i]]=pNewMP;
|
||
pNewMP->AddObservation(pKF,mCurrentFrame.Nleft + mCurrentFrame.mvLeftToRightMatch[i]);
|
||
pKF->AddMapPoint(pNewMP,mCurrentFrame.Nleft + mCurrentFrame.mvLeftToRightMatch[i]);
|
||
}
|
||
|
||
pKF->AddMapPoint(pNewMP,i);
|
||
pNewMP->ComputeDistinctiveDescriptors();
|
||
pNewMP->UpdateNormalAndDepth();
|
||
mpAtlas->AddMapPoint(pNewMP);
|
||
|
||
mCurrentFrame.mvpMapPoints[i]=pNewMP;
|
||
nPoints++;
|
||
}
|
||
else
|
||
{
|
||
nPoints++;
|
||
}
|
||
|
||
if(vDepthIdx[j].first>mThDepth && nPoints>maxPoint)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
Verbose::PrintMess("new mps for stereo KF: " + to_string(nPoints), Verbose::VERBOSITY_NORMAL);
|
||
|
||
}
|
||
}
|
||
|
||
|
||
mpLocalMapper->InsertKeyFrame(pKF);
|
||
|
||
mpLocalMapper->SetNotStop(false);
|
||
|
||
mnLastKeyFrameId = mCurrentFrame.mnId;
|
||
mpLastKeyFrame = pKF;
|
||
//cout << "end creating new KF" << endl;
|
||
}
|
||
|
||
void Tracking::SearchLocalPoints()
|
||
{
|
||
// Do not search map points already matched
|
||
for(vector<MapPoint*>::iterator vit=mCurrentFrame.mvpMapPoints.begin(), vend=mCurrentFrame.mvpMapPoints.end(); vit!=vend; vit++)
|
||
{
|
||
MapPoint* pMP = *vit;
|
||
if(pMP)
|
||
{
|
||
if(pMP->isBad())
|
||
{
|
||
*vit = static_cast<MapPoint*>(NULL);
|
||
}
|
||
else
|
||
{
|
||
pMP->IncreaseVisible();
|
||
pMP->mnLastFrameSeen = mCurrentFrame.mnId;
|
||
pMP->mbTrackInView = false;
|
||
pMP->mbTrackInViewR = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
int nToMatch=0;
|
||
|
||
// Project points in frame and check its visibility
|
||
for(vector<MapPoint*>::iterator vit=mvpLocalMapPoints.begin(), vend=mvpLocalMapPoints.end(); vit!=vend; vit++)
|
||
{
|
||
MapPoint* pMP = *vit;
|
||
|
||
if(pMP->mnLastFrameSeen == mCurrentFrame.mnId)
|
||
continue;
|
||
if(pMP->isBad())
|
||
continue;
|
||
// Project (this fills MapPoint variables for matching)
|
||
if(mCurrentFrame.isInFrustum(pMP,0.5))
|
||
{
|
||
pMP->IncreaseVisible();
|
||
nToMatch++;
|
||
}
|
||
if(pMP->mbTrackInView)
|
||
{
|
||
mCurrentFrame.mmProjectPoints[pMP->mnId] = cv::Point2f(pMP->mTrackProjX, pMP->mTrackProjY);
|
||
}
|
||
}
|
||
|
||
if(nToMatch>0)
|
||
{
|
||
ORBmatcher matcher(0.8);
|
||
int th = 1;
|
||
if(mSensor==System::RGBD)
|
||
th=3;
|
||
if(mpAtlas->isImuInitialized())
|
||
{
|
||
if(mpAtlas->GetCurrentMap()->GetIniertialBA2())
|
||
th=2;
|
||
else
|
||
th=3;
|
||
}
|
||
else if(!mpAtlas->isImuInitialized() && (mSensor==System::IMU_MONOCULAR || mSensor==System::IMU_STEREO))
|
||
{
|
||
th=10;
|
||
}
|
||
|
||
// If the camera has been relocalised recently, perform a coarser search
|
||
if(mCurrentFrame.mnId<mnLastRelocFrameId+2)
|
||
th=5;
|
||
|
||
if(mState==LOST || mState==RECENTLY_LOST) // Lost for less than 1 second
|
||
th=15;
|
||
|
||
int matches = matcher.SearchByProjection(mCurrentFrame, mvpLocalMapPoints, th, mpLocalMapper->mbFarPoints, mpLocalMapper->mThFarPoints);
|
||
}
|
||
}
|
||
|
||
void Tracking::UpdateLocalMap()
|
||
{
|
||
// This is for visualization
|
||
mpAtlas->SetReferenceMapPoints(mvpLocalMapPoints);
|
||
|
||
// Update
|
||
UpdateLocalKeyFrames();
|
||
UpdateLocalPoints();
|
||
}
|
||
|
||
void Tracking::UpdateLocalPoints()
|
||
{
|
||
mvpLocalMapPoints.clear();
|
||
|
||
int count_pts = 0;
|
||
|
||
for(vector<KeyFrame*>::const_reverse_iterator itKF=mvpLocalKeyFrames.rbegin(), itEndKF=mvpLocalKeyFrames.rend(); itKF!=itEndKF; ++itKF)
|
||
{
|
||
KeyFrame* pKF = *itKF;
|
||
const vector<MapPoint*> vpMPs = pKF->GetMapPointMatches();
|
||
|
||
for(vector<MapPoint*>::const_iterator itMP=vpMPs.begin(), itEndMP=vpMPs.end(); itMP!=itEndMP; itMP++)
|
||
{
|
||
|
||
MapPoint* pMP = *itMP;
|
||
if(!pMP)
|
||
continue;
|
||
if(pMP->mnTrackReferenceForFrame==mCurrentFrame.mnId)
|
||
continue;
|
||
if(!pMP->isBad())
|
||
{
|
||
count_pts++;
|
||
mvpLocalMapPoints.push_back(pMP);
|
||
