orb_slam3_details/src/MLPnPsolver.cpp

1746 lines
82 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
/******************************************************************************
* Author: Steffen Urban *
* Contact: urbste@gmail.com *
* License: Copyright (c) 2016 Steffen Urban, ANU. All rights reserved. *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* * Redistributions of source code must retain the above copyright *
* notice, this list of conditions and the following disclaimer. *
* * Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* * Neither the name of ANU nor the names of its contributors may be *
* used to endorse or promote products derived from this software without *
* specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"*
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE *
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE *
* ARE DISCLAIMED. IN NO EVENT SHALL ANU OR THE CONTRIBUTORS BE LIABLE *
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL *
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR *
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER *
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT *
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY *
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *
* SUCH DAMAGE. *
******************************************************************************/
#include "MLPnPsolver.h"
#include <Eigen/Sparse>
// MLPnP算法极大似然PnP算法解决PnP问题用在重定位中不用运动的先验知识来估计相机位姿
// 基于论文《MLPNP - A REAL-TIME MAXIMUM LIKELIHOOD SOLUTION TO THE PERSPECTIVE-N-POINT PROBLEM》
namespace ORB_SLAM3
{
/**
* @brief MLPnP 构造函数
*
* @param[in] F 输入帧的数据
* @param[in] vpMapPointMatches 待匹配的特征点
* @param[in] mnInliersi 内点的个数
* @param[in] mnIterations Ransac迭代次数
* @param[in] mnBestInliers 最佳内点数
* @param[in] N 所有2D点的个数
* @param[in] mpCamera 相机模型利用该变量对3D点进行投影
*/
MLPnPsolver::MLPnPsolver(const Frame &F, // 输入帧的数据
const vector<MapPoint *> &vpMapPointMatches // 待匹配的特征点是当前帧和候选关键帧用BoW进行快速匹配的结果
) : mnInliersi(0), // 内点的个数
mnIterations(0), // Ransac迭代次数
mnBestInliers(0), // 最佳内点数
N(0), // 所有2D点的个数
mpCamera(F.mpCamera) // 相机模型利用该变量对3D点进行投影
{
mvpMapPointMatches = vpMapPointMatches; // 待匹配的特征点是当前帧和候选关键帧用BoW进行快速匹配的结果
mvBearingVecs.reserve(F.mvpMapPoints.size()); // 初始化3D点的单位向量
mvP2D.reserve(F.mvpMapPoints.size()); // 初始化3D点的投影点
mvSigma2.reserve(F.mvpMapPoints.size()); // 初始化卡方检验中的sigma值
mvP3Dw.reserve(F.mvpMapPoints.size()); // 初始化3D点坐标
mvKeyPointIndices.reserve(F.mvpMapPoints.size()); // 初始化3D点的索引值
mvAllIndices.reserve(F.mvpMapPoints.size()); // 初始化所有索引值
// 一些必要的初始化操作
int idx = 0;
for (size_t i = 0, iend = mvpMapPointMatches.size(); i < iend; i++)
{
MapPoint *pMP = vpMapPointMatches[i];
// 如果pMP存在则接下来初始化一些参数否则什么都不做
if (pMP)
{
// 判断是否是坏点
if (!pMP->isBad())
{
// 如果记录的点个数超过总数,则不做任何事情,否则继续记录
if (i >= F.mvKeysUn.size())
continue;
const cv::KeyPoint &kp = F.mvKeysUn[i];
// 保存3D点的投影点
mvP2D.push_back(kp.pt);
// 保存卡方检验中的sigma值
mvSigma2.push_back(F.mvLevelSigma2[kp.octave]);
// Bearing vector should be normalized
// 特征点投影,并计算单位向量
cv::Point3f cv_br = mpCamera->unproject(kp.pt);
cv_br /= cv_br.z;
bearingVector_t br(cv_br.x, cv_br.y, cv_br.z);
mvBearingVecs.push_back(br);
// 3D coordinates
// 获取当前特征点的3D坐标
Eigen::Matrix<float, 3, 1> posEig = pMP->GetWorldPos();
point_t pos(posEig(0), posEig(1), posEig(2));
mvP3Dw.push_back(pos);
// 记录当前特征点的索引值,挑选后的
mvKeyPointIndices.push_back(i);
// 记录所有特征点的索引值
mvAllIndices.push_back(idx);
idx++;
}
}
}
// 设置RANSAC参数
SetRansacParameters();
}
// RANSAC methods
/**
* @brief MLPnP迭代计算相机位姿
*
* @param[in] nIterations 迭代次数
* @param[in] bNoMore 达到最大迭代次数的标志
* @param[in] vbInliers 内点的标记
* @param[in] nInliers 总共内点数
* @return cv::Mat 计算出来的位姿
*/
bool MLPnPsolver::iterate(int nIterations, bool &bNoMore, vector<bool> &vbInliers, int &nInliers, Eigen::Matrix4f &Tout)
{
Tout.setIdentity();
bNoMore = false; // 已经达到最大迭代次数的标志
vbInliers.clear(); // 清除保存判断是否是内点的容器
nInliers = 0; // 当前次迭代时的内点数
// N为所有2D点的个数, mRansacMinInliers为正常退出RANSAC迭代过程中最少的inlier数
// Step 1: 判断如果2D点个数不足以启动RANSAC迭代过程的最小下限则退出
if (N < mRansacMinInliers)
{
bNoMore = true; // 已经达到最大迭代次数的标志
return false; // 函数退出
}
// mvAllIndices为所有参与PnP的2D点的索引
// vAvailableIndices为每次从mvAllIndices中随机挑选mRansacMinSet组3D-2D对应点进行一次RANSAC
vector<size_t> vAvailableIndices;
// 当前的迭代次数id
int nCurrentIterations = 0;
// Step 2: 正常迭代计算进行相机位姿估计,如果满足效果上限,直接返回最佳估计结果,否则就继续利用最小集(6个点)估计位姿
// 进行迭代的条件:
// 条件1: 历史进行的迭代次数少于最大迭代值
// 条件2: 当前进行的迭代次数少于当前函数给定的最大迭代值
while (mnIterations < mRansacMaxIts || nCurrentIterations < nIterations)
{
// 迭代次数更新加1直到达到最大迭代次数
nCurrentIterations++;
mnIterations++;
// 清空已有的匹配点的计数,为新的一次迭代作准备
vAvailableIndices = mvAllIndices;
// Bearing vectors and 3D points used for this ransac iteration
// 初始化单位向量和3D点给当前ransac迭代使用
bearingVectors_t bearingVecs(mRansacMinSet);
points_t p3DS(mRansacMinSet);
vector<int> indexes(mRansacMinSet);
// Get min set of points
// 选取最小集,从vAvailableIndices中选取mRansacMinSet个点进行操作这里应该是6
for (short i = 0; i < mRansacMinSet; ++i)
{
// 在所有备选点中随机抽取一个通过随机抽取索引数组vAvailableIndices的索引[randi]来实现
int randi = DUtils::Random::RandomInt(0, vAvailableIndices.size() - 1);
// vAvailableIndices[randi]才是备选点真正的索引值randi是索引数组的索引值不要搞混了
int idx = vAvailableIndices[randi];
bearingVecs[i] = mvBearingVecs[idx];
p3DS[i] = mvP3Dw[idx];
indexes[i] = i;
// 把抽取出来的点从所有备选点数组里删除掉,概率论中不放回的操作
vAvailableIndices[randi] = vAvailableIndices.back();
vAvailableIndices.pop_back();
} // 选取最小集
// By the moment, we are using MLPnP without covariance info
// 目前为止还没有使用协方差的信息所以这里生成一个size=1的值为0的协方差矩阵
// |0 0 0|
// covs[0] = |0 0 0|
// |0 0 0|
// ? 为什么不用协方差的SVD分解计算耗时还是效果不明显
cov3_mats_t covs(1);
// Result
transformation_t result;
// Compute camera pose
// 相机位姿估计MLPnP最主要的操作在这里
computePose(bearingVecs, p3DS, covs, indexes, result);
// Save result
// 论文中12个待求值赋值保存在mRi中每个求解器都有保存各自的计算结果
mRi[0][0] = result(0, 0);
mRi[0][1] = result(0, 1);
mRi[0][2] = result(0, 2);
mRi[1][0] = result(1, 0);
mRi[1][1] = result(1, 1);
mRi[1][2] = result(1, 2);
mRi[2][0] = result(2, 0);
mRi[2][1] = result(2, 1);
mRi[2][2] = result(2, 2);
mti[0] = result(0, 3);
mti[1] = result(1, 3);
mti[2] = result(2, 3);
// Check inliers
// 卡方检验内点和EPnP基本类似
CheckInliers();
if (mnInliersi >= mRansacMinInliers)
{
// If it is the best solution so far, save it
// 如果该结果是目前内点数最多的,说明该结果是目前最好的,保存起来
if (mnInliersi > mnBestInliers)
{
mvbBestInliers = mvbInliersi; // 每个点是否是内点的标记
mnBestInliers = mnInliersi; // 内点个数
cv::Mat Rcw(3, 3, CV_64F, mRi);
cv::Mat tcw(3, 1, CV_64F, mti);
Rcw.convertTo(Rcw, CV_32F);
tcw.convertTo(tcw, CV_32F);
mBestTcw.setIdentity();
mBestTcw.block<3, 3>(0, 0) = Converter::toMatrix3f(Rcw);
mBestTcw.block<3, 1>(0, 3) = Converter::toVector3f(tcw);
Eigen::Matrix<double, 3, 3, Eigen::RowMajor> eigRcw(mRi[0]);
Eigen::Vector3d eigtcw(mti);
}
// 用新的内点对相机位姿精求解,提高位姿估计精度,这里如果有足够内点的话,函数直接返回该值,不再继续计算
if (Refine())
{
nInliers = mnRefinedInliers;
vbInliers = vector<bool>(mvpMapPointMatches.size(), false);
for (int i = 0; i < N; i++)
{
if (mvbRefinedInliers[i])
vbInliers[mvKeyPointIndices[i]] = true;
}
Tout = mRefinedTcw;
return true;
}
}
} // 迭代
// Step 3: 选择最小集中效果最好的相机位姿估计结果,如果没有只能用6个点去计算这个值了
// 程序运行到这里说明Refine失败了说明精求解过程中内点的个数不满足最小阈值那就只能在当前结果中选择内点数最多的那个最小集
// 但是也意味着这样子的结果最终是用6个点来求出来的近似效果一般
if (mnIterations >= mRansacMaxIts)
{
bNoMore = true;
if (mnBestInliers >= mRansacMinInliers)
{
nInliers = mnBestInliers;
vbInliers = vector<bool>(mvpMapPointMatches.size(), false);
for (int i = 0; i < N; i++)
{
if (mvbBestInliers[i])
vbInliers[mvKeyPointIndices[i]] = true;
}
Tout = mBestTcw;
return true;
}
}
// step 4 相机位姿估计失败,返回零值
// 程序运行到这里,那说明没有满足条件的相机位姿估计结果,位姿估计失败了
return false;
}
/**
* @brief 设置RANSAC迭代的参数
*
* @param[in] probability 模型最大概率值默认0.9
* @param[in] minInliers 内点的最小阈值默认8
