/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see <http://www.gnu.org/licenses/>. */ #include <signal.h> #include <stdlib.h> #include <iostream> #include <algorithm> #include <fstream> #include <chrono> #include <ctime> #include <sstream> #include <opencv2/core/core.hpp> #include <librealsense2/rs.hpp> #include <System.h> #include <condition_variable> #include "ImuTypes.h" using namespace std; bool b_continue_session; void exit_loop_handler(int s){ cout << "Finishing session" << endl; b_continue_session = false; } rs2_vector interpolateMeasure(const double target_time, const rs2_vector current_data, const double current_time, const rs2_vector prev_data, const double prev_time); int main(int argc, char **argv) { if (argc < 3 || argc > 4) { cerr << endl << "Usage: ./mono_inertial_realsense_t265 path_to_vocabulary path_to_settings (trajectory_file_name)" << endl; return 1; } string file_name; bool bFileName = false; if (argc == 4) { file_name = string(argv[argc - 1]); bFileName = true; } ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name); float imageScale = SLAM.GetImageScale(); struct sigaction sigIntHandler; sigIntHandler.sa_handler = exit_loop_handler; sigemptyset(&sigIntHandler.sa_mask); sigIntHandler.sa_flags = 0; sigaction(SIGINT, &sigIntHandler, NULL); b_continue_session = true; double offset = 0; // ms // Declare RealSense pipeline, encapsulating the actual device and sensors rs2::pipeline pipe; // Create a configuration for configuring the pipeline with a non default profile rs2::config cfg; // Enable both image strams (for some reason realsense does not allow to enable just one) cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8,30); cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8,30); // Add streams of gyro and accelerometer to configuration cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F); cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F); std::mutex imu_mutex; std::condition_variable cond_image_rec; vector<double> v_accel_timestamp; vector<rs2_vector> v_accel_data; vector<double> v_gyro_timestamp; vector<rs2_vector> v_gyro_data; double prev_accel_timestamp = 0; rs2_vector prev_accel_data; double current_accel_timestamp = 0; rs2_vector current_accel_data; vector<double> v_accel_timestamp_sync; vector<rs2_vector> v_accel_data_sync; cv::Mat imCV,imCV_right; int width_img, height_img; //width_img = 848, height_img = 800; double timestamp_image = -1.0; bool image_ready = false; int count_im_buffer = 0; // count dropped frames auto imu_callback = [&](const rs2::frame& frame){ std::unique_lock<std::mutex> lock(imu_mutex); if(rs2::frameset fs = frame.as<rs2::frameset>()){ count_im_buffer++; double new_timestamp_image = fs.get_timestamp()*1e-3; if(abs(timestamp_image-new_timestamp_image)<0.001){ // cout << "Two frames with the same timeStamp!!!\n"; count_im_buffer--; return; } rs2::video_frame color_frame = fs.get_fisheye_frame(1); // rs2::video_frame color_frame_right = fs.get_fisheye_frame(2); imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame.get_data()), cv::Mat::AUTO_STEP); timestamp_image = new_timestamp_image; // fs.get_timestamp()*1e-3; image_ready = true; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){ int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp); v_accel_data_sync.push_back(interp_data); v_accel_timestamp_sync.push_back(target_time); } lock.unlock(); cond_image_rec.notify_all(); } else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>()){ if (m_frame.get_profile().stream_name() == "Gyro"){ // It runs at 200Hz v_gyro_data.push_back(m_frame.get_motion_data()); v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3); } else if (m_frame.get_profile().stream_name() == "Accel"){ // It runs at 60Hz prev_accel_timestamp = current_accel_timestamp; prev_accel_data = current_accel_data; current_accel_data = m_frame.get_motion_data(); current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()) { int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp); v_accel_data_sync.push_back(interp_data); v_accel_timestamp_sync.push_back(target_time); } } } }; rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback); rs2::stream_profile cam_stream = pipe_profile.get_stream(RS2_STREAM_FISHEYE, 1); rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO); float* Rbc = cam_stream.get_extrinsics_to(imu_stream).rotation; float* tbc = cam_stream.get_extrinsics_to(imu_stream).translation; std::cout << "Tbc = " << std::endl; for(int i = 0; i<3; i++){ for(int j = 0; j<3; j++) std::cout << Rbc[i*3 + j] << ", "; std::cout << tbc[i] << "\n"; } rs2_intrinsics intrinsics_cam = cam_stream.as<rs2::video_stream_profile>().get_intrinsics(); width_img = intrinsics_cam.width; height_img = intrinsics_cam.height; std::cout << " fx = " << intrinsics_cam.fx << std::endl; std::cout << " fy = " << intrinsics_cam.fy << std::endl; std::cout << " cx = " << intrinsics_cam.ppx << std::endl; std::cout << " cy = " << intrinsics_cam.ppy << std::endl; std::cout << " height = " << intrinsics_cam.height << std::endl; std::cout << " width = " << intrinsics_cam.width << std::endl; std::cout << " Coeff = " << intrinsics_cam.coeffs[0] << ", " << intrinsics_cam.coeffs[1] << ", " << intrinsics_cam.coeffs[2] << ", " << intrinsics_cam.coeffs[3] << ", " << intrinsics_cam.coeffs[4] << ", " << std::endl; std::cout << " Model = " << intrinsics_cam.model << std::endl; // Create SLAM system. It initializes all system threads and gets ready to process frames. vector<ORB_SLAM3::IMU::Point> vImuMeas; double timestamp; cv::Mat im; // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_accel_data_sync.clear(); v_accel_timestamp_sync.clear(); double t_resize = 0.f; double t_track = 0.f; std::chrono::steady_clock::time_point time_Start_Process; while (!SLAM.isShutDown()){ std::vector<rs2_vector> vGyro; std::vector<double> vGyro_times; std::vector<rs2_vector> vAccel; std::vector<double> vAccel_times; { std::unique_lock<std::mutex> lk(imu_mutex); while(!image_ready) cond_image_rec.wait(lk); #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point time_Start_Process = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point time_Start_Process = std::chrono::monotonic_clock::now(); #endif if(count_im_buffer>1) cout << count_im_buffer -1 << " dropped frs\n"; count_im_buffer = 0; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){ int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp); v_accel_data_sync.push_back(interp_data); v_accel_timestamp_sync.push_back(target_time); } if(imageScale == 1.f) { im = imCV.clone(); } else { #ifdef REGISTER_TIMES #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now(); #endif #endif int width = imCV.cols * imageScale; int height = imCV.rows * imageScale; cv::resize(imCV, im, cv::Size(width, height)); #ifdef REGISTER_TIMES #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now(); #endif t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count(); SLAM.InsertResizeTime(t_resize); #endif } // Copy the IMU data vGyro = v_gyro_data; vGyro_times = v_gyro_timestamp; vAccel = v_accel_data_sync; vAccel_times = v_accel_timestamp_sync; timestamp = timestamp_image; // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_accel_data_sync.clear(); v_accel_timestamp_sync.clear(); image_ready = false; } for(int i=0; i<vGyro.size(); ++i){ ORB_SLAM3::IMU::Point lastPoint(vAccel[i].x, vAccel[i].y, vAccel[i].z, vGyro[i].x, vGyro[i].y, vGyro[i].z, vGyro_times[i]); vImuMeas.push_back(lastPoint); if(isnan(vAccel[i].x) || isnan(vAccel[i].y) || isnan(vAccel[i].z) || isnan(vGyro[i].x) || isnan(vGyro[i].y) || isnan(vGyro[i].z) || isnan(vGyro_times[i])){ //cerr << "NAN AT MAIN" << endl; exit(-1); } } #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_Start_Track = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_Start_Track = std::chrono::monotonic_clock::now(); #endif // Pass the image to the SLAM system SLAM.TrackMonocular(im, timestamp, vImuMeas); #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_End_Track = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_End_Track = std::chrono::monotonic_clock::now(); #endif #ifdef REGISTER_TIMES t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count(); SLAM.InsertTrackTime(t_track); #endif double timeProcess = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_Start_Track - time_Start_Process).count(); double timeSLAM = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count(); // cout << "Time process: " << timeProcess << endl; // cout << "Time SLAM: " << timeSLAM << endl; // Clear the previous IMU measurements to load the new ones vImuMeas.clear(); } SLAM.Shutdown(); return 0; } rs2_vector interpolateMeasure(const double target_time, const rs2_vector current_data, const double current_time, const rs2_vector prev_data, const double prev_time){ // If there are not previous information, the current data is propagated if(prev_time == 0){ return current_data; } rs2_vector increment; rs2_vector value_interp; if(target_time > current_time) { value_interp = current_data; } else if(target_time > prev_time){ increment.x = current_data.x - prev_data.x; increment.y = current_data.y - prev_data.y; increment.z = current_data.z - prev_data.z; double factor = (target_time - prev_time) / (current_time - prev_time); value_interp.x = prev_data.x + increment.x * factor; value_interp.y = prev_data.y + increment.y * factor; value_interp.z = prev_data.z + increment.z * factor; // zero interpolation value_interp = current_data; } else { value_interp = prev_data; } return value_interp; }