pMP->mnTrackReferenceForFrame=mCurrentFrame.mnId;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void Tracking::UpdateLocalKeyFrames()
|
||
{
|
||
// Each map point vote for the keyframes in which it has been observed
|
||
map<KeyFrame*,int> keyframeCounter;
|
||
if(!mpAtlas->isImuInitialized() || (mCurrentFrame.mnId<mnLastRelocFrameId+2))
|
||
{
|
||
for(int i=0; i<mCurrentFrame.N; i++)
|
||
{
|
||
MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
|
||
if(pMP)
|
||
{
|
||
if(!pMP->isBad())
|
||
{
|
||
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
|
||
for(map<KeyFrame*,tuple<int,int>>::const_iterator it=observations.begin(), itend=observations.end(); it!=itend; it++)
|
||
keyframeCounter[it->first]++;
|
||
}
|
||
else
|
||
{
|
||
mCurrentFrame.mvpMapPoints[i]=NULL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for(int i=0; i<mLastFrame.N; i++)
|
||
{
|
||
// Using lastframe since current frame has not matches yet
|
||
if(mLastFrame.mvpMapPoints[i])
|
||
{
|
||
MapPoint* pMP = mLastFrame.mvpMapPoints[i];
|
||
if(!pMP)
|
||
continue;
|
||
if(!pMP->isBad())
|
||
{
|
||
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
|
||
for(map<KeyFrame*,tuple<int,int>>::const_iterator it=observations.begin(), itend=observations.end(); it!=itend; it++)
|
||
keyframeCounter[it->first]++;
|
||
}
|
||
else
|
||
{
|
||
mLastFrame.mvpMapPoints[i]=NULL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
int max=0;
|
||
KeyFrame* pKFmax= static_cast<KeyFrame*>(NULL);
|
||
|
||
mvpLocalKeyFrames.clear();
|
||
mvpLocalKeyFrames.reserve(3*keyframeCounter.size());
|
||
|
||
// All keyframes that observe a map point are included in the local map. Also check which keyframe shares most points
|
||
for(map<KeyFrame*,int>::const_iterator it=keyframeCounter.begin(), itEnd=keyframeCounter.end(); it!=itEnd; it++)
|
||
{
|
||
KeyFrame* pKF = it->first;
|
||
|
||
if(pKF->isBad())
|
||
continue;
|
||
|
||
if(it->second>max)
|
||
{
|
||
max=it->second;
|
||
pKFmax=pKF;
|
||
}
|
||
|
||
mvpLocalKeyFrames.push_back(pKF);
|
||
pKF->mnTrackReferenceForFrame = mCurrentFrame.mnId;
|
||
}
|
||
|
||
// Include also some not-already-included keyframes that are neighbors to already-included keyframes
|
||
for(vector<KeyFrame*>::const_iterator itKF=mvpLocalKeyFrames.begin(), itEndKF=mvpLocalKeyFrames.end(); itKF!=itEndKF; itKF++)
|
||
{
|
||
// Limit the number of keyframes
|
||
if(mvpLocalKeyFrames.size()>80)
|
||
break;
|
||
|
||
KeyFrame* pKF = *itKF;
|
||
|
||
const vector<KeyFrame*> vNeighs = pKF->GetBestCovisibilityKeyFrames(10);
|
||
|
||
|
||
for(vector<KeyFrame*>::const_iterator itNeighKF=vNeighs.begin(), itEndNeighKF=vNeighs.end(); itNeighKF!=itEndNeighKF; itNeighKF++)
|
||
{
|
||
KeyFrame* pNeighKF = *itNeighKF;
|
||
if(!pNeighKF->isBad())
|
||
{
|
||
if(pNeighKF->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
|
||
{
|
||
mvpLocalKeyFrames.push_back(pNeighKF);
|
||
pNeighKF->mnTrackReferenceForFrame=mCurrentFrame.mnId;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
const set<KeyFrame*> spChilds = pKF->GetChilds();
|
||
for(set<KeyFrame*>::const_iterator sit=spChilds.begin(), send=spChilds.end(); sit!=send; sit++)
|
||
{
|
||
KeyFrame* pChildKF = *sit;
|
||
if(!pChildKF->isBad())
|
||
{
|
||
if(pChildKF->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
|
||
{
|
||
mvpLocalKeyFrames.push_back(pChildKF);
|
||
pChildKF->mnTrackReferenceForFrame=mCurrentFrame.mnId;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
KeyFrame* pParent = pKF->GetParent();
|
||
if(pParent)
|
||
{
|
||
if(pParent->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
|
||
{
|
||
mvpLocalKeyFrames.push_back(pParent);
|
||
pParent->mnTrackReferenceForFrame=mCurrentFrame.mnId;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Add 10 last temporal KFs (mainly for IMU)
|
||
if((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO) &&mvpLocalKeyFrames.size()<80)
|
||
{
|
||
//cout << "CurrentKF: " << mCurrentFrame.mnId << endl;