* @param[in] maxIterations 最大迭代次数默认300
* @param[in] minSet 最小集每次采样六个点即最小集应该设置为6论文里面写着I > 5
* @param[in] epsilon 理论最少内点个数这里是按照总数的比例计算所以epsilon是比例默认是0.4
* @param[in] th2 卡方检验阈值
*
*/
void MLPnPsolver::SetRansacParameters(double probability, int minInliers, int maxIterations, int minSet, float epsilon, float th2)
{
mRansacProb = probability; // 模型最大概率值默认0.9
mRansacMinInliers = minInliers; // 内点的最小阈值默认8
mRansacMaxIts = maxIterations; // 最大迭代次数默认300
mRansacEpsilon = epsilon; // 理论最少内点个数这里是按照总数的比例计算所以epsilon是比例默认是0.4
mRansacMinSet = minSet; // 每次采样六个点即最小集应该设置为6论文里面写着I > 5
N = mvP2D.size(); // number of correspondences
mvbInliersi.resize(N); // 是否是内点的标记位
// Adjust Parameters according to number of correspondences
// 计算最少个数点,选择(给定内点数, 最小集, 理论内点数)的最小值
int nMinInliers = N * mRansacEpsilon;
if (nMinInliers < mRansacMinInliers)
nMinInliers = mRansacMinInliers;
if (nMinInliers < minSet)
nMinInliers = minSet;
mRansacMinInliers = nMinInliers;
// 根据最终得到的"最小内点数"来调整 内点数/总体数 比例epsilon
if (mRansacEpsilon < (float)mRansacMinInliers / N)
mRansacEpsilon = (float)mRansacMinInliers / N;
// Set RANSAC iterations according to probability, epsilon, and max iterations
// 根据给出的各种参数计算RANSAC的理论迭代次数,并且敲定最终在迭代过程中使用的RANSAC最大迭代次数
int nIterations;
if (mRansacMinInliers == N)
nIterations = 1;
else
nIterations = ceil(log(1 - mRansacProb) / log(1 - pow(mRansacEpsilon, 3)));
mRansacMaxIts = max(1, min(nIterations, mRansacMaxIts));
// 计算不同图层上的特征点在进行内点检验的时候,所使用的不同判断误差阈值
mvMaxError.resize(mvSigma2.size()); // 层数
for (size_t i = 0; i < mvSigma2.size(); i++)
mvMaxError[i] = mvSigma2[i] * th2; // 不同的尺度,设置不同的最大偏差
}
/**
* @brief 通过之前求解的(R t)检查哪些3D-2D点对属于inliers
*/
void MLPnPsolver::CheckInliers()
{
mnInliersi = 0;
// 遍历当前帧中所有的匹配点
for (int i = 0; i < N; i++)
{
// 取出对应的3D点和2D点
point_t p = mvP3Dw[i];
cv::Point3f P3Dw(p(0), p(1), p(2));
cv::Point2f P2D = mvP2D[i];
// 将3D点由世界坐标系旋转到相机坐标系
float xc = mRi[0][0] * P3Dw.x + mRi[0][1] * P3Dw.y + mRi[0][2] * P3Dw.z + mti[0];
float yc = mRi[1][0] * P3Dw.x + mRi[1][1] * P3Dw.y + mRi[1][2] * P3Dw.z + mti[1];
float zc = mRi[2][0] * P3Dw.x + mRi[2][1] * P3Dw.y + mRi[2][2] * P3Dw.z + mti[2];
// 将相机坐标系下的3D进行投影
cv::Point3f P3Dc(xc, yc, zc);
cv::Point2f uv = mpCamera->project(P3Dc);
// 计算残差
float distX = P2D.x - uv.x;
float distY = P2D.y - uv.y;
float error2 = distX * distX + distY * distY;
// 判定是不是内点
if (error2 < mvMaxError[i])
{
mvbInliersi[i] = true;
mnInliersi++;
}
else
{
mvbInliersi[i] = false;
}
}
}
/**
* @brief 使用新的内点来继续对位姿进行精求解
*/
bool MLPnPsolver::Refine()
{
// 记录内点的索引值
vector<int> vIndices;
vIndices.reserve(mvbBestInliers.size());
for (size_t i = 0; i < mvbBestInliers.size(); i++)
{
if (mvbBestInliers[i])
{
vIndices.push_back(i);
}
}
// Bearing vectors and 3D points used for this ransac iteration
// 因为是重定义所以要另外定义局部变量和iterate里面一样
// 初始化单位向量和3D点给当前重定义函数使用
bearingVectors_t bearingVecs;
points_t p3DS;
vector<int> indexes;
// 注意这里是用所有内点vIndices.size()来进行相机位姿估计
// 而iterate里面是用最小集mRansacMinSet(6个)来进行相机位姿估计
// TODO:有什么区别呢肯定有啦mRansacMinSet只是粗略解
// 这里之所以要Refine就是要用所有满足模型的内点来更加精确地近似表达模型
// 这样求出来的解才会更加准确
for (size_t i = 0; i < vIndices.size(); i++)
{
int idx = vIndices[i];
bearingVecs.push_back(mvBearingVecs[idx]);
p3DS.push_back(mvP3Dw[idx]);
indexes.push_back(i);
}
// 后面操作和iterate类似就不赘述了
// By the moment, we are using MLPnP without covariance info
cov3_mats_t covs(1);
// Result
transformation_t result;
// Compute camera pose
computePose(bearingVecs, p3DS, covs, indexes, result);
// Check inliers
CheckInliers();
mnRefinedInliers = mnInliersi;
mvbRefinedInliers = mvbInliersi;
if (mnInliersi > mRansacMinInliers)
{
cv::Mat Rcw(3, 3, CV_64F, mRi);
cv::Mat tcw(3, 1, CV_64F, mti);
Rcw.convertTo(Rcw, CV_32F);
tcw.convertTo(tcw, CV_32F);
mRefinedTcw.setIdentity();
mRefinedTcw.block<3, 3>(0, 0) = Converter::toMatrix3f(Rcw);
mRefinedTcw.block<3, 1>(0, 3) = Converter::toVector3f(tcw);
Eigen::Matrix<double, 3, 3, Eigen::RowMajor> eigRcw(mRi[0]);
Eigen::Vector3d eigtcw(mti);
return true;
}
return false;
}
// MLPnP methods
/**
* @brief MLPnP相机位姿估计
*
* @param[in] f 单位向量
* @param[in] p 点的3D坐标
* @param[in] covMats 协方差矩阵
* @param[in] indices 对应点的索引值
* @param[in] result 相机位姿估计结果
*
*/
void MLPnPsolver::computePose(const bearingVectors_t &f, const points_t &p, const cov3_mats_t &covMats,
const std::vector<int> &indices, transformation_t &result)
{
// Step 1: 判断点的数量是否满足计算条件,否则直接报错
// 因为每个观测值会产生2个残差所以至少需要6个点来计算公式12所以要检验当前的点个数是否满足大于5的条件
size_t numberCorrespondences = indices.size();
// 当numberCorrespondences不满足>5的条件时会发生错误(如果小于6根本进不来)
assert(numberCorrespondences > 5);
// ? 用来标记是否满足平面条件平面情况下矩阵有相关性秩为2矩阵形式可以简化但需要跟多的约束求解
bool planar = false;
// compute the nullspace of all vectors
// compute the nullspace of all vectors
// step 2: 计算点的单位(方向向量)向量的零空间
// 利用公式7 Jvr(v) = null(v^T) = [r s]
// 给每个向量都开辟一个零空间,所以数量相等
std::vector<Eigen::MatrixXd> nullspaces(numberCorrespondences);
// 存储世界坐标系下空间点的矩阵3行N列N是numberCorrespondences即点的总个数
// |x1, x2, xn|
// points3 = |y1, y2, ..., yn|
// |z1, z2, zn|
Eigen::MatrixXd points3(3, numberCorrespondences);
// 空间点向量
// |xi|
// points3v = |yi|
// |zi|
points_t points3v(numberCorrespondences);
// 单个空间点的齐次坐标矩阵TODO:没用到啊
// |xi|
// points4v = |yi|
// |zi|
// |1 |
points4_t points4v(numberCorrespondences);
// numberCorrespondences不等于所有点而是提取出来的内点的数量其作为连续索引值对indices进行索引
// 因为内点的索引并非连续,想要方便遍历,必须用连续的索引值,
// 所以就用了indices[i]嵌套形式i表示内点数量numberCorrespondences范围内的连续形式
// indices里面保存的是不连续的内点的索引值
for (size_t i = 0; i < numberCorrespondences; i++)
{
// 当前空间点的单位向量,indices[i]是当前点坐标和向量的索引值,
bearingVector_t f_current = f[indices[i]];
// 取出当前点记录到 points3 空间点矩阵里
points3.col(i) = p[indices[i]];
// nullspace of right vector
// 求解方程 Jvr(v) = null(v^T) = [r s]
// A = U * S * V^T
// 这里只求解了V的完全解没有求解U
Eigen::JacobiSVD<Eigen::MatrixXd, Eigen::HouseholderQRPreconditioner>
svd_f(f_current.transpose(), Eigen::ComputeFullV);
// 取特征值最小的那两个对应的2个特征向量
// |r1 s1|
// nullspaces = |r2 s2|
// |r3 s3|
nullspaces[i] = svd_f.matrixV().block(0, 1, 3, 2);
// 取出当前点记录到 points3v 空间点向量
points3v[i] = p[indices[i]];
}
// Step 3: 通过计算S的秩来判断是在平面情况还是在正常情况
// 令S = M * M^T其中M = [p1,p2,...,pi],即 points3 空间点矩阵
//////////////////////////////////////
// 1. test if we have a planar scene
// 在平面条件下会产生4个解因此需要另外判断和解决平面条件下的问题
//////////////////////////////////////
// 令S = M * M^T其中M = [p1,p2,...,pi],即 points3 空间点矩阵
// 如果矩阵S的秩为3且最小特征值不接近于0则不属于平面条件否则需要解决一下
Eigen::Matrix3d planarTest = points3 * points3.transpose();
// 为了计算矩阵S的秩需要对矩阵S进行满秩的QR分解通过其结果来判断矩阵S的秩从而判断是否是平面条件
Eigen::FullPivHouseholderQR<Eigen::Matrix3d> rankTest(planarTest);
// int r, c;
// double minEigenVal = abs(eigen_solver.eigenvalues().real().minCoeff(&r, &c));
// 特征旋转矩阵,用在平面条件下的计算
Eigen::Matrix3d eigenRot;
eigenRot.setIdentity();
// if yes -> transform points to new eigen frame
// if (minEigenVal < 1e-3 || minEigenVal == 0.0)
// rankTest.setThreshold(1e-10);
// 当矩阵S的秩为2时属于平面条件
if (rankTest.rank() == 2)
{
planar = true;
// self adjoint is faster and more accurate than general eigen solvers
// also has closed form solution for 3x3 self-adjoint matrices
// in addition this solver sorts the eigenvalues in increasing order
// 计算矩阵S的特征值和特征向量
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver(planarTest);
// 得到QR分解的结果
eigenRot = eigen_solver.eigenvectors().real();
// 把eigenRot变成其转置矩阵即论文公式20的系数 R_S^T
eigenRot.transposeInPlace();
// 公式20 pi' = R_S^T * pi
for (size_t i = 0; i < numberCorrespondences; i++)
points3.col(i) = eigenRot * points3.col(i);
}
//////////////////////////////////////
// 2. stochastic model
//////////////////////////////////////
// Step 4: 计算随机模型中的协方差矩阵
// 但是作者并没有用到协方差信息
Eigen::SparseMatrix<double> P(2 * numberCorrespondences,
2 * numberCorrespondences);
bool use_cov = false;
