orb_slam3_details/Examples/Stereo/stereo_euroc.cc

262 lines
8.5 KiB
C++

/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include<iostream>
#include<algorithm>
#include<fstream>
#include<iomanip>
#include<chrono>
#include<opencv2/core/core.hpp>
#include<System.h>
using namespace std;
void LoadImages(const string &strPathLeft, const string &strPathRight, const string &strPathTimes,
vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps);
int main(int argc, char **argv)
{
if(argc < 5)
{
cerr << endl << "Usage: ./stereo_euroc path_to_vocabulary path_to_settings path_to_sequence_folder_1 path_to_times_file_1 (path_to_image_folder_2 path_to_times_file_2 ... path_to_image_folder_N path_to_times_file_N) (trajectory_file_name)" << endl;
return 1;
}
const int num_seq = (argc-3)/2;
cout << "num_seq = " << num_seq << endl;
bool bFileName= (((argc-3) % 2) == 1);
string file_name;
if (bFileName)
{
file_name = string(argv[argc-1]);
cout << "file name: " << file_name << endl;
}
// Load all sequences:
int seq;
vector< vector<string> > vstrImageLeft;
vector< vector<string> > vstrImageRight;
vector< vector<double> > vTimestampsCam;
vector<int> nImages;
vstrImageLeft.resize(num_seq);
vstrImageRight.resize(num_seq);
vTimestampsCam.resize(num_seq);
nImages.resize(num_seq);
int tot_images = 0;
for (seq = 0; seq<num_seq; seq++)
{
cout << "Loading images for sequence " << seq << "...";
string pathSeq(argv[(2*seq) + 3]);
string pathTimeStamps(argv[(2*seq) + 4]);
string pathCam0 = pathSeq + "/mav0/cam0/data";
string pathCam1 = pathSeq + "/mav0/cam1/data";
LoadImages(pathCam0, pathCam1, pathTimeStamps, vstrImageLeft[seq], vstrImageRight[seq], vTimestampsCam[seq]);
cout << "LOADED!" << endl;
nImages[seq] = vstrImageLeft[seq].size();
tot_images += nImages[seq];
}
// Read rectification parameters
cv::FileStorage fsSettings(argv[2], cv::FileStorage::READ);
if(!fsSettings.isOpened())
{
cerr << "ERROR: Wrong path to settings" << endl;
return -1;
}
cv::Mat K_l, K_r, P_l, P_r, R_l, R_r, D_l, D_r;
fsSettings["LEFT.K"] >> K_l;
fsSettings["RIGHT.K"] >> K_r;
fsSettings["LEFT.P"] >> P_l;
fsSettings["RIGHT.P"] >> P_r;
fsSettings["LEFT.R"] >> R_l;
fsSettings["RIGHT.R"] >> R_r;
fsSettings["LEFT.D"] >> D_l;
fsSettings["RIGHT.D"] >> D_r;
int rows_l = fsSettings["LEFT.height"];
int cols_l = fsSettings["LEFT.width"];
int rows_r = fsSettings["RIGHT.height"];
int cols_r = fsSettings["RIGHT.width"];
if(K_l.empty() || K_r.empty() || P_l.empty() || P_r.empty() || R_l.empty() || R_r.empty() || D_l.empty() || D_r.empty() ||
rows_l==0 || rows_r==0 || cols_l==0 || cols_r==0)
{
cerr << "ERROR: Calibration parameters to rectify stereo are missing!" << endl;
return -1;
}
cv::Mat M1l,M2l,M1r,M2r;
cv::initUndistortRectifyMap(K_l,D_l,R_l,P_l.rowRange(0,3).colRange(0,3),cv::Size(cols_l,rows_l),CV_32F,M1l,M2l);
cv::initUndistortRectifyMap(K_r,D_r,R_r,P_r.rowRange(0,3).colRange(0,3),cv::Size(cols_r,rows_r),CV_32F,M1r,M2r);
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(tot_images);
cout << endl << "-------" << endl;
cout.precision(17);
// Create SLAM system. It initializes all system threads and gets ready to process frames.
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::STEREO, true);
cv::Mat imLeft, imRight, imLeftRect, imRightRect;
for (seq = 0; seq<num_seq; seq++)
{
// Seq loop
double t_rect = 0;
int num_rect = 0;
int proccIm = 0;
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
{
// Read left and right images from file
imLeft = cv::imread(vstrImageLeft[seq][ni],cv::IMREAD_UNCHANGED);
imRight = cv::imread(vstrImageRight[seq][ni],cv::IMREAD_UNCHANGED);
if(imLeft.empty())
{
cerr << endl << "Failed to load image at: "
<< string(vstrImageLeft[seq][ni]) << endl;
return 1;
}
if(imRight.empty())
{
cerr << endl << "Failed to load image at: "
<< string(vstrImageRight[seq][ni]) << endl;
return 1;
}
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_Start_Rect = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_Start_Rect = std::chrono::monotonic_clock::now();
#endif
cv::remap(imLeft,imLeftRect,M1l,M2l,cv::INTER_LINEAR);
cv::remap(imRight,imRightRect,M1r,M2r,cv::INTER_LINEAR);
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_End_Rect = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_End_Rect = std::chrono::monotonic_clock::now();
#endif
t_rect = std::chrono::duration_cast<std::chrono::duration<double> >(t_End_Rect - t_Start_Rect).count();
double tframe = vTimestampsCam[seq][ni];
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the images to the SLAM system
SLAM.TrackStereo(imLeftRect,imRightRect,tframe, vector<ORB_SLAM3::IMU::Point>(), vstrImageLeft[seq][ni]);
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
vTimesTrack[ni]=ttrack;
// Wait to load the next frame
double T=0;
if(ni<nImages[seq]-1)
T = vTimestampsCam[seq][ni+1]-tframe;
else if(ni>0)
T = tframe-vTimestampsCam[seq][ni-1];
if(ttrack<T)
usleep((T-ttrack)*1e6); // 1e6
}
if(seq < num_seq - 1)
{
cout << "Changing the dataset" << endl;
SLAM.ChangeDataset();
}
}
// Stop all threads
SLAM.Shutdown();
// Save camera trajectory
if (bFileName)
{
const string kf_file = "kf_" + string(argv[argc-1]) + ".txt";
const string f_file = "f_" + string(argv[argc-1]) + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);
}
else
{
SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt");
SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt");
}
return 0;
}
void LoadImages(const string &strPathLeft, const string &strPathRight, const string &strPathTimes,
vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps)
{
ifstream fTimes;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve(5000);
vstrImageLeft.reserve(5000);
vstrImageRight.reserve(5000);
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
stringstream ss;
ss << s;
vstrImageLeft.push_back(strPathLeft + "/" + ss.str() + ".png");
vstrImageRight.push_back(strPathRight + "/" + ss.str() + ".png");
double t;
ss >> t;
vTimeStamps.push_back(t/1e9);
}
}
}