|
||
KeyFrame* tempKeyFrame = mCurrentFrame.mpLastKeyFrame;
|
||
|
||
const int Nd = 20;
|
||
for(int i=0; i<Nd; i++){
|
||
if (!tempKeyFrame)
|
||
break;
|
||
//cout << "tempKF: " << tempKeyFrame << endl;
|
||
if(tempKeyFrame->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
|
||
{
|
||
mvpLocalKeyFrames.push_back(tempKeyFrame);
|
||
tempKeyFrame->mnTrackReferenceForFrame=mCurrentFrame.mnId;
|
||
tempKeyFrame=tempKeyFrame->mPrevKF;
|
||
}
|
||
}
|
||
}
|
||
|
||
if(pKFmax)
|
||
{
|
||
mpReferenceKF = pKFmax;
|
||
mCurrentFrame.mpReferenceKF = mpReferenceKF;
|
||
}
|
||
}
|
||
|
||
bool Tracking::Relocalization()
|
||
{
|
||
Verbose::PrintMess("Starting relocalization", Verbose::VERBOSITY_NORMAL);
|
||
// Compute Bag of Words Vector
|
||
// Step 1: 计算当前帧特征点的Bow映射
|
||
mCurrentFrame.ComputeBoW();
|
||
|
||
// Relocalization is performed when tracking is lost
|
||
// Track Lost: Query KeyFrame Database for keyframe candidates for relocalisation
|
||
// Step 2:找到与当前帧相似的候选关键帧组
|
||
vector<KeyFrame*> vpCandidateKFs = mpKeyFrameDB->DetectRelocalizationCandidates(&mCurrentFrame, mpAtlas->GetCurrentMap());
|
||
|
||
// 如果没有候选关键帧,则退出
|
||
if(vpCandidateKFs.empty()) {
|
||
Verbose::PrintMess("There are not candidates", Verbose::VERBOSITY_NORMAL);
|
||
return false;
|
||
}
|
||
|
||
const int nKFs = vpCandidateKFs.size();
|
||
|
||
// We perform first an ORB matching with each candidate
|
||
// If enough matches are found we setup a PnP solver
|
||
ORBmatcher matcher(0.75,true);
|
||
|
||
// 每个关键帧的解算器
|
||
vector<MLPnPsolver*> vpMLPnPsolvers;
|
||
vpMLPnPsolvers.resize(nKFs);
|
||
|
||
// 每个关键帧和当前帧中特征点的匹配关系
|
||
vector<vector<MapPoint*> > vvpMapPointMatches;
|
||
vvpMapPointMatches.resize(nKFs);
|
||
|
||
// 放弃某个关键帧的标记
|
||
vector<bool> vbDiscarded;
|
||
vbDiscarded.resize(nKFs);
|
||
|
||
// 有效的候选关键帧数目
|
||
int nCandidates=0;
|
||
|
||
// Step 3:遍历所有的候选关键帧,通过BoW进行快速匹配,用匹配结果初始化PnP Solver
|
||
for(int i=0; i<nKFs; i++)
|
||
{
|
||
KeyFrame* pKF = vpCandidateKFs[i];
|
||
if(pKF->isBad())
|
||
vbDiscarded[i] = true;
|
||
else
|
||
{
|
||
// 当前帧和候选关键帧用BoW进行快速匹配,匹配结果记录在vvpMapPointMatches,nmatches表示匹配的数目
|
||
int nmatches = matcher.SearchByBoW(pKF,mCurrentFrame,vvpMapPointMatches[i]);
|
||
if(nmatches<15)
|
||
{
|
||
vbDiscarded[i] = true;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
// 如果匹配数目够用,用匹配结果初始化MLPnPsolver
|
||
// ? 为什么用MLPnP? 因为考虑了鱼眼相机模型,解耦某些关系?
|
||
// 参考论文《MLPNP-A REAL-TIME MAXIMUM LIKELIHOOD SOLUTION TO THE PERSPECTIVE-N-POINT PROBLEM》
|
||
MLPnPsolver* pSolver = new MLPnPsolver(mCurrentFrame,vvpMapPointMatches[i]);
|
||
// 构造函数调用了一遍,这里重新设置参数
|
||
pSolver->SetRansacParameters(
|
||
0.99, // 模型最大概率值,默认0.9
|
||
10, // 内点的最小阈值,默认8
|
||
300, // 最大迭代次数,默认300
|
||
6, // 最小集,每次采样六个点,即最小集应该设置为6,论文里面写着I > 5
|
||
0.5, // 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4
|
||
5.991); // 卡方检验阈值 //This solver needs at least 6 points
|
||
vpMLPnPsolvers[i] = pSolver;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Alternatively perform some iterations of P4P RANSAC
|
||
// Until we found a camera pose supported by enough inliers
|
||
// 足够的内点才能匹配使用PNP算法,MLPnP需要至少6个点
|
||
// 是否已经找到相匹配的关键帧的标志
|
||
bool bMatch = false;
|
||
ORBmatcher matcher2(0.9,true);
|
||
|
||
// Step 4: 通过一系列操作,直到找到能够匹配上的关键帧
|
||
// 为什么搞这么复杂?答:是担心误闭环
|
||
while(nCandidates>0 && !bMatch)
|
||
{
|
||
for(int i=0; i<nKFs; i++)
|
||
{
|
||
if(vbDiscarded[i])
|
||
continue;
|
||
|
||
// Perform 5 Ransac Iterations
|
||
// 内点标记
|
||
vector<bool> vbInliers;
|
||
|
||
// 内点数
|
||
int nInliers;
|
||
|
||
// 表示RANSAC已经没有更多的迭代次数可用 -- 也就是说数据不够好,RANSAC也已经尽力了。。。
|
||
bool bNoMore;
|
||
|
||
// Step 4.1:通过MLPnP算法估计姿态,迭代5次
|
||
MLPnPsolver* pSolver = vpMLPnPsolvers[i];
|
||
// PnP算法的入口函数
|
||
cv::Mat Tcw = pSolver->iterate(5,bNoMore,vbInliers,nInliers);
|
||
|
||
// If Ransac reachs max. iterations discard keyframe
|
||
// bNoMore 为true 表示已经超过了RANSAC最大迭代次数,就放弃当前关键帧
|
||
if(bNoMore)