P.setIdentity(); // standard
// if we do have covariance information
// -> fill covariance matrix
// 如果协方差矩阵的个数等于空间点的个数,说明前面已经计算好了,表示有协方差信息
// 目前版本是没有用到协方差信息的所以调用本函数前就把协方差矩阵个数置为1了
if (covMats.size() == numberCorrespondences)
{
use_cov = true;
int l = 0;
for (size_t i = 0; i < numberCorrespondences; ++i)
{
// invert matrix
cov2_mat_t temp = nullspaces[i].transpose() * covMats[i] * nullspaces[i];
temp = temp.inverse().eval();
P.coeffRef(l, l) = temp(0, 0);
P.coeffRef(l, l + 1) = temp(0, 1);
P.coeffRef(l + 1, l) = temp(1, 0);
P.coeffRef(l + 1, l + 1) = temp(1, 1);
l += 2;
}
}
// Step 5: 构造矩阵A来完成线性方程组的构建
//////////////////////////////////////
// 3. fill the design matrix A
//////////////////////////////////////
// 公式12设矩阵A则有 Au = 0
// u = [r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, t2, t3]^T
// 对单位向量v的2个零空间向量做微分所以有[dr, ds]^T一个点有2行N个点就有2*N行
const int rowsA = 2 * numberCorrespondences;
// 对应上面u的列数因为旋转矩阵有9个元素加上平移矩阵3个元素总共12个元素
int colsA = 12;
Eigen::MatrixXd A;
// 如果世界点位于分别跨2个坐标轴的平面上即所有世界点的一个元素是常数的时候可简单地忽略矩阵A中对应的列
// 而且这不影响问题的结构本身所以在计算公式20 pi' = R_S^T * pi的时候忽略了r11,r21,r31即第一列
// 对应的u只有9个元素 u = [r12, r13, r22, r23, r32, r33, t1, t2, t3]^T 所以A的列个数是9个
if (planar)
{
colsA = 9;
A = Eigen::MatrixXd(rowsA, 9);
}
else
A = Eigen::MatrixXd(rowsA, 12);
A.setZero();
// fill design matrix
// 构造矩阵A分平面和非平面2种情况
if (planar)
{
for (size_t i = 0; i < numberCorrespondences; ++i)
{
// 列表示当前点的坐标
point_t pt3_current = points3.col(i);
// r12 r12 的系数 r1*py 和 s1*py
A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[1];
A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[1];
// r13 r13 的系数 r1*pz 和 s1*pz
A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[2];
A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[2];
// r22 r22 的系数 r2*py 和 s2*py
A(2 * i, 2) = nullspaces[i](1, 0) * pt3_current[1];
A(2 * i + 1, 2) = nullspaces[i](1, 1) * pt3_current[1];
// r23 r23 的系数 r2*pz 和 s2*pz
A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[2];
A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[2];
// r32 r32 的系数 r3*py 和 s3*py
A(2 * i, 4) = nullspaces[i](2, 0) * pt3_current[1];
A(2 * i + 1, 4) = nullspaces[i](2, 1) * pt3_current[1];
// r33 r33 的系数 r3*pz 和 s3*pz
A(2 * i, 5) = nullspaces[i](2, 0) * pt3_current[2];
A(2 * i + 1, 5) = nullspaces[i](2, 1) * pt3_current[2];
// t1 t1 的系数 r1 和 s1
A(2 * i, 6) = nullspaces[i](0, 0);
A(2 * i + 1, 6) = nullspaces[i](0, 1);
// t2 t2 的系数 r2 和 s2
A(2 * i, 7) = nullspaces[i](1, 0);
A(2 * i + 1, 7) = nullspaces[i](1, 1);
// t3 t3 的系数 r3 和 s3
A(2 * i, 8) = nullspaces[i](2, 0);
A(2 * i + 1, 8) = nullspaces[i](2, 1);
}
}
else
{
for (size_t i = 0; i < numberCorrespondences; ++i)
{
point_t pt3_current = points3.col(i);
// 不是平面的情况下,三个列向量都保留求解
// r11
A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[0];
A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[0];
// r12
A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[1];
A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[1];
// r13
A(2 * i, 2) = nullspaces[i](0, 0) * pt3_current[2];
A(2 * i + 1, 2) = nullspaces[i](0, 1) * pt3_current[2];
// r21
A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[0];
A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[0];
// r22
A(2 * i, 4) = nullspaces[i](1, 0) * pt3_current[1];
A(2 * i + 1, 4) = nullspaces[i](1, 1) * pt3_current[1];
// r23
A(2 * i, 5) = nullspaces[i](1, 0) * pt3_current[2];
A(2 * i + 1, 5) = nullspaces[i](1, 1) * pt3_current[2];
// r31
A(2 * i, 6) = nullspaces[i](2, 0) * pt3_current[0];
A(2 * i + 1, 6) = nullspaces[i](2, 1) * pt3_current[0];
// r32
A(2 * i, 7) = nullspaces[i](2, 0) * pt3_current[1];
A(2 * i + 1, 7) = nullspaces[i](2, 1) * pt3_current[1];
// r33
A(2 * i, 8) = nullspaces[i](2, 0) * pt3_current[2];
A(2 * i + 1, 8) = nullspaces[i](2, 1) * pt3_current[2];
// t1
A(2 * i, 9) = nullspaces[i](0, 0);
A(2 * i + 1, 9) = nullspaces[i](0, 1);
// t2
A(2 * i, 10) = nullspaces[i](1, 0);
A(2 * i + 1, 10) = nullspaces[i](1, 1);
// t3
A(2 * i, 11) = nullspaces[i](2, 0);
A(2 * i + 1, 11) = nullspaces[i](2, 1);
}
}
// Step 6: 计算线性方程组的最小二乘解
//////////////////////////////////////
// 4. solve least squares
//////////////////////////////////////
// 求解方程的最小二乘解
Eigen::MatrixXd AtPA;
if (use_cov)
// 有协方差信息的情况下,一般方程是 A^T*P*A*u = N*u = 0
AtPA = A.transpose() * P * A; // setting up the full normal equations seems to be unstable
else
// 无协方差信息的情况下,一般方程是 A^T*A*u = N*u = 0
AtPA = A.transpose() * A;
// SVD分解满秩求解V
Eigen::JacobiSVD<Eigen::MatrixXd> svd_A(AtPA, Eigen::ComputeFullV);
// 解就是对应奇异值最小的列向量,即最后一列
Eigen::MatrixXd result1 = svd_A.matrixV().col(colsA - 1);
// Step 7: 根据平面和非平面情况下选择最终位姿解
////////////////////////////////
// now we treat the results differently,
// depending on the scene (planar or not)
////////////////////////////////
// transformation_t T_final;
rotation_t Rout;
translation_t tout;
if (planar) // planar case
{
rotation_t tmp;
// until now, we only estimated
// row one and two of the transposed rotation matrix
// 暂时只估计了旋转矩阵的第1行和第2行先记录到tmp中
tmp << 0.0, result1(0, 0), result1(1, 0),
0.0, result1(2, 0), result1(3, 0),
0.0, result1(4, 0), result1(5, 0);
// double scale = 1 / sqrt(tmp.col(1).norm() * tmp.col(2).norm());
// row 3
// 第3行等于第1行和第2行的叉积这里应该是列后面转置后成了行
tmp.col(0) = tmp.col(1).cross(tmp.col(2));
// 原来是:
// |r11 r12 r13|
// tmp = |r21 r22 r23|
// |r31 r32 r33|
// 转置变成:
// |r11 r21 r31|
// tmp = |r12 r22 r32|
// |r13 r23 r33|
tmp.transposeInPlace();
// 平移部分 t 只表示了正确的方向,没有尺度,需要求解 scale, 先求系数
double scale = 1.0 / std::sqrt(std::abs(tmp.col(1).norm() * tmp.col(2).norm()));
// find best rotation matrix in frobenius sense
// 利用Frobenious范数计算最佳的旋转矩阵利用公式(19) R = U_R*V_R^T
// 本质上采用矩阵将其元素平方将它们加在一起并对结果平方根。计算得出的数字是矩阵的Frobenious范数
// 由于列向量是单列矩阵行向量是单行矩阵所以这些矩阵的Frobenius范数等于向量的长度L
Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
rotation_t Rout1 = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
// test if we found a good rotation matrix
// 如果估计出来的旋转矩阵的行列式小于0则乘以-1EPnP也是同样的操作
if (Rout1.determinant() < 0)
Rout1 *= -1.0;
// rotate this matrix back using the eigen frame
// 因为是在平面情况下计算的,估计出来的旋转矩阵是要做一个转换的,根据公式(21)R = Rs*R
// 其中Rs表示特征向量的旋转矩阵
// 注意eigenRot之前已经转置过了transposeInPlace()所以这里Rout1在之前也转置了即tmp.transposeInPlace()
Rout1 = eigenRot.transpose() * Rout1;
// 估计最终的平移矩阵,带尺度信息的,根据公式(17)t = t^ / three-party(||r1||*||r2||*||r3||)
// 这里是 t = t^ / sqrt(||r1||*||r2||)
translation_t t = scale * translation_t(result1(6, 0), result1(7, 0), result1(8, 0));
// 把之前转置过来的矩阵再转回去,变成公式里面的形态:
// |r11 r12 r13|
// Rout1 = |r21 r22 r23|
// |r31 r32 r33|
Rout1.transposeInPlace();
// 这里乘以-1是为了计算4种结果
Rout1 *= -1;
if (Rout1.determinant() < 0.0)
Rout1.col(2) *= -1;
// now we have to find the best out of 4 combinations
// |r11 r12 r13|
// R1 = |r21 r22 r23|
// |r31 r32 r33|
// |-r11 -r12 -r13|
// R2 = |-r21 -r22 -r23|
// |-r31 -r32 -r33|
rotation_t R1, R2;
R1.col(0) = Rout1.col(0);
R1.col(1) = Rout1.col(1);
R1.col(2) = Rout1.col(2);
R2.col(0) = -Rout1.col(0);
R2.col(1) = -Rout1.col(1);
R2.col(2) = Rout1.col(2);
// |R1 t|
// Ts = |R1 -t|
// |R2 t|
// |R2 -t|
vector<transformation_t, Eigen::aligned_allocator<transformation_t>> Ts(4);
Ts[0].block<3, 3>(0, 0) = R1;
Ts[0].block<3, 1>(0, 3) = t;
Ts[1].block<3, 3>(0, 0) = R1;
Ts[1].block<3, 1>(0, 3) = -t;
Ts[2].block<3, 3>(0, 0) = R2;
Ts[2].block<3, 1>(0, 3) = t;
Ts[3].block<3, 3>(0, 0) = R2;
Ts[3].block<3, 1>(0, 3) = -t;
// 遍历4种解
vector<double> normVal(4);
for (int i = 0; i < 4; ++i)
{
point_t reproPt;
double norms = 0.0;
// 计算世界点p到切线空间v的投影的残差对应最小的就是最好的解
// 用前6个点来验证4种解的残差
for (int p = 0; p < 6; ++p)
{
// 重投影的向量
reproPt = Ts[i].block<3, 3>(0, 0) * points3v[p] + Ts[i].block<3, 1>(0, 3);
// 变成单位向量
reproPt = reproPt / reproPt.norm();
// f[indices[p]] 是当前空间点的单位向量