|
||
{
|
||
vbDiscarded[i]=true;
|
||
nCandidates--;
|
||
}
|
||
|
||
// If a Camera Pose is computed, optimize
|
||
if(!Tcw.empty())
|
||
{
|
||
// Step 4.2:如果MLPnP 计算出了位姿,对内点进行BA优化
|
||
Tcw.copyTo(mCurrentFrame.mTcw);
|
||
|
||
// MLPnP 里RANSAC后的内点的集合
|
||
set<MapPoint*> sFound;
|
||
|
||
const int np = vbInliers.size();
|
||
|
||
// 遍历所有内点
|
||
for(int j=0; j<np; j++)
|
||
{
|
||
if(vbInliers[j])
|
||
{
|
||
mCurrentFrame.mvpMapPoints[j]=vvpMapPointMatches[i][j];
|
||
sFound.insert(vvpMapPointMatches[i][j]);
|
||
}
|
||
else
|
||
mCurrentFrame.mvpMapPoints[j]=NULL;
|
||
}
|
||
|
||
// 只优化位姿,不优化地图点的坐标,返回的是内点的数量
|
||
int nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||
|
||
// 如果优化之后的内点数目不多,跳过了当前候选关键帧,但是却没有放弃当前帧的重定位
|
||
if(nGood<10)
|
||
continue;
|
||
|
||
// 删除外点对应的地图点,这里直接设为空指针
|
||
for(int io =0; io<mCurrentFrame.N; io++)
|
||
if(mCurrentFrame.mvbOutlier[io])
|
||
mCurrentFrame.mvpMapPoints[io]=static_cast<MapPoint*>(NULL);
|
||
|
||
// If few inliers, search by projection in a coarse window and optimize again
|
||
// Step 4.3:如果内点较少,则通过投影的方式对之前未匹配的点进行匹配,再进行优化求解
|
||
// 前面的匹配关系是用词袋匹配过程得到的
|
||
if(nGood<50)
|
||
{
|
||
// 通过投影的方式将关键帧中未匹配的地图点投影到当前帧中, 生成新的匹配
|
||
int nadditional =matcher2.SearchByProjection(
|
||
mCurrentFrame, // 当前帧
|
||
vpCandidateKFs[i], // 关键帧
|
||
sFound, // 已经找到的地图点集合,不会用于PNP
|
||
10, // 窗口阈值,会乘以金字塔尺度
|
||
100); // 匹配的ORB描述子距离应该小于这个阈值
|
||
|
||
if(nadditional+nGood>=50)
|
||
{
|
||
// 根据投影匹配的结果,再次采用3D-2D pnp BA优化位姿
|
||
nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||
|
||
// If many inliers but still not enough, search by projection again in a narrower window
|
||
// the camera has been already optimized with many points
|
||
// Step 4.4:如果BA后内点数还是比较少(<50)但是还不至于太少(>30),可以挽救一下, 最后垂死挣扎
|
||
// 重新执行上一步 4.3的过程,只不过使用更小的搜索窗口
|
||
// 这里的位姿已经使用了更多的点进行了优化,应该更准,所以使用更小的窗口搜索
|
||
if(nGood>30 && nGood<50)
|
||
{
|
||
// 用更小窗口、更严格的描述子阈值,重新进行投影搜索匹配
|
||
sFound.clear();
|
||
for(int ip =0; ip<mCurrentFrame.N; ip++)
|
||
if(mCurrentFrame.mvpMapPoints[ip])
|
||
sFound.insert(mCurrentFrame.mvpMapPoints[ip]);
|
||
nadditional =matcher2.SearchByProjection(
|
||
mCurrentFrame, // 当前帧
|
||
vpCandidateKFs[i], // 候选的关键帧
|
||
sFound, // 已经找到的地图点,不会用于PNP
|
||
3, // 新的窗口阈值,会乘以金字塔尺度
|
||
64); // 匹配的ORB描述子距离应该小于这个阈值
|
||
|
||
// Final optimization
|
||
// 如果成功挽救回来,匹配数目达到要求,最后BA优化一下
|
||
if(nGood+nadditional>=50)
|
||
{
|
||
nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||
//更新地图点
|
||
for(int io =0; io<mCurrentFrame.N; io++)
|
||
if(mCurrentFrame.mvbOutlier[io])
|
||
mCurrentFrame.mvpMapPoints[io]=NULL;
|
||
}
|
||
//如果还是不能够满足就放弃了
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
// If the pose is supported by enough inliers stop ransacs and continue
|
||
if(nGood>=50)
|
||
{
|
||
bMatch = true;
|
||
// 只要有一个候选关键帧重定位成功,就退出循环,不考虑其他候选关键帧了
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if(!bMatch)
|
||
{
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
mnLastRelocFrameId = mCurrentFrame.mnId;
|
||
cout << "Relocalized!!" << endl;
|
||
return true;
|
||
}
|
||
|
||
}
|
||
|
||
void Tracking::Reset(bool bLocMap)
|
||
{
|
||
Verbose::PrintMess("System Reseting", Verbose::VERBOSITY_NORMAL);
|
||
|
||
if(mpViewer)
|
||
{
|
||
mpViewer->RequestStop();
|
||
while(!mpViewer->isStopped())
|
||
usleep(3000);
|
||
}
|
||
|
||
// Reset Local Mapping
|
||
if (!bLocMap)
|
||
{
|
||
Verbose::PrintMess("Reseting Local Mapper...", Verbose::VERBOSITY_NORMAL);
|
||
mpLocalMapper->RequestReset();
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
}
|
||
|
||
|
||
// Reset Loop Closing
|
||
Verbose::PrintMess("Reseting Loop Closing...", Verbose::VERBOSITY_NORMAL);
|
||
mpLoopClosing->RequestReset();
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
|
||
// Clear BoW Database
|
||
Verbose::PrintMess("Reseting Database...", Verbose::VERBOSITY_NORMAL);
|
||
mpKeyFrameDB->clear();
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
|
||
// Clear Map (this erase MapPoints and KeyFrames)
|
||
mpAtlas->clearAtlas();
|
||
mpAtlas->CreateNewMap();
|
||
if (mSensor==System::IMU_STEREO || mSensor == System::IMU_MONOCULAR)
|
||
mpAtlas->SetInertialSensor();
|
||
mnInitialFrameId = 0;
|
||
|
||
KeyFrame::nNextId = 0;
|
||
Frame::nNextId = 0;
|
||
mState = NO_IMAGES_YET;
|
||
|
||
if(mpInitializer)
|
||
{
|
||
delete mpInitializer;
|
||
mpInitializer = static_cast<Initializer*>(NULL);
|
||
}
|
||
mbSetInit=false;
|
||
|
||
mlRelativeFramePoses.clear();
|
||
mlpReferences.clear();
|
||
mlFrameTimes.clear();
|
||
mlbLost.clear();
|
||
mCurrentFrame = Frame();
|
||
mnLastRelocFrameId = 0;
|
||
mLastFrame = Frame();
|
||
mpReferenceKF = static_cast<KeyFrame*>(NULL);
|
||
mpLastKeyFrame = static_cast<KeyFrame*>(NULL);
|
||
mvIniMatches.clear();
|
||
|
||
if(mpViewer)
|
||
mpViewer->Release();
|
||
|
||
Verbose::PrintMess(" End reseting! ", Verbose::VERBOSITY_NORMAL);
|
||
}
|
||
|
||
void Tracking::ResetActiveMap(bool bLocMap)
|
||
{
|
||
Verbose::PrintMess("Active map Reseting", Verbose::VERBOSITY_NORMAL);
|
||
if(mpViewer)
|
||
{
|
||
mpViewer->RequestStop();
|
||
while(!mpViewer->isStopped())
|
||
usleep(3000);
|
||
}
|
||
|
||
Map* pMap = mpAtlas->GetCurrentMap();
|
||
|
||
if (!bLocMap)
|
||
{
|
||
Verbose::PrintMess("Reseting Local Mapper...", Verbose::VERBOSITY_NORMAL);
|
||
mpLocalMapper->RequestResetActiveMap(pMap);
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
}
|
||
|
||
// Reset Loop Closing
|
||
Verbose::PrintMess("Reseting Loop Closing...", Verbose::VERBOSITY_NORMAL);
|
||
mpLoopClosing->RequestResetActiveMap(pMap);
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
|
||
// Clear BoW Database
|
||
Verbose::PrintMess("Reseting Database", Verbose::VERBOSITY_NORMAL);
|
||
mpKeyFrameDB->clearMap(pMap); // Only clear the active map references
|
||
Verbose::PrintMess("done", Verbose::VERBOSITY_NORMAL);
|
||
|
||
// Clear Map (this erase MapPoints and KeyFrames)
|
||
mpAtlas->clearMap();
|
||
|
||
mnLastInitFrameId = Frame::nNextId;
|
||
mnLastRelocFrameId = mnLastInitFrameId;
|
||
mState = NO_IMAGES_YET;
|
||
|
||
if(mpInitializer)
|
||
{
|
||
delete mpInitializer;
|
||
mpInitializer = static_cast<Initializer*>(NULL);
|
||
}
|
||
|
||
list<bool> lbLost;
|
||
unsigned int index = mnFirstFrameId;
|
||
cout << "mnFirstFrameId = " << mnFirstFrameId << endl;
|
||
for(Map* pMap : mpAtlas->GetAllMaps())
|
||
{
|
||
if(pMap->GetAllKeyFrames().size() > 0)
|
||
{
|
||
if(index > pMap->GetLowerKFID())
|
||
index = pMap->GetLowerKFID();
|
||
}
|
||
}
|
||
|
||
int num_lost = 0;
|
||
cout << "mnInitialFrameId = " << mnInitialFrameId << endl;
|
||
|
||
for(list<bool>::iterator ilbL = mlbLost.begin(); ilbL != mlbLost.end(); ilbL++)
|
||
{
|
||
if(index < mnInitialFrameId)
|
||
lbLost.push_back(*ilbL);
|
||
else
|
||
{
|
||
lbLost.push_back(true);
|
||
num_lost += 1;
|
||
}
|
||
|
||
index++;
|
||
}
|
||
cout << num_lost << " Frames set to lost" << endl;
|
||
|
||
mlbLost = lbLost;
|
||
|
||
mnInitialFrameId = mCurrentFrame.mnId;
|
||
mnLastRelocFrameId = mCurrentFrame.mnId;
|
||
|
||
mCurrentFrame = Frame();
|
||
mLastFrame = Frame();
|
||
mpReferenceKF = static_cast<KeyFrame*>(NULL);
|
||
mpLastKeyFrame = static_cast<KeyFrame*>(NULL);
|
||
mvIniMatches.clear();
|
||
|
||
if(mpViewer)
|
||
mpViewer->Release();
|
||
|
||
Verbose::PrintMess(" End reseting! ", Verbose::VERBOSITY_NORMAL);
|
||
}
|
||
|
||
vector<MapPoint*> Tracking::GetLocalMapMPS()
|
||
{
|
||
return mvpLocalMapPoints;
|
||
}
|
||
|
||
void Tracking::ChangeCalibration(const string &strSettingPath)
|
||
{
|
||
cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ);
|
||
float fx = fSettings["Camera.fx"];
|
||
float fy = fSettings["Camera.fy"];
|
||
float cx = fSettings["Camera.cx"];
|
||
float cy = fSettings["Camera.cy"];
|
||
|
||
cv::Mat K = cv::Mat::eye(3,3,CV_32F);
|
||
K.at<float>(0,0) = fx;
|
||
K.at<float>(1,1) = fy;