// 利用欧氏距离来表示重投影向量(观测)和当前空间点向量(实际)的偏差
// 即两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离
norms += (1.0 - reproPt.transpose() * f[indices[p]]);
}
// 统计每种解的误差和第i个解的误差和放入对应的变量normVal[i]
normVal[i] = norms;
}
// 搜索容器中的最小值,并返回该值对应的指针
std::vector<double>::iterator
findMinRepro = std::min_element(std::begin(normVal), std::end(normVal));
// 计算容器头指针到最小值指针的距离,即可作为该最小值的索引值
int idx = std::distance(std::begin(normVal), findMinRepro);
// 得到最终相机位姿估计的结果
Rout = Ts[idx].block<3, 3>(0, 0);
tout = Ts[idx].block<3, 1>(0, 3);
}
else // non-planar
{
rotation_t tmp;
// 从AtPA的SVD分解中得到旋转矩阵先存下来
// 注意这里的顺序是和公式16不同的
// |r11 r21 r31|
// tmp = |r12 r22 r32|
// |r13 r23 r33|
tmp << result1(0, 0), result1(3, 0), result1(6, 0),
result1(1, 0), result1(4, 0), result1(7, 0),
result1(2, 0), result1(5, 0), result1(8, 0);
// get the scale
// 计算尺度,根据公式(17)t = t^ / three-party(||r1||*||r2||*||r3||)
double scale = 1.0 /
std::pow(std::abs(tmp.col(0).norm() * tmp.col(1).norm() * tmp.col(2).norm()), 1.0 / 3.0);
// double scale = 1.0 / std::sqrt(std::abs(tmp.col(0).norm() * tmp.col(1).norm()));
// find best rotation matrix in frobenius sense
// 利用Frobenious范数计算最佳的旋转矩阵利用公式(19) R = U_R*V_R^T
Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
Rout = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
// test if we found a good rotation matrix
// 如果估计出来的旋转矩阵的行列式小于0则乘以-1
if (Rout.determinant() < 0)
Rout *= -1.0;
// scale translation
// 从相机坐标系到世界坐标系的转换关系是 lambda*v = R*pi+t
// 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt
// 旋转矩阵的性质 R^-1 = R^T
// 所以在下面的计算中需要计算从世界坐标系到相机坐标系的转换这里tout = -R^T*t下面再计算前半部分R^T*v
// 先恢复平移部分的尺度再计算
tout = Rout * (scale * translation_t(result1(9, 0), result1(10, 0), result1(11, 0)));
// find correct direction in terms of reprojection error, just take the first 6 correspondences
// 非平面情况下一共有2种解R,t和R,-t
// 利用前6个点计算重投影误差选择残差最小的一个解
vector<double> error(2);
vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d>> Ts(2);
for (int s = 0; s < 2; ++s)
{
// 初始化error的值为0
error[s] = 0.0;
// |1 0 0 0|
// Ts[s] = |0 1 0 0|
// |0 0 1 0|
// |0 0 0 1|
Ts[s] = Eigen::Matrix4d::Identity();
// |. . . 0|
// Ts[s] = |. Rout . 0|
// |. . . 0|
// |0 0 0 1|
Ts[s].block<3, 3>(0, 0) = Rout;
if (s == 0)
// |. . . . |
// Ts[s] = |. Rout . tout|
// |. . . . |
// |0 0 0 1 |
Ts[s].block<3, 1>(0, 3) = tout;
else
// |. . . . |
// Ts[s] = |. Rout . -tout|
// |. . . . |
// |0 0 0 1 |
Ts[s].block<3, 1>(0, 3) = -tout;
// 为了避免Eigen中aliasing的问题后面在计算矩阵的逆的时候需要添加eval()条件
// a = a.transpose(); //error: aliasing
// a = a.transpose().eval(); //ok
// a.transposeInPlace(); //ok
// Eigen中aliasing指的是在赋值表达式的左右两边存在矩阵的重叠区域这种情况下有可能得到非预期的结果。
// 如mat = 2*mat或者mat = mat.transpose()第一个例子中的alias是没有问题的而第二的例子则会导致非预期的计算结果。
Ts[s] = Ts[s].inverse().eval();
for (int p = 0; p < 6; ++p)
{
// 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt
// Ts[s].block<3, 3>(0, 0) * points3v[p] = Rout = R^T*v
// Ts[s].block<3, 1>(0, 3) = tout = -R^Tt
bearingVector_t v = Ts[s].block<3, 3>(0, 0) * points3v[p] + Ts[s].block<3, 1>(0, 3);
// 变成单位向量
v = v / v.norm();
// 计算重投影向量(观测)和当前空间点向量(实际)的偏差
error[s] += (1.0 - v.transpose() * f[indices[p]]);
}
}
// 选择残差最小的解作为最终解
if (error[0] < error[1])
tout = Ts[0].block<3, 1>(0, 3);
else
tout = Ts[1].block<3, 1>(0, 3);
Rout = Ts[0].block<3, 3>(0, 0);
}
// Step 8: 利用高斯牛顿法对位姿进行精确求解,提高位姿解的精度
//////////////////////////////////////
// 5. gauss newton
//////////////////////////////////////
// 求解非线性方程之前,需要得到罗德里格斯参数,来表达李群(SO3) -> 李代数(so3)的对数映射
rodrigues_t omega = rot2rodrigues(Rout);
// |r1|
// |r2|
// minx = |r3|
// |t1|
// |t2|
// |t3|
Eigen::VectorXd minx(6);
minx[0] = omega[0];
minx[1] = omega[1];
minx[2] = omega[2];
minx[3] = tout[0];
minx[4] = tout[1];
minx[5] = tout[2];
// 利用高斯牛顿迭代法来提炼相机位姿 pose
mlpnp_gn(minx, points3v, nullspaces, P, use_cov);
// 最终输出的结果
Rout = rodrigues2rot(rodrigues_t(minx[0], minx[1], minx[2]));
tout = translation_t(minx[3], minx[4], minx[5]);
// result inverse as opengv uses this convention
// 这里是用来计算世界坐标系到相机坐标系的转换所以是Pc=R^T*Pw-R^T*t反变换
result.block<3, 3>(0, 0) = Rout; // Rout.transpose();
result.block<3, 1>(0, 3) = tout; //-result.block<3, 3>(0, 0) * tout;
}
/**
* @brief 旋转向量转换成旋转矩阵,即李群->李代数
* @param[in] omega 旋转向量
* @param[out] R 旋转矩阵
*/
Eigen::Matrix3d MLPnPsolver::rodrigues2rot(const Eigen::Vector3d &omega)
{
// 初始化旋转矩阵
rotation_t R = Eigen::Matrix3d::Identity();
// 求旋转向量的反对称矩阵
Eigen::Matrix3d skewW;
skewW << 0.0, -omega(2), omega(1),
omega(2), 0.0, -omega(0),
-omega(1), omega(0), 0.0;
// 求旋转向量的角度
double omega_norm = omega.norm();
// 通过罗德里格斯公式把旋转向量转换成旋转矩阵
if (omega_norm > std::numeric_limits<double>::epsilon())
R = R + sin(omega_norm) / omega_norm * skewW + (1 - cos(omega_norm)) / (omega_norm * omega_norm) * (skewW * skewW);
return R;
}
/**
* @brief 旋转矩阵转换成旋转向量,即李代数->李群
* @param[in] R 旋转矩阵
* @param[out] omega 旋转向量
问题: 李群(SO3) -> 李代数(so3)的对数映射
利用罗德里格斯公式已知旋转矩阵的情况下求解其对数映射ln(R)
就像《视觉十四讲》里面说到的,使用李代数的一大动机是为了进行优化,而在优化过程中导数是非常必要的信息
李群SO(3)中完成两个矩阵乘法不能用李代数so(3)中的加法表示,问题描述为两个李代数对数映射乘积
而两个李代数对数映射乘积的完整形式可以用BCH公式表达其中式子(左乘BCH近似雅可比J)可近似表达,该式也就是罗德里格斯公式
计算完罗德里格斯参数之后,就可以用非线性优化方法了,里面就要用到导数,其形式就是李代数指数映射
所以要在调用非线性MLPnP算法之前计算罗德里格斯参数
*/
Eigen::Vector3d MLPnPsolver::rot2rodrigues(const Eigen::Matrix3d &R)
{
rodrigues_t omega;
omega << 0.0, 0.0, 0.0;
// R.trace() 矩阵的迹,即该矩阵的特征值总和
double trace = R.trace() - 1.0;
// 李群(SO3) -> 李代数(so3)的对数映射
// 对数映射ln(R)∨将一个旋转矩阵转换为一个李代数,但由于对数的泰勒展开不是很优雅所以用本式
// wnorm是求解出来的角度
double wnorm = acos(trace / 2.0);
// 如果wnorm大于运行编译程序的计算机所能识别的最小非零浮点数则可以生成向量否则为0
if (wnorm > std::numeric_limits<double>::epsilon())
{
// |r11 r21 r31|
// R = |r12 r22 r32|
// |r13 r23 r33|
omega[0] = (R(2, 1) - R(1, 2));
omega[1] = (R(0, 2) - R(2, 0));
omega[2] = (R(1, 0) - R(0, 1));
// theta |r23 - r32|
// ln(R) = ------------ * |r31 - r13|
// 2*sin(theta) |r12 - r21|
double sc = wnorm / (2.0 * sin(wnorm));
omega *= sc;
}
return omega;
}
/**
* @brief MLPnP的高斯牛顿解法
* @param[in] x 未知量矩阵
* @param[in] pts 3D点矩阵
* @param[in] nullspaces 零空间向量
* @param[in] Kll 协方差矩阵
* @param[in] use_cov 协方差方法使用标记位
*/
void MLPnPsolver::mlpnp_gn(Eigen::VectorXd &x, const points_t &pts, const std::vector<Eigen::MatrixXd> &nullspaces,
const Eigen::SparseMatrix<double> Kll, bool use_cov)
{
// 计算观测值数量
const int numObservations = pts.size();
// 未知量是旋转向量和平移向量即R和t总共6个未知参数
const int numUnknowns = 6;
// check redundancy
// 检查观测数量是否满足计算条件因为每个观测值都提供了2个约束即r和s所以这里乘以2
assert((2 * numObservations - numUnknowns) > 0);
// =============
// set all matrices up
// =============
Eigen::VectorXd r(2 * numObservations);
Eigen::VectorXd rd(2 * numObservations);
Eigen::MatrixXd Jac(2 * numObservations, numUnknowns);
Eigen::VectorXd g(numUnknowns, 1);
Eigen::VectorXd dx(numUnknowns, 1); // result vector
Jac.setZero();
r.setZero();
dx.setZero();
g.setZero();
int it_cnt = 0;
bool stop = false;
const int maxIt = 5;
double epsP = 1e-5;
Eigen::MatrixXd JacTSKll;
Eigen::MatrixXd A;
// solve simple gradient descent
while (it_cnt < maxIt && !stop)
{
mlpnp_residuals_and_jacs(x, pts,
nullspaces,
r, Jac, true);
if (use_cov)
JacTSKll = Jac.transpose() * Kll;
else
JacTSKll = Jac.transpose();
A = JacTSKll * Jac;
// get system matrix
g = JacTSKll * r;
// solve
Eigen::LDLT<Eigen::MatrixXd> chol(A);
dx = chol.solve(g);
// dx = A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(g);
// this is to prevent the solution from falling into a wrong minimum
// if the linear estimate is spurious
if (dx.array().abs().maxCoeff() > 5.0 || dx.array().abs().minCoeff() > 1.0)
break;
// observation update
Eigen::MatrixXd dl = Jac * dx;
if (dl.array().abs().maxCoeff() < epsP)
{
stop = true;
x = x - dx;
break;
}
else
x = x - dx;
++it_cnt;
} // while
// result
}
/**
* @brief 计算Jacobian矩阵和残差
* @param[in] x 未知量矩阵
* @param[in] pts 3D点矩阵
* @param[in] nullspaces 零空间向量
* @param[in] r f(x)函数
* @param[out] fjac f(x)函数的Jacobian矩阵
* @param[in] getJacs 是否可以得到Jacobian矩阵标记位
*/
void MLPnPsolver::mlpnp_residuals_and_jacs(const Eigen::VectorXd &x, const points_t &pts,
const std::vector<Eigen::MatrixXd> &nullspaces, Eigen::VectorXd &r,
Eigen::MatrixXd &fjac, bool getJacs)
{
rodrigues_t w(x[0], x[1], x[2]);
translation_t T(x[3], x[4], x[5]);
// rotation_t R = math::cayley2rot(c);
rotation_t R = rodrigues2rot(w);
int ii = 0;
Eigen::MatrixXd jacs(2, 6);
for (int i = 0; i < pts.size(); ++i)
{
Eigen::Vector3d ptCam = R * pts[i] + T;
ptCam /= ptCam.norm();
r[ii] = nullspaces[i].col(0).transpose() * ptCam;
r[ii + 1] = nullspaces[i].col(1).transpose() * ptCam;
if (getJacs)
{
// jacs
mlpnpJacs(pts[i],
nullspaces[i].col(0), nullspaces[i].col(1),
w, T,
jacs);
// r
fjac(ii, 0) = jacs(0, 0);
fjac(ii, 1) = jacs(0, 1);
fjac(ii, 2) = jacs(0, 2);
fjac(ii, 3) = jacs(0, 3);
fjac(ii, 4) = jacs(0, 4);
fjac(ii, 5) = jacs(0, 5);
// s
fjac(ii + 1, 0) = jacs(1, 0);
fjac(ii + 1, 1) = jacs(1, 1);
fjac(ii + 1, 2) = jacs(1, 2);
fjac(ii + 1, 3) = jacs(1, 3);
fjac(ii + 1, 4) = jacs(1, 4);
fjac(ii + 1, 5) = jacs(1, 5);
}
ii += 2;
}
}
/**
* @brief 计算Jacobian矩阵
* @param[in] pt 3D点矩阵
* @param[in] nullspace_r 零空间向量r
* @param[in] nullspace_r 零空间向量s
* @param[in] w 旋转向量w
* @param[in] t 平移向量t
* @param[out] jacs Jacobian矩阵
*/
void MLPnPsolver::mlpnpJacs(const point_t &pt, const Eigen::Vector3d &nullspace_r,
const Eigen::Vector3d &nullspace_s, const rodrigues_t &w,
const translation_t &t, Eigen::MatrixXd &jacs)
{
double r1 = nullspace_r[0];
double r2 = nullspace_r[1];
double r3 = nullspace_r[2];
double s1 = nullspace_s[0];
double s2 = nullspace_s[1];
double s3 = nullspace_s[2];
double X1 = pt[0];
double Y1 = pt[1];
double Z1 = pt[2];
double w1 = w[0];
double w2 = w[1];
double w3 = w[2];
double t1 = t[0];
double t2 = t[1];
double t3 = t[2];
double t5 = w1 * w1;
double t6 = w2 * w2;
double t7 = w3 * w3;
// t8 = theta^2 = w1^2+w2^2+w3^2
double t8 = t5 + t6 + t7;
// t9 = sqrt(t8) = sqrt(theta^2) = theta
double t9 = sqrt(t8);
// t10 = sin(theta)
double t10 = sin(t9);
// t11 = 1 / theta
double t11 = 1.0 / sqrt(t8);
// t12 = cos(theta)
double t12 = cos(t9);
// t13 = cos(theta) - 1
double t13 = t12 - 1.0;
// t14 = 1 / theta^2
double t14 = 1.0 / t8;
// t16 = sin(theta)/theta*w3
// 令 A = sin(theta)/theta = t10*t11
// t16 = A*w3
double t16 = t10 * t11 * w3;
// t17 = (cos(theta) - 1)/theta^2 * w1 * w2
// 令 B = (cos(theta) - 1)/theta^2 = t13*t14
// t17 = B*w1*w2
double t17 = t13 * t14 * w1 * w2;
// t19 = sin(theta)/theta*w2
// = A*w2
double t19 = t10 * t11 * w2;
// t20 = (cos(theta) - 1) / theta^2 * w1 * w3
// = B*w1*w3
double t20 = t13 * t14 * w1 * w3;
// t24 = w2^2+w3^2
double t24 = t6 + t7;
// t27 = A*w3 + B*w1*w2
// = -r12
double t27 = t16 + t17;
// t28 = (A*w3 + B*w1*w2)*Y1
// = -r12*Y1
double t28 = Y1 * t27;
// t29 = A*w2 - B*w1*w3
// = r13
double t29 = t19 - t20;
// t30 = (A*w2 - B*w1*w3) * Z1
// = r13 * Z1
double t30 = Z1 * t29;
// t31 = (cos(theta) - 1) /theta^2 * (w2^2+w3^2)
// = B * (w2^2+w3^2)
double t31 = t13 * t14 * t24;
// t32 = B * (w2^2+w3^2) + 1
// = r11
double t32 = t31 + 1.0;
// t33 = (B * (w2^2+w3^2) + 1) * X1
// = r11 * X1
double t33 = X1 * t32;
// t15 = t1 - (A*w3 + B*w1*w2)*Y1 + (A*w2 - B*w1*w3) * Z1 + (B * (w2^2+w3^2) + 1) * X1
// = t1 + r11*X1 + r12*Y1 + r13*Z1
double t15 = t1 - t28 + t30 + t33;
// t21 = t10 * t11 * w1 = sin(theta) / theta * w1
// = A*w1
double t21 = t10 * t11 * w1;
// t22 = t13 * t14 * w2 * w3 = (cos(theta) - 1) / theta^2 * w2 * w3
// = B*w2*w3
double t22 = t13 * t14 * w2 * w3;
// t45 = t5 + t7
// = w1^2 + w3^2
double t45 = t5 + t7;
// t53 = t16 - t17
// = A*w3 - B*w1*w2 = r21
double t53 = t16 - t17;
// t54 = r21*X1
double t54 = X1 * t53;
// t55 = A*w1 + B*w2*w3
// = -r23
double t55 = t21 + t22;
// t56 = -r23*Z1
double t56 = Z1 * t55;
// t57 = t13 * t14 * t45 = (cos(theta) - 1) / theta^2 * (w1^2 + w3^2)
// = B8(w1^2+w3^2)
double t57 = t13 * t14 * t45;
// t58 = B8(w1^2+w3^2) + 1.0
// = r22
double t58 = t57 + 1.0;
// t59 = r22*Y1
double t59 = Y1 * t58;
// t18 = t2 + t54 - t56 + t59
// = t2 + r21*X1 + r22*Y1 + r23*Z1
double t18 = t2 + t54 - t56 + t59;
// t34 = t5 + t6
// = w1^2+w2^2
double t34 = t5 + t6;
// t38 = t19 + t20 = A*w2+B*w1*w3
// = -r31
double t38 = t19 + t20;
// t39 = -r31*X1
double t39 = X1 * t38;
// t40 = A*w1 - B*w2*w3
// = r32
double t40 = t21 - t22;
// t41 = r32*Y1
double t41 = Y1 * t40;
// t42 = t13 * t14 * t34 = (cos(theta) - 1) / theta^2 * (w1^2+w2^2)
// = B*(w1^2+w2^2)
double t42 = t13 * t14 * t34;
// t43 = B*(w1^2+w2^2) + 1
// = r33
double t43 = t42 + 1.0;
// t44 = r33*Z1
double t44 = Z1 * t43;
// t23 = t3 - t39 + t41 + t44 = t3 + r31*X1 + r32*Y1 + r33*Z1
double t23 = t3 - t39 + t41 + t44;
// t25 = 1.0 / pow(theta^2, 3.0 / 2.0)
// = 1 / theta^3
double t25 = 1.0 / pow(t8, 3.0 / 2.0);
// t26 = 1.0 / (t8 * t8)
// = 1 / theta^4
double t26 = 1.0 / (t8 * t8);
// t35 = t12 * t14 * w1 * w2 = cos(theta) / theta^2 * w1 * w2
// 令 cos(theta) / theta^2 = E = t12*t14
// t35 = E*w1*w2
double t35 = t12 * t14 * w1 * w2;
// t36 = t5 * t10 * t25 * w3 = w1^2 * sin(theta) / theta^3 * w3
// 令 sin(theta) / theta^3 = F = t10*t25
// t36 = F*w1^2*w3
double t36 = t5 * t10 * t25 * w3;
// t37 = t5 * t13 * t26 * w3 * 2.0 = w1^2 * (cos(theta) - 1) / theta^4 * w3
// 令 (cos(theta) - 1) / theta^4 = G = t13*t26
// t37 = G*w1^2*w3
double t37 = t5 * t13 * t26 * w3 * 2.0;
// t46 = t10 * t25 * w1 * w3 = sin(theta) / theta^3 * w1 * w3 = F*w1*w3
double t46 = t10 * t25 * w1 * w3;
// t47 = t5 * t10 * t25 * w2 = w1^2 * sin(theta) / theta^3 * w2 = F*w1^2*w2
double t47 = t5 * t10 * t25 * w2;
// t48 = t5 * t13 * t26 * w2 * 2.0 = w1^2 * (cos(theta) - 1) / theta^4 * 2 * w2 = G*w1^2*w2
double t48 = t5 * t13 * t26 * w2 * 2.0;
// t49 = t10 * t11 = sin(theta) / theta = A
double t49 = t10 * t11;
// t50 = t5 * t12 * t14 = w1^2 * cos(theta) / theta^2 = E*w1^2
double t50 = t5 * t12 * t14;
// t51 = t13 * t26 * w1 * w2 * w3 * 2.0 = (cos(theta) - 1) / theta^4 * w1 * w2 * w3 * 2 = 2*G*w1*w2*w3
double t51 = t13 * t26 * w1 * w2 * w3 * 2.0;
// t52 = t10 * t25 * w1 * w2 * w3 = sin(theta) / theta^3 * w1 * w2 * w3 = F*w1*w2*w3
double t52 = t10 * t25 * w1 * w2 * w3;
// t60 = t15 * t15 = (t1 + r11*X1 + r12*Y1 + r13*Z1)^2
double t60 = t15 * t15;
// t61 = t18 * t18 = (t2 + r21*X1 + r22*Y1 + r23*Z1)^2
double t61 = t18 * t18;
// t62 = t23 * t23 = (t3 + r31*X1 + r32*Y1 + r33*Z1)^2
double t62 = t23 * t23;
// t63 = t60 + t61 + t62 = (t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^2
double t63 = t60 + t61 + t62;
// t64 = t5 * t10 * t25 = w1^2 * sin(theta) / theta^3 = F*w1^2
double t64 = t5 * t10 * t25;
// t65 = 1 / sqrt((t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^2)
double t65 = 1.0 / sqrt(t63);
// t66 = Y1 * r2 * t6 = Y1 * r2 * w2^2
double t66 = Y1 * r2 * t6;
// t67 = Z1 * r3 * t7 = Z1 * r3 * w3^2
double t67 = Z1 * r3 * t7;
// t68 = r1 * t1 * t5 = r1 * t1 * w1^2
double t68 = r1 * t1 * t5;
// t69 = r1 * t1 * t6 = r1 * t1 * w2^2
double t69 = r1 * t1 * t6;
// t70 = r1 * t1 * t7 = r1 * t1 * w3^2
double t70 = r1 * t1 * t7;
// t71 = r2 * t2 * t5 = r2 * t2 * w1^2
double t71 = r2 * t2 * t5;
// t72 = r2 * t2 * t6 = r2 * t2 * w2^2
double t72 = r2 * t2 * t6;
// t73 = r2 * t2 * t7 = r2 * t2 * w3^2
double t73 = r2 * t2 * t7;
// t74 = r3 * t3 * t5 = r3 * t3 * w1^2
double t74 = r3 * t3 * t5;
// t75 = r3 * t3 * t6 = r3 * t3 * w2^2
double t75 = r3 * t3 * t6;
// t76 = r3 * t3 * t7 = r3 * t3 * w3^2
double t76 = r3 * t3 * t7;
// t77 = X1 * r1 * t5 = X1 * r1 * w1^2
double t77 = X1 * r1 * t5;
double t78 = X1 * r2 * w1 * w2;
double t79 = X1 * r3 * w1 * w3;
double t80 = Y1 * r1 * w1 * w2;