|
||
K.at<float>(0,2) = cx;
|
||
K.at<float>(1,2) = cy;
|
||
K.copyTo(mK);
|
||
|
||
cv::Mat DistCoef(4,1,CV_32F);
|
||
DistCoef.at<float>(0) = fSettings["Camera.k1"];
|
||
DistCoef.at<float>(1) = fSettings["Camera.k2"];
|
||
DistCoef.at<float>(2) = fSettings["Camera.p1"];
|
||
DistCoef.at<float>(3) = fSettings["Camera.p2"];
|
||
const float k3 = fSettings["Camera.k3"];
|
||
if(k3!=0)
|
||
{
|
||
DistCoef.resize(5);
|
||
DistCoef.at<float>(4) = k3;
|
||
}
|
||
DistCoef.copyTo(mDistCoef);
|
||
|
||
mbf = fSettings["Camera.bf"];
|
||
|
||
Frame::mbInitialComputations = true;
|
||
}
|
||
|
||
void Tracking::InformOnlyTracking(const bool &flag)
|
||
{
|
||
mbOnlyTracking = flag;
|
||
}
|
||
|
||
void Tracking::UpdateFrameIMU(const float s, const IMU::Bias &b, KeyFrame* pCurrentKeyFrame)
|
||
{
|
||
Map * pMap = pCurrentKeyFrame->GetMap();
|
||
unsigned int index = mnFirstFrameId;
|
||
list<ORB_SLAM3::KeyFrame*>::iterator lRit = mlpReferences.begin();
|
||
list<bool>::iterator lbL = mlbLost.begin();
|
||
for(list<cv::Mat>::iterator lit=mlRelativeFramePoses.begin(),lend=mlRelativeFramePoses.end();lit!=lend;lit++, lRit++, lbL++)
|
||
{
|
||
if(*lbL)
|
||
continue;
|
||
|
||
KeyFrame* pKF = *lRit;
|
||
|
||
while(pKF->isBad())
|
||
{
|
||
pKF = pKF->GetParent();
|
||
}
|
||
|
||
if(pKF->GetMap() == pMap)
|
||
{
|
||
(*lit).rowRange(0,3).col(3)=(*lit).rowRange(0,3).col(3)*s;
|
||
}
|
||
}
|
||
|
||
mLastBias = b;
|
||
|
||
mpLastKeyFrame = pCurrentKeyFrame;
|
||
|
||
mLastFrame.SetNewBias(mLastBias);
|
||
mCurrentFrame.SetNewBias(mLastBias);
|
||
|
||
cv::Mat Gz = (cv::Mat_<float>(3,1) << 0, 0, -IMU::GRAVITY_VALUE);
|
||
|
||
cv::Mat twb1;
|
||
cv::Mat Rwb1;
|
||
cv::Mat Vwb1;
|
||
float t12;
|
||
|
||
while(!mCurrentFrame.imuIsPreintegrated())
|
||
{
|
||
usleep(500);
|
||
}
|
||
|
||
|
||
if(mLastFrame.mnId == mLastFrame.mpLastKeyFrame->mnFrameId)
|
||
{
|
||
mLastFrame.SetImuPoseVelocity(mLastFrame.mpLastKeyFrame->GetImuRotation(),
|
||
mLastFrame.mpLastKeyFrame->GetImuPosition(),
|
||
mLastFrame.mpLastKeyFrame->GetVelocity());
|
||
}
|
||
else
|
||
{
|
||
twb1 = mLastFrame.mpLastKeyFrame->GetImuPosition();
|
||
Rwb1 = mLastFrame.mpLastKeyFrame->GetImuRotation();
|
||
Vwb1 = mLastFrame.mpLastKeyFrame->GetVelocity();
|
||
t12 = mLastFrame.mpImuPreintegrated->dT;
|
||
|
||
mLastFrame.SetImuPoseVelocity(Rwb1*mLastFrame.mpImuPreintegrated->GetUpdatedDeltaRotation(),
|
||
twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mLastFrame.mpImuPreintegrated->GetUpdatedDeltaPosition(),
|
||
Vwb1 + Gz*t12 + Rwb1*mLastFrame.mpImuPreintegrated->GetUpdatedDeltaVelocity());
|
||
}
|
||
|
||
if (mCurrentFrame.mpImuPreintegrated)
|
||
{
|
||
twb1 = mCurrentFrame.mpLastKeyFrame->GetImuPosition();
|
||
Rwb1 = mCurrentFrame.mpLastKeyFrame->GetImuRotation();
|
||
Vwb1 = mCurrentFrame.mpLastKeyFrame->GetVelocity();
|
||
t12 = mCurrentFrame.mpImuPreintegrated->dT;
|
||
|
||
mCurrentFrame.SetImuPoseVelocity(Rwb1*mCurrentFrame.mpImuPreintegrated->GetUpdatedDeltaRotation(),
|
||
twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mCurrentFrame.mpImuPreintegrated->GetUpdatedDeltaPosition(),
|
||
Vwb1 + Gz*t12 + Rwb1*mCurrentFrame.mpImuPreintegrated->GetUpdatedDeltaVelocity());
|
||
}
|
||
|
||
mnFirstImuFrameId = mCurrentFrame.mnId;
|
||
}
|
||
|
||
|
||
cv::Mat Tracking::ComputeF12(KeyFrame *&pKF1, KeyFrame *&pKF2)
|
||
{
|
||
cv::Mat R1w = pKF1->GetRotation();
|
||
cv::Mat t1w = pKF1->GetTranslation();
|
||
cv::Mat R2w = pKF2->GetRotation();
|
||
cv::Mat t2w = pKF2->GetTranslation();
|
||
|
||
cv::Mat R12 = R1w*R2w.t();
|
||
cv::Mat t12 = -R1w*R2w.t()*t2w+t1w;
|
||
|
||
cv::Mat t12x = Converter::tocvSkewMatrix(t12);
|
||
|
||
const cv::Mat &K1 = pKF1->mK;
|
||
const cv::Mat &K2 = pKF2->mK;
|
||
|
||
|
||
return K1.t().inv()*t12x*R12*K2.inv();
|
||
}
|
||
|
||
|
||
void Tracking::CreateNewMapPoints()
|
||
{
|
||
// Retrieve neighbor keyframes in covisibility graph