double t81 = Y1 * r3 * w2 * w3;
double t82 = Z1 * r1 * w1 * w3;
double t83 = Z1 * r2 * w2 * w3;
// t84 = X1 * r1 * t6 * t12 = X1 * r1 * w2^2 * cos(theta)
double t84 = X1 * r1 * t6 * t12;
// t85 = X1 * r1 * t7 * t12 = X1 * r1 * w3^2 * cos(theta)
double t85 = X1 * r1 * t7 * t12;
// t86 = Y1 * r2 * t5 * t12 = Y1 * r2 * w1^2 * cos(theta)
double t86 = Y1 * r2 * t5 * t12;
// t87 = Y1 * r2 * t7 * t12 = Y1 * r2 * w3^2 * cos(theta)
double t87 = Y1 * r2 * t7 * t12;
// t88 = Z1 * r3 * t5 * t12 = Z1 * r3 * w1^2 * cos(theta)
double t88 = Z1 * r3 * t5 * t12;
// t89 = Z1 * r3 * t6 * t12 = Z1 * r3 * w2^2 * cos(theta)
double t89 = Z1 * r3 * t6 * t12;
// t90 = X1 * r2 * t9 * t10 * w3 = X1 * r2 * theta * sin(theta) * w3
double t90 = X1 * r2 * t9 * t10 * w3;
// t91 = Y1 * r3 * t9 * t10 * w1 = Y1 * r3 * theta * sin(theta) * w1
double t91 = Y1 * r3 * t9 * t10 * w1;
// t92 = Z1 * r1 * t9 * t10 * w2 = Z1 * r1 * theta * sin(theta) * w2
double t92 = Z1 * r1 * t9 * t10 * w2;
// t102 = X1 * r3 * t9 * t10 * w2 = X1 * r3 * theta * sin(theta) * w2
double t102 = X1 * r3 * t9 * t10 * w2;
// t103 = Y1 * r1 * t9 * t10 * w3 = Y1 * r1 * theta * sin(theta) * w3
double t103 = Y1 * r1 * t9 * t10 * w3;
// t104 = Z1 * r2 * t9 * t10 * w1 = Z1 * r2 * theta * sin(theta) * w1
double t104 = Z1 * r2 * t9 * t10 * w1;
// t105 = X1 * r2 * t12 * w1 * w2 = X1 * r2 * cos(theta) * w1 * w2
double t105 = X1 * r2 * t12 * w1 * w2;
// t106 = X1 * r3 * t12 * w1 * w3 = X1 * r3 * cos(theta) * w1 * w3
double t106 = X1 * r3 * t12 * w1 * w3;
// t107 = Y1 * r1 * t12 * w1 * w2 = Y1 * r1 * cos(theta) * w1 * w2
double t107 = Y1 * r1 * t12 * w1 * w2;
// t108 = Y1 * r3 * t12 * w2 * w3 = Y1 * r3 * cos(theta) * w2 * w3
double t108 = Y1 * r3 * t12 * w2 * w3;
// t109 = Z1 * r1 * t12 * w1 * w3 = Z1 * r1 * cos(theta) * w1 * w3
double t109 = Z1 * r1 * t12 * w1 * w3;
// t110 = Z1 * r2 * t12 * w2 * w3 = Z1 * r2 * cos(theta) * w2 * w3
double t110 = Z1 * r2 * t12 * w2 * w3;
// t93 = t66 + t67 + t68 + t69
// + t70 + t71 + t72 + t73 + t74
// + t75 + t76 + t77 + t78 + t79
// + t80 + t81 + t82 + t83 + t84
// + t85 + t86 + t87 + t88 + t89
// + t90 + t91 + t92 - t102 - t103
// - t104 - t105 - t106 - t107
// - t108 - t109 - t110
//
// = (Y1 * r2 * w2^2) + (Z1 * r3 * w3^2) + (r1 * t1 * w1^2) + (r1 * t1 * w2^2)
// + (r1 * t1 * w3^2) + (r2 * t2 * w1^2) + (r2 * t2 * w2^2) + (r2 * t2 * w3^2) + (r3 * t3 * w1^2)
// + (r3 * t3 * w2^2) + (r3 * t3 * w3^2) + (X1 * r1 * w1^2) + (X1 * r2 * w1 * w2) + (X1 * r3 * w1 * w3)
// + (Y1 * r1 * w1 * w2) + (Y1 * r3 * w2 * w3) + (Z1 * r1 * w1 * w3) + (Z1 * r2 * w2 * w3) + (X1 * r1 * w2^2 * cos(theta))
// + (X1 * r1 * w3^2 * cos(theta)) + (Y1 * r2 * w1^2 * cos(theta)) + (Y1 * r2 * w3^2 * cos(theta)) + (Z1 * r3 * w1^2 * cos(theta)) + (Z1 * r3 * w2^2 * cos(theta))
// + (X1 * r2 * theta * sin(theta) * w3) + (Y1 * r3 * theta * sin(theta) * w1) + (Z1 * r1 * theta * sin(theta) * w2) - (X1 * r3 * theta * sin(theta) * w2) - (Y1 * r1 * theta * sin(theta) * w3)
// - (Z1 * r2 * theta * sin(theta) * w1) - (X1 * r2 * cos(theta) * w1 * w2) - (X1 * r3 * cos(theta) * w1 * w3) - (Y1 * r1 * cos(theta) * w1 * w2) - ()
// - (Y1 * r3 * cos(theta) * w2 * w3) - (Z1 * r1 * cos(theta) * w1 * w3) - (Z1 * r2 * cos(theta) * w2 * w3)
double t93 =
t66 + t67 + t68 + t69 + t70 + t71 + t72 + t73 + t74 + t75 + t76 + t77 + t78 + t79 + t80 + t81 + t82 +
t83 + t84 + t85 + t86 + t87 + t88 + t89 + t90 + t91 + t92 - t102 - t103 - t104 - t105 - t106 - t107 -
t108 - t109 - t110;
// t94 = sin(theta)/theta^3* w1 * w2 = F*w1*w2
double t94 = t10 * t25 * w1 * w2;
// t95 = w2^2*sin(theta)/theta^3*w3 = F*w2^2*w3
double t95 = t6 * t10 * t25 * w3;
// t96 = 2 * w2^2 * (cos(theta) - 1) / theta^4 * w3 = 2*G*w2^2*w3
double t96 = t6 * t13 * t26 * w3 * 2.0;
// t97 = cos(theta) / theta^2 * w2 * w3 = E*w2*w3
double t97 = t12 * t14 * w2 * w3;
// t98 = w2^2 * sin(theta) / theta^3 * w1 = F*w2^2*w1
double t98 = t6 * t10 * t25 * w1;
// t99 = 2 * w2^2 * (cos(theta) - 1) / theta^4 * w1 = 2*G*w2^2*w1
double t99 = t6 * t13 * t26 * w1 * 2.0;
// t100 = w2^2 * sin(theta) / theta^3 = F*w2^2
double t100 = t6 * t10 * t25;
// t101 = 1.0 / pow(sqrt((t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^2), 3.0 / 2.0)
// = (t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^3
double t101 = 1.0 / pow(t63, 3.0 / 2.0);
// t111 = w2^2 * cos(theta) / theta^2 = E*w2^2
double t111 = t6 * t12 * t14;
// t112 = sin(theta) / theta^3 *w2 * w3 = F*w2*w3
double t112 = t10 * t25 * w2 * w3;
// t113 = cos(theta) / theta^2 * w1 * w3 = E*w1*w3
double t113 = t12 * t14 * w1 * w3;
// t114 = w3^2 * sin(theta) / theta^3 * w2 = F*w3^2*w2
double t114 = t7 * t10 * t25 * w2;
// t115 = t7 * t13 * t26 * w2 * 2.0 = 2*w3^2*(cos(theta) - 1) / theta^4*w2
double t115 = t7 * t13 * t26 * w2 * 2.0;
// t116 = w3^2 * sin(theta) / theta^3 * w1 = F*w3^2*w1
double t116 = t7 * t10 * t25 * w1;
// t117 = 2 * w3^2 * (cos(theta) - 1) / theta^4 * w1 = 2*G*w3^2*w1
double t117 = t7 * t13 * t26 * w1 * 2.0;
// t118 = E*w3^2
double t118 = t7 * t12 * t14;
// t119 = 2*w1*G*(w2^2+w3^2)
double t119 = t13 * t24 * t26 * w1 * 2.0;
// t120 = F*w1*(w2^2+w3^2)
double t120 = t10 * t24 * t25 * w1;
// t121 = (2*G+F)*w1*(w2^2+w3^2)
double t121 = t119 + t120;
// t122 = 2*G*w1*(w1^2+w2^2)
double t122 = t13 * t26 * t34 * w1 * 2.0;
// t123 = F*w1*(w1^2+w2^2)
double t123 = t10 * t25 * t34 * w1;
// t131 = 2*(cos(theta) - 1) / theta^2*w1 = 2*B*w1
double t131 = t13 * t14 * w1 * 2.0;
// t124 = t122 + t123 - t131 = 2*G*w1*(w1^2+w2^2)+F*w1*(w1^2+w2^2)-2*B*w1
// = (2*G+F)*w1*(w1^2+w2^2)-2*B*w1
double t124 = t122 + t123 - t131;
// t139 = t13 * t14 * w3 = B*w3
double t139 = t13 * t14 * w3;
// t125 = -t35 + t36 + t37 + t94 - t139 = -E*w1*w2+F*w1^2*w3+G*w1^2*w3+F*w1*w2-B*w3
double t125 = -t35 + t36 + t37 + t94 - t139;
// t126 = (-E*w1*w2+F*w1^2*w3+G*w1^2*w3+F*w1*w2-B*w3)*X1
double t126 = X1 * t125;
// t127 = t49 + t50 + t51 + t52 - t64 = A + E*w1^2 + (2*G+F)*w1*w2*w3 - F*w1^2
double t127 = t49 + t50 + t51 + t52 - t64;
// t128 = (A + E*w1^2 + (2*G+F)*w1*w2*w3 - F*w1^2)*Y1
double t128 = Y1 * t127;
// t129 = (-E*w1*w2+F*w1^2*w3+G*w1^2*w3+F*w1*w2-B*w3)*X1 + (A + E*w1^2 + (2*G+F)*w1*w2*w3 - F*w1^2)*Y1 - ((2*G+F)*w1*(w1^2+w2^2)-2*B*w1)Z1
double t129 = t126 + t128 - Z1 * t124;
// t130 = 2 * (t3 + r31*X1 + r32*Y1 + r33*Z1)
// * ((-E*w1*w2+F*w1^2*w3+G*w1^2*w3+F*w1*w2-B*w3)*X1 + (A + E*w1^2 + (2*G+F)*w1*w2*w3 - F*w1^2)*Y1 - ((2*G+F)*w1*(w1^2+w2^2)-2*B*w1)Z1)
double t130 = t23 * t129 * 2.0;
// t132 = t13 * t26 * t45 * w1 * 2.0 = 2*w1*G*(w1^2+w3^2)
double t132 = t13 * t26 * t45 * w1 * 2.0;
// t133 = t10 * t25 * t45 * w1 = F*w1*(w1^2+w3^2)
double t133 = t10 * t25 * t45 * w1;
// t138 = t13 * t14 * w2 = B*w2
double t138 = t13 * t14 * w2;
// t134 = -t46 + t47 + t48 + t113 - t138 = -F*w1*w3+F*w1^2*w2+G*w1^2*w2+E*w1*w3-B*w2
double t134 = -t46 + t47 + t48 + t113 - t138;
// t135 = (-F*w1*w3+F*w1^2*w2+G*w1^2*w2+E*w1*w3-B*w2)*X1
double t135 = X1 * t134;
// t136 = -t49 - t50 + t51 + t52 + t64 = -A-E*w1^2+2*G*w1*w2*w3+F*w1*w2*w3+F*w1^2
double t136 = -t49 - t50 + t51 + t52 + t64;
// t137 = (-A-E*w1^2+2*G*w1*w2*w3+F*w1*w2*w3+F*w1^2)*Z1
double t137 = Z1 * t136;
double t140 = X1 * s1 * t5;
double t141 = Y1 * s2 * t6;
double t142 = Z1 * s3 * t7;
double t143 = s1 * t1 * t5;
double t144 = s1 * t1 * t6;
double t145 = s1 * t1 * t7;
double t146 = s2 * t2 * t5;
double t147 = s2 * t2 * t6;
double t148 = s2 * t2 * t7;
double t149 = s3 * t3 * t5;
double t150 = s3 * t3 * t6;
double t151 = s3 * t3 * t7;
double t152 = X1 * s2 * w1 * w2;
double t153 = X1 * s3 * w1 * w3;
double t154 = Y1 * s1 * w1 * w2;
double t155 = Y1 * s3 * w2 * w3;
double t156 = Z1 * s1 * w1 * w3;
double t157 = Z1 * s2 * w2 * w3;
// t12 = cos(theta)
double t158 = X1 * s1 * t6 * t12;
double t159 = X1 * s1 * t7 * t12;
double t160 = Y1 * s2 * t5 * t12;
double t161 = Y1 * s2 * t7 * t12;
double t162 = Z1 * s3 * t5 * t12;
double t163 = Z1 * s3 * t6 * t12;
// t9 = theta, t10 = sin(theta)
double t164 = X1 * s2 * t9 * t10 * w3;
double t165 = Y1 * s3 * t9 * t10 * w1;
double t166 = Z1 * s1 * t9 * t10 * w2;
double t183 = X1 * s3 * t9 * t10 * w2;
double t184 = Y1 * s1 * t9 * t10 * w3;
double t185 = Z1 * s2 * t9 * t10 * w1;
// t12 = cos(theta)
double t186 = X1 * s2 * t12 * w1 * w2;
double t187 = X1 * s3 * t12 * w1 * w3;
double t188 = Y1 * s1 * t12 * w1 * w2;
double t189 = Y1 * s3 * t12 * w2 * w3;
double t190 = Z1 * s1 * t12 * w1 * w3;
double t191 = Z1 * s2 * t12 * w2 * w3;
// t167 = t140 + t141 + t142 + t143 + t144
// + t145 + t146 + t147 + t148 + t149
// + t150 + t151 + t152 + t153 + t154
// + t155 + t156 + t157 + t158 + t159
// + t160 + t161 + t162 + t163 + t164
// + t165 + t166 - t183 - t184 - t185
// - t186 - t187 - t188
// - t189 - t190 - t191
//
// = (X1 * s1 * t5) + (Y1 * s2 * t6) + (Z1 * s3 * t7) + (s1 * t1 * t5) + (s1 * t1 * t6)
// + (s1 * t1 * t7) + (s2 * t2 * t5) + (s2 * t2 * t6) + (s2 * t2 * t7) + (s3 * t3 * t5)
// + (s3 * t3 * t6) + (s3 * t3 * t7) + (X1 * s2 * w1 * w2) + (X1 * s3 * w1 * w3) + (Y1 * s1 * w1 * w2)
// + (Y1 * s3 * w2 * w3) + (Z1 * s1 * w1 * w3) + (Z1 * s2 * w2 * w3) + (X1 * s1 * t6 * t12) + (X1 * s1 * t7 * t12)
// + (Y1 * s2 * t5 * t12) + (Y1 * s2 * t7 * t12) + (Z1 * s3 * t5 * t12) + (Z1 * s3 * t6 * t12) + (X1 * s2 * t9 * t10 * w3)
// + (Y1 * s3 * t9 * t10 * w1) + (Z1 * s1 * t9 * t10 * w2) - (X1 * s3 * t9 * t10 * w2) - (Y1 * s1 * t9 * t10 * w3) - (Z1 * s2 * t9 * t10 * w1)
// - (X1 * s2 * t12 * w1 * w2) - (X1 * s3 * t12 * w1 * w3) - (Y1 * s1 * t12 * w1 * w2)
// - (Y1 * s3 * t12 * w2 * w3) - (Z1 * s1 * t12 * w1 * w3) - (Z1 * s2 * t12 * w2 * w3)
double t167 =
t140 + t141 + t142 + t143 + t144 + t145 + t146 + t147 + t148 + t149 + t150 + t151 + t152 + t153 + t154 +
t155 + t156 + t157 + t158 + t159 + t160 + t161 + t162 + t163 + t164 + t165 + t166 - t183 - t184 - t185 -
t186 - t187 - t188 - t189 - t190 - t191;
// t168 = t13 * t26 * t45 * w2 * 2.0 = 2*G*w2*(w1^2+w3^2)
double t168 = t13 * t26 * t45 * w2 * 2.0;
// t169 = t10 * t25 * t45 * w2 = F*w2*(w1^2+w3^2)
double t169 = t10 * t25 * t45 * w2;
// t170 = t168 + t169 = (2*G+F)*w2*(w1^2+w3^2)
double t170 = t168 + t169;
// t171 = t13 * t26 * t34 * w2 * 2.0 = 2*G*w2*(w1^2+w2^2)
double t171 = t13 * t26 * t34 * w2 * 2.0;
// t172 = t10 * t25 * t34 * w2 = F*w2*(w1^2+w2^2)
double t172 = t10 * t25 * t34 * w2;
// t176 = t13 * t14 * w2 * 2.0 = 2*B*w2
double t176 = t13 * t14 * w2 * 2.0;
// t173 = t171 + t172 - t176 = (2*G+F)*w2*(w1^2+w2^2) - 2*B*w2
double t173 = t171 + t172 - t176;
// t174 = -t49 + t51 + t52 + t100 - t111 = -A+2*G*w1*w2*w3+F*w1*w2*w3+F*w2^2-E*w2^2
double t174 = -t49 + t51 + t52 + t100 - t111;
// t175 = X1 * t174 = (-A+2*G*w1*w2*w3+F*w1*w2*w3+F*w2^2-E*w2^2)*X1
double t175 = X1 * t174;
// t177 = t13 * t24 * t26 * w2 * 2.0 = 2*w2*G*(w2^2+w3^2)
double t177 = t13 * t24 * t26 * w2 * 2.0;
// t178 = t10 * t24 * t25 * w2 = F*w2*(w2^2+w3^2)
double t178 = t10 * t24 * t25 * w2;
// t192 = t13 * t14 * w1 = B*w1
double t192 = t13 * t14 * w1;
// t179 = -t97 + t98 + t99 + t112 - t192 = -E*w2*w3+F*w2^2*w1+2*G*w2^2*w1+F*w2*w3-B*w1
double t179 = -t97 + t98 + t99 + t112 - t192;
// t180 = (-E*w2*w3+F*w2^2*w1+2*G*w2^2*w1+F*w2*w3-B*w1)*Y1
double t180 = Y1 * t179;
// t181 = A+2*G*w1*w2*w3+F*w1*w2*w3-F*w2^2+E*w2^2
double t181 = t49 + t51 + t52 - t100 + t111;
// t182 = (A+2*G*w1*w2*w3+F*w1*w2*w3-F*w2^2+E*w2^2)*Z1
double t182 = Z1 * t181;
// t193 = 2*G*w3*(w2^2+w3^2)
double t193 = t13 * t26 * t34 * w3 * 2.0;
// t194 = F*w3*(w2^2+w3^2)
double t194 = t10 * t25 * t34 * w3;
// t195 = (2*G+F)*w3*(w2^2+w3^2)
double t195 = t193 + t194;
// t196 = 2*G*w3*(w1^2+w3^2)
double t196 = t13 * t26 * t45 * w3 * 2.0;
// t197 = F*w3*(w1^2+w3^2)
double t197 = t10 * t25 * t45 * w3;
// t200 = 2*B*w3
double t200 = t13 * t14 * w3 * 2.0;
// t198 = (2*G+F)*w3*(w1^2+w3^2) - 2*B*w3
double t198 = t196 + t197 - t200;
// t199 = F*w3^2
double t199 = t7 * t10 * t25;
// t201 = 2*w3*G*(w2^2+w3^2)
double t201 = t13 * t24 * t26 * w3 * 2.0;
// t202 = F*w3*(w2^2+w3^2)
double t202 = t10 * t24 * t25 * w3;
// t203 = -t49 + t51 + t52 - t118 + t199 = -A+2*G*w1*w2*w3+F*w1*w2*w3-E*w3^2+F*w3^2
double t203 = -t49 + t51 + t52 - t118 + t199;
// t204 = (-t49 + t51 + t52 - t118 + t199 = -A+2*G*w1*w2*w3+F*w1*w2*w3-E*w3^2+F*w3^2)*Y1
double t204 = Y1 * t203;
// t205 = 2*t1
double t205 = t1 * 2.0;
// t206 = 2*r13*Z1
double t206 = Z1 * t29 * 2.0;
// t207 = 2*r11*X1
double t207 = X1 * t32 * 2.0;
// t208 = 2*t1 + 2*r13*Z1 + 2*r11*X1 + 2*r12*Y1
double t208 = t205 + t206 + t207 - Y1 * t27 * 2.0;
// t209 = 2*t2
double t209 = t2 * 2.0;
// t210 = 2*r21*X1
double t210 = X1 * t53 * 2.0;
// t211 = 2*r22*Y1
double t211 = Y1 * t58 * 2.0;
// t212 = 2*t2 + 2*r21*X1 + 2*r22*Y1 + 2*r23*Z1
double t212 = t209 + t210 + t211 - Z1 * t55 * 2.0;
double t213 = t3 * 2.0;
double t214 = Y1 * t40 * 2.0;
double t215 = Z1 * t43 * 2.0;
double t216 = t213 + t214 + t215 - X1 * t38 * 2.0;
//
jacs(0, 0) = t14 * t65 * (X1 * r1 * w1 * 2.0 + X1 * r2 * w2 + X1 * r3 * w3 + Y1 * r1 * w2 + Z1 * r1 * w3 + r1 * t1 * w1 * 2.0 + r2 * t2 * w1 * 2.0 + r3 * t3 * w1 * 2.0 + Y1 * r3 * t5 * t12 + Y1 * r3 * t9 * t10 - Z1 * r2 * t5 * t12 - Z1 * r2 * t9 * t10 - X1 * r2 * t12 * w2 - X1 * r3 * t12 * w3 - Y1 * r1 * t12 * w2 + Y1 * r2 * t12 * w1 * 2.0 - Z1 * r1 * t12 * w3 + Z1 * r3 * t12 * w1 * 2.0 + Y1 * r3 * t5 * t10 * t11 - Z1 * r2 * t5 * t10 * t11 + X1 * r2 * t12 * w1 * w3 - X1 * r3 * t12 * w1 * w2 - Y1 * r1 * t12 * w1 * w3 + Z1 * r1 * t12 * w1 * w2 - Y1 * r1 * t10 * t11 * w1 * w3 + Z1 * r1 * t10 * t11 * w1 * w2 - X1 * r1 * t6 * t10 * t11 * w1 - X1 * r1 * t7 * t10 * t11 * w1 + X1 * r2 * t5 * t10 * t11 * w2 + X1 * r3 * t5 * t10 * t11 * w3 + Y1 * r1 * t5 * t10 * t11 * w2 - Y1 * r2 * t5 * t10 * t11 * w1 - Y1 * r2 * t7 * t10 * t11 * w1 + Z1 * r1 * t5 * t10 * t11 * w3 - Z1 * r3 * t5 * t10 * t11 * w1 - Z1 * r3 * t6 * t10 * t11 * w1 + X1 * r2 * t10 * t11 * w1 * w3 - X1 * r3 * t10 * t11 * w1 * w2 + Y1 * r3 * t10 * t11 * w1 * w2 * w3 + Z1 * r2 * t10 * t11 * w1 * w2 * w3) - t26 * t65 * t93 * w1 * 2.0 - t14 * t93 * t101 * (t130 + t15 * (-X1 * t121 + Y1 * (t46 + t47 + t48 - t13 * t14 * w2 - t12 * t14 * w1 * w3) + Z1 * (t35 + t36 + t37 - t13 * t14 * w3 - t10 * t25 * w1 * w2)) * 2.0 + t18 * (t135 + t137 - Y1 * (t132 + t133 - t13 * t14 * w1 * 2.0)) * 2.0) * (1.0 / 2.0);
jacs(0, 1) = t14 * t65 * (X1 * r2 * w1 + Y1 * r1 * w1 + Y1 * r2 * w2 * 2.0 + Y1 * r3 * w3 + Z1 * r2 * w3 + r1 * t1 * w2 * 2.0 + r2 * t2 * w2 * 2.0 + r3 * t3 * w2 * 2.0 - X1 * r3 * t6 * t12 - X1 * r3 * t9 * t10 + Z1 * r1 * t6 * t12 + Z1 * r1 * t9 * t10 + X1 * r1 * t12 * w2 * 2.0 - X1 * r2 * t12 * w1 - Y1 * r1 * t12 * w1 - Y1 * r3 * t12 * w3 - Z1 * r2 * t12 * w3 + Z1 * r3 * t12 * w2 * 2.0 - X1 * r3 * t6 * t10 * t11 + Z1 * r1 * t6 * t10 * t11 + X1 * r2 * t12 * w2 * w3 - Y1 * r1 * t12 * w2 * w3 + Y1 * r3 * t12 * w1 * w2 - Z1 * r2 * t12 * w1 * w2 - Y1 * r1 * t10 * t11 * w2 * w3 + Y1 * r3 * t10 * t11 * w1 * w2 - Z1 * r2 * t10 * t11 * w1 * w2 - X1 * r1 * t6 * t10 * t11 * w2 + X1 * r2 * t6 * t10 * t11 * w1 - X1 * r1 * t7 * t10 * t11 * w2 + Y1 * r1 * t6 * t10 * t11 * w1 - Y1 * r2 * t5 * t10 * t11 * w2 - Y1 * r2 * t7 * t10 * t11 * w2 + Y1 * r3 * t6 * t10 * t11 * w3 - Z1 * r3 * t5 * t10 * t11 * w2 + Z1 * r2 * t6 * t10 * t11 * w3 - Z1 * r3 * t6 * t10 * t11 * w2 + X1 * r2 * t10 * t11 * w2 * w3 + X1 * r3 * t10 * t11 * w1 * w2 * w3 + Z1 * r1 * t10 * t11 * w1 * w2 * w3) -