|
||
const vector<KeyFrame*> vpKFs = mpAtlas->GetAllKeyFrames();
|
||
|
||
ORBmatcher matcher(0.6,false);
|
||
|
||
cv::Mat Rcw1 = mpLastKeyFrame->GetRotation();
|
||
cv::Mat Rwc1 = Rcw1.t();
|
||
cv::Mat tcw1 = mpLastKeyFrame->GetTranslation();
|
||
cv::Mat Tcw1(3,4,CV_32F);
|
||
Rcw1.copyTo(Tcw1.colRange(0,3));
|
||
tcw1.copyTo(Tcw1.col(3));
|
||
cv::Mat Ow1 = mpLastKeyFrame->GetCameraCenter();
|
||
|
||
const float &fx1 = mpLastKeyFrame->fx;
|
||
const float &fy1 = mpLastKeyFrame->fy;
|
||
const float &cx1 = mpLastKeyFrame->cx;
|
||
const float &cy1 = mpLastKeyFrame->cy;
|
||
const float &invfx1 = mpLastKeyFrame->invfx;
|
||
const float &invfy1 = mpLastKeyFrame->invfy;
|
||
|
||
const float ratioFactor = 1.5f*mpLastKeyFrame->mfScaleFactor;
|
||
|
||
int nnew=0;
|
||
|
||
// Search matches with epipolar restriction and triangulate
|
||
for(size_t i=0; i<vpKFs.size(); i++)
|
||
{
|
||
KeyFrame* pKF2 = vpKFs[i];
|
||
if(pKF2==mpLastKeyFrame)
|
||
continue;
|
||
|
||
// Check first that baseline is not too short
|
||
cv::Mat Ow2 = pKF2->GetCameraCenter();
|
||
cv::Mat vBaseline = Ow2-Ow1;
|
||
const float baseline = cv::norm(vBaseline);
|
||
|
||
if((mSensor!=System::MONOCULAR)||(mSensor!=System::IMU_MONOCULAR))
|
||
{
|
||
if(baseline<pKF2->mb)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
const float medianDepthKF2 = pKF2->ComputeSceneMedianDepth(2);
|
||
const float ratioBaselineDepth = baseline/medianDepthKF2;
|
||
|
||
if(ratioBaselineDepth<0.01)
|
||
continue;
|
||
}
|
||
|
||
// Compute Fundamental Matrix
|
||
cv::Mat F12 = ComputeF12(mpLastKeyFrame,pKF2);
|
||
|
||
// Search matches that fullfil epipolar constraint
|
||
vector<pair<size_t,size_t> > vMatchedIndices;
|
||
matcher.SearchForTriangulation(mpLastKeyFrame,pKF2,F12,vMatchedIndices,false);
|
||
|
||
cv::Mat Rcw2 = pKF2->GetRotation();
|
||
cv::Mat Rwc2 = Rcw2.t();
|
||
cv::Mat tcw2 = pKF2->GetTranslation();
|
||
cv::Mat Tcw2(3,4,CV_32F);
|
||
Rcw2.copyTo(Tcw2.colRange(0,3));
|
||
tcw2.copyTo(Tcw2.col(3));
|
||
|
||
const float &fx2 = pKF2->fx;
|
||
const float &fy2 = pKF2->fy;
|
||
const float &cx2 = pKF2->cx;
|
||
const float &cy2 = pKF2->cy;
|
||
const float &invfx2 = pKF2->invfx;
|
||
const float &invfy2 = pKF2->invfy;
|
||
|
||
// Triangulate each match
|
||
const int nmatches = vMatchedIndices.size();
|
||
for(int ikp=0; ikp<nmatches; ikp++)
|
||
{
|
||
const int &idx1 = vMatchedIndices[ikp].first;
|
||
const int &idx2 = vMatchedIndices[ikp].second;
|
||
|
||
const cv::KeyPoint &kp1 = mpLastKeyFrame->mvKeysUn[idx1];
|
||
const float kp1_ur=mpLastKeyFrame->mvuRight[idx1];
|
||
bool bStereo1 = kp1_ur>=0;
|
||
|
||
const cv::KeyPoint &kp2 = pKF2->mvKeysUn[idx2];
|
||
const float kp2_ur = pKF2->mvuRight[idx2];
|
||
bool bStereo2 = kp2_ur>=0;
|
||
|
||
// Check parallax between rays
|
||
cv::Mat xn1 = (cv::Mat_<float>(3,1) << (kp1.pt.x-cx1)*invfx1, (kp1.pt.y-cy1)*invfy1, 1.0);
|
||
cv::Mat xn2 = (cv::Mat_<float>(3,1) << (kp2.pt.x-cx2)*invfx2, (kp2.pt.y-cy2)*invfy2, 1.0);
|
||
|
||
cv::Mat ray1 = Rwc1*xn1;
|
||
cv::Mat ray2 = Rwc2*xn2;
|
||
const float cosParallaxRays = ray1.dot(ray2)/(cv::norm(ray1)*cv::norm(ray2));
|
||
|
||
float cosParallaxStereo = cosParallaxRays+1;
|
||
float cosParallaxStereo1 = cosParallaxStereo;
|
||
float cosParallaxStereo2 = cosParallaxStereo;
|
||
|
||
if(bStereo1)
|
||
cosParallaxStereo1 = cos(2*atan2(mpLastKeyFrame->mb/2,mpLastKeyFrame->mvDepth[idx1]));
|
||
else if(bStereo2)
|
||
cosParallaxStereo2 = cos(2*atan2(pKF2->mb/2,pKF2->mvDepth[idx2]));
|
||
|
||
cosParallaxStereo = min(cosParallaxStereo1,cosParallaxStereo2);
|
||
|
||
cv::Mat x3D;
|
||
if(cosParallaxRays<cosParallaxStereo && cosParallaxRays>0 && (bStereo1 || bStereo2 || cosParallaxRays<0.9998))
|
||
{
|
||
// Linear Triangulation Method
|
||
cv::Mat A(4,4,CV_32F);
|
||
A.row(0) = xn1.at<float>(0)*Tcw1.row(2)-Tcw1.row(0);
|
||
A.row(1) = xn1.at<float>(1)*Tcw1.row(2)-Tcw1.row(1);
|