t26 * t65 * t93 * w2 * 2.0 - t14 * t93 * t101 * (t18 * (Z1 * (-t35 + t94 + t95 + t96 - t13 * t14 * w3) - Y1 * t170 + X1 * (t97 + t98 + t99 - t13 * t14 * w1 - t10 * t25 * w2 * w3)) * 2.0 + t15 * (t180 + t182 - X1 * (t177 + t178 - t13 * t14 * w2 * 2.0)) * 2.0 + t23 * (t175 + Y1 * (t35 - t94 + t95 + t96 - t13 * t14 * w3) - Z1 * t173) * 2.0) * (1.0 / 2.0);
jacs(0, 2) = t14 * t65 * (X1 * r3 * w1 + Y1 * r3 * w2 + Z1 * r1 * w1 + Z1 * r2 * w2 + Z1 * r3 * w3 * 2.0 + r1 * t1 * w3 * 2.0 + r2 * t2 * w3 * 2.0 + r3 * t3 * w3 * 2.0 + X1 * r2 * t7 * t12 + X1 * r2 * t9 * t10 - Y1 * r1 * t7 * t12 - Y1 * r1 * t9 * t10 + X1 * r1 * t12 * w3 * 2.0 - X1 * r3 * t12 * w1 + Y1 * r2 * t12 * w3 * 2.0 - Y1 * r3 * t12 * w2 - Z1 * r1 * t12 * w1 - Z1 * r2 * t12 * w2 + X1 * r2 * t7 * t10 * t11 - Y1 * r1 * t7 * t10 * t11 - X1 * r3 * t12 * w2 * w3 + Y1 * r3 * t12 * w1 * w3 + Z1 * r1 * t12 * w2 * w3 - Z1 * r2 * t12 * w1 * w3 + Y1 * r3 * t10 * t11 * w1 * w3 + Z1 * r1 * t10 * t11 * w2 * w3 - Z1 * r2 * t10 * t11 * w1 * w3 - X1 * r1 * t6 * t10 * t11 * w3 - X1 * r1 * t7 * t10 * t11 * w3 + X1 * r3 * t7 * t10 * t11 * w1 - Y1 * r2 * t5 * t10 * t11 * w3 - Y1 * r2 * t7 * t10 * t11 * w3 + Y1 * r3 * t7 * t10 * t11 * w2 + Z1 * r1 * t7 * t10 * t11 * w1 + Z1 * r2 * t7 * t10 * t11 * w2 - Z1 * r3 * t5 * t10 * t11 * w3 - Z1 * r3 * t6 * t10 * t11 * w3 - X1 * r3 * t10 * t11 * w2 * w3 + X1 * r2 * t10 * t11 * w1 * w2 * w3 + Y1 * r1 * t10 * t11 * w1 * w2 * w3) -
t26 * t65 * t93 * w3 * 2.0 - t14 * t93 * t101 * (t18 * (Z1 * (t46 - t113 + t114 + t115 - t13 * t14 * w2) - Y1 * t198 + X1 * (t49 + t51 + t52 + t118 - t7 * t10 * t25)) * 2.0 + t23 * (X1 * (-t97 + t112 + t116 + t117 - t13 * t14 * w1) + Y1 * (-t46 + t113 + t114 + t115 - t13 * t14 * w2) - Z1 * t195) * 2.0 + t15 * (t204 + Z1 * (t97 - t112 + t116 + t117 - t13 * t14 * w1) - X1 * (t201 + t202 - t13 * t14 * w3 * 2.0)) * 2.0) * (1.0 / 2.0);
// = 1/2 * r1 * t65
// - t14 * t93
// * t101 * t208
// = 1/2 * r1 * 1 / sqrt((t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^2)
// - 1/theta^2 * ((Y1 * r2 * w2^2) + (Z1 * r3 * w3^2) + (r1 * t1 * w1^2) + (r1 * t1 * w2^2)
// + (r1 * t1 * w3^2) + (r2 * t2 * w1^2) + (r2 * t2 * w2^2) + (r2 * t2 * w3^2) + (r3 * t3 * w1^2)
// + (r3 * t3 * w2^2) + (r3 * t3 * w3^2) + (X1 * r1 * w1^2) + (X1 * r2 * w1 * w2) + (X1 * r3 * w1 * w3)
// + (Y1 * r1 * w1 * w2) + (Y1 * r3 * w2 * w3) + (Z1 * r1 * w1 * w3) + (Z1 * r2 * w2 * w3) + (X1 * r1 * w2^2 * cos(theta))
// + (X1 * r1 * w3^2 * cos(theta)) + (Y1 * r2 * w1^2 * cos(theta)) + (Y1 * r2 * w3^2 * cos(theta)) + (Z1 * r3 * w1^2 * cos(theta)) + (Z1 * r3 * w2^2 * cos(theta))
// + (X1 * r2 * theta * sin(theta) * w3) + (Y1 * r3 * theta * sin(theta) * w1) + (Z1 * r1 * theta * sin(theta) * w2) - (X1 * r3 * theta * sin(theta) * w2) - (Y1 * r1 * theta * sin(theta) * w3)
// - (Z1 * r2 * theta * sin(theta) * w1) - (X1 * r2 * cos(theta) * w1 * w2) - (X1 * r3 * cos(theta) * w1 * w3) - (Y1 * r1 * cos(theta) * w1 * w2) - ()
// - (Y1 * r3 * cos(theta) * w2 * w3) - (Z1 * r1 * cos(theta) * w1 * w3) - (Z1 * r2 * cos(theta) * w2 * w3))
// * (pow(((t1 + r11*X1 + r12*Y1 + r13*Z1)^2 + (t2 + r21*X1 + r22*Y1 + r23*Z1)^2 + (t3 + r31*X1 + r32*Y1 + r33*Z1)^2), 3/2))
// * (2*t1 + 2*r11*X1 + 2*r12*Y1 + 2*r13*Z1)
jacs(0, 3) = r1 * t65 - t14 * t93 * t101 * t208 * (1.0 / 2.0);
jacs(0, 4) = r2 * t65 - t14 * t93 * t101 * t212 * (1.0 / 2.0);
jacs(0, 5) = r3 * t65 - t14 * t93 * t101 * t216 * (1.0 / 2.0);
jacs(1, 0) = t14 * t65 * (X1 * s1 * w1 * 2.0 + X1 * s2 * w2 + X1 * s3 * w3 + Y1 * s1 * w2 + Z1 * s1 * w3 + s1 * t1 * w1 * 2.0 + s2 * t2 * w1 * 2.0 + s3 * t3 * w1 * 2.0 + Y1 * s3 * t5 * t12 + Y1 * s3 * t9 * t10 - Z1 * s2 * t5 * t12 - Z1 * s2 * t9 * t10 - X1 * s2 * t12 * w2 - X1 * s3 * t12 * w3 - Y1 * s1 * t12 * w2 + Y1 * s2 * t12 * w1 * 2.0 - Z1 * s1 * t12 * w3 + Z1 * s3 * t12 * w1 * 2.0 + Y1 * s3 * t5 * t10 * t11 - Z1 * s2 * t5 * t10 * t11 + X1 * s2 * t12 * w1 * w3 - X1 * s3 * t12 * w1 * w2 - Y1 * s1 * t12 * w1 * w3 + Z1 * s1 * t12 * w1 * w2 + X1 * s2 * t10 * t11 * w1 * w3 - X1 * s3 * t10 * t11 * w1 * w2 - Y1 * s1 * t10 * t11 * w1 * w3 + Z1 * s1 * t10 * t11 * w1 * w2 - X1 * s1 * t6 * t10 * t11 * w1 - X1 * s1 * t7 * t10 * t11 * w1 + X1 * s2 * t5 * t10 * t11 * w2 + X1 * s3 * t5 * t10 * t11 * w3 + Y1 * s1 * t5 * t10 * t11 * w2 - Y1 * s2 * t5 * t10 * t11 * w1 - Y1 * s2 * t7 * t10 * t11 * w1 + Z1 * s1 * t5 * t10 * t11 * w3 - Z1 * s3 * t5 * t10 * t11 * w1 - Z1 * s3 * t6 * t10 * t11 * w1 + Y1 * s3 * t10 * t11 * w1 * w2 * w3 + Z1 * s2 * t10 * t11 * w1 * w2 * w3) - t14 * t101 * t167 * (t130 + t15 * (Y1 * (t46 + t47 + t48 - t113 - t138) + Z1 * (t35 + t36 + t37 - t94 - t139) - X1 * t121) * 2.0 + t18 * (t135 + t137 - Y1 * (-t131 + t132 + t133)) * 2.0) * (1.0 / 2.0) - t26 * t65 * t167 * w1 * 2.0;
jacs(1, 1) = t14 * t65 * (X1 * s2 * w1 + Y1 * s1 * w1 + Y1 * s2 * w2 * 2.0 + Y1 * s3 * w3 + Z1 * s2 * w3 + s1 * t1 * w2 * 2.0 + s2 * t2 * w2 * 2.0 + s3 * t3 * w2 * 2.0 - X1 * s3 * t6 * t12 - X1 * s3 * t9 * t10 + Z1 * s1 * t6 * t12 + Z1 * s1 * t9 * t10 + X1 * s1 * t12 * w2 * 2.0 - X1 * s2 * t12 * w1 - Y1 * s1 * t12 * w1 - Y1 * s3 * t12 * w3 - Z1 * s2 * t12 * w3 + Z1 * s3 * t12 * w2 * 2.0 - X1 * s3 * t6 * t10 * t11 + Z1 * s1 * t6 * t10 * t11 + X1 * s2 * t12 * w2 * w3 - Y1 * s1 * t12 * w2 * w3 + Y1 * s3 * t12 * w1 * w2 - Z1 * s2 * t12 * w1 * w2 + X1 * s2 * t10 * t11 * w2 * w3 - Y1 * s1 * t10 * t11 * w2 * w3 + Y1 * s3 * t10 * t11 * w1 * w2 - Z1 * s2 * t10 * t11 * w1 * w2 - X1 * s1 * t6 * t10 * t11 * w2 + X1 * s2 * t6 * t10 * t11 * w1 - X1 * s1 * t7 * t10 * t11 * w2 + Y1 * s1 * t6 * t10 * t11 * w1 - Y1 * s2 * t5 * t10 * t11 * w2 - Y1 * s2 * t7 * t10 * t11 * w2 + Y1 * s3 * t6 * t10 * t11 * w3 - Z1 * s3 * t5 * t10 * t11 * w2 + Z1 * s2 * t6 * t10 * t11 * w3 - Z1 * s3 * t6 * t10 * t11 * w2 + X1 * s3 * t10 * t11 * w1 * w2 * w3 + Z1 * s1 * t10 * t11 * w1 * w2 * w3) -
t26 * t65 * t167 * w2 * 2.0 - t14 * t101 * t167 * (t18 * (X1 * (t97 + t98 + t99 - t112 - t192) + Z1 * (-t35 + t94 + t95 + t96 - t139) - Y1 * t170) * 2.0 + t15 * (t180 + t182 - X1 * (-t176 + t177 + t178)) * 2.0 + t23 * (t175 + Y1 * (t35 - t94 + t95 + t96 - t139) - Z1 * t173) * 2.0) * (1.0 / 2.0);
jacs(1, 2) = t14 * t65 * (X1 * s3 * w1 + Y1 * s3 * w2 + Z1 * s1 * w1 + Z1 * s2 * w2 + Z1 * s3 * w3 * 2.0 + s1 * t1 * w3 * 2.0 + s2 * t2 * w3 * 2.0 + s3 * t3 * w3 * 2.0 + X1 * s2 * t7 * t12 + X1 * s2 * t9 * t10 - Y1 * s1 * t7 * t12 - Y1 * s1 * t9 * t10 + X1 * s1 * t12 * w3 * 2.0 - X1 * s3 * t12 * w1 + Y1 * s2 * t12 * w3 * 2.0 - Y1 * s3 * t12 * w2 - Z1 * s1 * t12 * w1 - Z1 * s2 * t12 * w2 + X1 * s2 * t7 * t10 * t11 - Y1 * s1 * t7 * t10 * t11 - X1 * s3 * t12 * w2 * w3 + Y1 * s3 * t12 * w1 * w3 + Z1 * s1 * t12 * w2 * w3 - Z1 * s2 * t12 * w1 * w3 - X1 * s3 * t10 * t11 * w2 * w3 + Y1 * s3 * t10 * t11 * w1 * w3 + Z1 * s1 * t10 * t11 * w2 * w3 - Z1 * s2 * t10 * t11 * w1 * w3 - X1 * s1 * t6 * t10 * t11 * w3 - X1 * s1 * t7 * t10 * t11 * w3 + X1 * s3 * t7 * t10 * t11 * w1 - Y1 * s2 * t5 * t10 * t11 * w3 - Y1 * s2 * t7 * t10 * t11 * w3 + Y1 * s3 * t7 * t10 * t11 * w2 + Z1 * s1 * t7 * t10 * t11 * w1 + Z1 * s2 * t7 * t10 * t11 * w2 - Z1 * s3 * t5 * t10 * t11 * w3 - Z1 * s3 * t6 * t10 * t11 * w3 + X1 * s2 * t10 * t11 * w1 * w2 * w3 + Y1 * s1 * t10 * t11 * w1 * w2 * w3) -
t26 * t65 * t167 * w3 * 2.0 - t14 * t101 * t167 * (t18 * (Z1 * (t46 - t113 + t114 + t115 - t138) - Y1 * t198 + X1 * (t49 + t51 + t52 + t118 - t199)) * 2.0 + t23 * (X1 * (-t97 + t112 + t116 + t117 - t192) + Y1 * (-t46 + t113 + t114 + t115 - t138) - Z1 * t195) * 2.0 + t15 * (t204 + Z1 * (t97 - t112 + t116 + t117 - t192) - X1 * (-t200 + t201 + t202)) * 2.0) * (1.0 / 2.0);
jacs(1, 3) = s1 * t65 - t14 * t101 * t167 * t208 * (1.0 / 2.0);
jacs(1, 4) = s2 * t65 - t14 * t101 * t167 * t212 * (1.0 / 2.0);
jacs(1, 5) = s3 * t65 - t14 * t101 * t167 * t216 * (1.0 / 2.0);
}
} // End namespace ORB_SLAM3