||
A.row(2) = xn2.at<float>(0)*Tcw2.row(2)-Tcw2.row(0);
|
||
A.row(3) = xn2.at<float>(1)*Tcw2.row(2)-Tcw2.row(1);
|
||
|
||
cv::Mat w,u,vt;
|
||
cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
|
||
|
||
x3D = vt.row(3).t();
|
||
|
||
if(x3D.at<float>(3)==0)
|
||
continue;
|
||
|
||
// Euclidean coordinates
|
||
x3D = x3D.rowRange(0,3)/x3D.at<float>(3);
|
||
|
||
}
|
||
else if(bStereo1 && cosParallaxStereo1<cosParallaxStereo2)
|
||
{
|
||
x3D = mpLastKeyFrame->UnprojectStereo(idx1);
|
||
}
|
||
else if(bStereo2 && cosParallaxStereo2<cosParallaxStereo1)
|
||
{
|
||
x3D = pKF2->UnprojectStereo(idx2);
|
||
}
|
||
else
|
||
continue; //No stereo and very low parallax
|
||
|
||
cv::Mat x3Dt = x3D.t();
|
||
|
||
//Check triangulation in front of cameras
|
||
float z1 = Rcw1.row(2).dot(x3Dt)+tcw1.at<float>(2);
|
||
if(z1<=0)
|
||
continue;
|
||
|
||
float z2 = Rcw2.row(2).dot(x3Dt)+tcw2.at<float>(2);
|
||
if(z2<=0)
|
||
continue;
|
||
|
||
//Check reprojection error in first keyframe
|
||
const float &sigmaSquare1 = mpLastKeyFrame->mvLevelSigma2[kp1.octave];
|
||
const float x1 = Rcw1.row(0).dot(x3Dt)+tcw1.at<float>(0);
|
||
const float y1 = Rcw1.row(1).dot(x3Dt)+tcw1.at<float>(1);
|
||
const float invz1 = 1.0/z1;
|
||
|
||
if(!bStereo1)
|
||
{
|
||
float u1 = fx1*x1*invz1+cx1;
|
||
float v1 = fy1*y1*invz1+cy1;
|
||
float errX1 = u1 - kp1.pt.x;
|
||
float errY1 = v1 - kp1.pt.y;
|
||
if((errX1*errX1+errY1*errY1)>5.991*sigmaSquare1)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
float u1 = fx1*x1*invz1+cx1;
|
||
float u1_r = u1 - mpLastKeyFrame->mbf*invz1;
|
||
float v1 = fy1*y1*invz1+cy1;
|
||
float errX1 = u1 - kp1.pt.x;
|
||
float errY1 = v1 - kp1.pt.y;
|
||
float errX1_r = u1_r - kp1_ur;
|
||
if((errX1*errX1+errY1*errY1+errX1_r*errX1_r)>7.8*sigmaSquare1)
|
||
continue;
|
||
}
|
||
|
||
//Check reprojection error in second keyframe
|
||
const float sigmaSquare2 = pKF2->mvLevelSigma2[kp2.octave];
|
||
const float x2 = Rcw2.row(0).dot(x3Dt)+tcw2.at<float>(0);
|
||
const float y2 = Rcw2.row(1).dot(x3Dt)+tcw2.at<float>(1);
|
||
const float invz2 = 1.0/z2;
|
||
if(!bStereo2)
|
||
{
|
||
float u2 = fx2*x2*invz2+cx2;
|
||
float v2 = fy2*y2*invz2+cy2;
|
||
float errX2 = u2 - kp2.pt.x;
|
||
float errY2 = v2 - kp2.pt.y;
|
||
if((errX2*errX2+errY2*errY2)>5.991*sigmaSquare2)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
float u2 = fx2*x2*invz2+cx2;
|
||
float u2_r = u2 - mpLastKeyFrame->mbf*invz2;
|
||
float v2 = fy2*y2*invz2+cy2;
|
||
float errX2 = u2 - kp2.pt.x;
|
||
float errY2 = v2 - kp2.pt.y;
|
||
float errX2_r = u2_r - kp2_ur;
|
||
if((errX2*errX2+errY2*errY2+errX2_r*errX2_r)>7.8*sigmaSquare2)
|
||
continue;
|
||
}
|
||
|
||
//Check scale consistency
|
||
cv::Mat normal1 = x3D-Ow1;
|
||
float dist1 = cv::norm(normal1);
|
||
|
||
cv::Mat normal2 = x3D-Ow2;
|
||
float dist2 = cv::norm(normal2);
|
||
|
||
if(dist1==0 || dist2==0)
|
||
continue;
|
||
|
||
const float ratioDist = dist2/dist1;
|
||
const float ratioOctave = mpLastKeyFrame->mvScaleFactors[kp1.octave]/pKF2->mvScaleFactors[kp2.octave];
|
||
|
||
if(ratioDist*ratioFactor<ratioOctave || ratioDist>ratioOctave*ratioFactor)
|
||
continue;
|
||
|
||
// Triangulation is succesfull
|
||
MapPoint* pMP = new MapPoint(x3D,mpLastKeyFrame,mpAtlas->GetCurrentMap());
|
||
|
||
pMP->AddObservation(mpLastKeyFrame,idx1);
|
||
pMP->AddObservation(pKF2,idx2);
|
||
|
||
mpLastKeyFrame->AddMapPoint(pMP,idx1);
|
||
pKF2->AddMapPoint(pMP,idx2);
|
||
|
||
pMP->ComputeDistinctiveDescriptors();
|
||
|
||
pMP->UpdateNormalAndDepth();
|
||
|
||
mpAtlas->AddMapPoint(pMP);
|
||
nnew++;
|
||
}
|
||
}
|
||
TrackReferenceKeyFrame();
|
||
}
|
||
|
||
void Tracking::NewDataset()
|
||
{
|
||
mnNumDataset++;
|
||
}
|
||
|
||
int Tracking::GetNumberDataset()
|
||
{
|
||
return mnNumDataset;
|
||
}
|
||
|
||
int Tracking::GetMatchesInliers()
|
||
{
|
||
return mnMatchesInliers;
|
||
}
|
||
|
||
} //namespace ORB_SLAM
|