/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see .
*/
#include "Optimizer.h"
#include
#include
#include
#include
#include "Thirdparty/g2o/g2o/core/sparse_block_matrix.h"
#include "Thirdparty/g2o/g2o/core/block_solver.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_levenberg.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_gauss_newton.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_eigen.h"
#include "Thirdparty/g2o/g2o/types/types_six_dof_expmap.h"
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "G2oTypes.h"
#include "Converter.h"
#include
#include "OptimizableTypes.h"
namespace ORB_SLAM3
{
bool sortByVal(const pair &a, const pair &b)
{
return (a.second < b.second);
}
/**************************************以下为单帧优化**************************************************************/
/**
* @brief 位姿优化,纯视觉时使用。优化目标:单帧的位姿
* @param pFrame 待优化的帧
*/
int Optimizer::PoseOptimization(Frame *pFrame)
{
// 该优化函数主要用于Tracking线程中:运动跟踪、参考帧跟踪、地图跟踪、重定位
// Step 1:构造g2o优化器, BlockSolver_6_3表示:位姿 _PoseDim 为6维,路标点 _LandmarkDim 是3维
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverDense();
g2o::BlockSolver_6_3 *solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// 输入的帧中,有效的,参与优化过程的2D-3D点对
int nInitialCorrespondences = 0;
// Set Frame vertex
// Step 2:添加顶点:待优化当前帧的Tcw
g2o::VertexSE3Expmap *vSE3 = new g2o::VertexSE3Expmap();
Sophus::SE3 Tcw = pFrame->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast(), Tcw.translation().cast()));
// 设置id,保证本次优化过程中id独立即可
vSE3->setId(0);
// 要优化的变量,所以不能固定
vSE3->setFixed(false);
// 添加节点
optimizer.addVertex(vSE3);
// Set MapPoint vertices
// 当前帧的特征点数量
const int N = pFrame->N;
vector vpEdgesMono; // 存放单目边
vector vpEdgesMono_FHR; // 存放另一目的边
vector vnIndexEdgeMono, vnIndexEdgeRight; // 边对应特征点的id
vpEdgesMono.reserve(N);
vpEdgesMono_FHR.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeRight.reserve(N);
vector vpEdgesStereo; // 存放双目边
vector vnIndexEdgeStereo;
vpEdgesStereo.reserve(N);
vnIndexEdgeStereo.reserve(N);
// 自由度为2的卡方分布,显著性水平为0.05,对应的临界阈值5.991
// 可以理解为卡方值高于5.991 95%的几率维外点
const float deltaMono = sqrt(5.991);
// 自由度为3的卡方分布,显著性水平为0.05,对应的临界阈值7.815
const float deltaStereo = sqrt(7.815);
// Step 3:添加一元边
{
// 锁定地图点。由于需要使用地图点来构造顶点和边,因此不希望在构造的过程中部分地图点被改写造成不一致甚至是段错误
unique_lock lock(MapPoint::mGlobalMutex);
// 遍历当前帧中的所有地图点
for (int i = 0; i < N; i++)
{
MapPoint *pMP = pFrame->mvpMapPoints[i];
// 如果这个地图点还存在没有被剔除掉
if (pMP)
{
// Conventional SLAM
// 不存在相机2,则有可能为单目与双目
if (!pFrame->mpCamera2)
{
// Monocular observation
// 单目情况,因为双目模式下pFrame->mvuRight[i]会大于0
if (pFrame->mvuRight[i] < 0)
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
// 对这个地图点的观测,也就是去畸变像素坐标
Eigen::Matrix obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
obs << kpUn.pt.x, kpUn.pt.y;
// 新建节点,注意这个节点的只是优化位姿Pose
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
// 这个点的可信程度和特征点所在的图层有关,层数约高invSigma2越小,信息矩阵越小,表示误差越大,优化时考虑的比较少
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
// 在这里使用了鲁棒核函数
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
// 设置相机
e->pCamera = pFrame->mpCamera;
// 地图点的空间位置,作为迭代的初始值,因为是一元边,所以不以节点的形式出现
e->Xw = pMP->GetWorldPos().cast();
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else // 双目
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
// SET EDGE
// 观测多了一项右目的坐标
Eigen::Matrix obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
const float &kp_ur = pFrame->mvuRight[i];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
// 新建节点,注意这里也是只优化位姿
g2o::EdgeStereoSE3ProjectXYZOnlyPose *e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
// 置信程度主要是看左目特征点所在的图层
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity() * invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaStereo);
// 双目下没有加入相机
e->fx = pFrame->fx;
e->fy = pFrame->fy;
e->cx = pFrame->cx;
e->cy = pFrame->cy;
e->bf = pFrame->mbf;
e->Xw = pMP->GetWorldPos().cast();
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
}
// SLAM with respect a rigid body
else // 两个相机
{
nInitialCorrespondences++;
cv::KeyPoint kpUn;
// 总数N = 相机1所有特征点数量+相机2所有特征点数量
if (i < pFrame->Nleft)
{ // Left camera observation
kpUn = pFrame->mvKeys[i];
pFrame->mvbOutlier[i] = false;
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera;
e->Xw = pMP->GetWorldPos().cast();
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else
{ // Right camera observation
kpUn = pFrame->mvKeysRight[i - pFrame->Nleft];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
pFrame->mvbOutlier[i] = false;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera2;
e->Xw = pMP->GetWorldPos().cast();
e->mTrl = g2o::SE3Quat(
pFrame->GetRelativePoseTrl().unit_quaternion().cast(), pFrame->GetRelativePoseTrl().translation().cast());
optimizer.addEdge(e);
vpEdgesMono_FHR.push_back(e);
vnIndexEdgeRight.push_back(i);
}
}
}
}
}
// 如果没有足够的匹配点,那么就只好放弃了
// cout << "PO: vnIndexEdgeMono.size() = " << vnIndexEdgeMono.size() << " vnIndexEdgeRight.size() = " << vnIndexEdgeRight.size() << endl;
if (nInitialCorrespondences < 3)
return 0;
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
// Step 4:开始优化,总共优化四次,每次优化迭代10次,每次优化后,将观测分为outlier和inlier,outlier不参与下次优化
// 由于每次优化后是对所有的观测进行outlier和inlier判别,因此之前被判别为outlier有可能变成inlier,反之亦然
// 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
const float chi2Mono[4] = {5.991, 5.991, 5.991, 5.991}; // 单目
const float chi2Stereo[4] = {7.815, 7.815, 7.815, 7.815}; // 双目
const int its[4] = {10, 10, 10, 10}; // 四次迭代,每次迭代的次数
// bad 的地图点个数
int nBad = 0;
// 一共进行四次优化,每次会剔除外点
for (size_t it = 0; it < 4; it++)
{
Tcw = pFrame->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast(), Tcw.translation().cast()));
// 其实就是初始化优化器,这里的参数0就算是不填写,默认也是0,也就是只对level为0的边进行优化
optimizer.initializeOptimization(0);
// 开始优化,优化10次
optimizer.optimize(its[it]);
nBad = 0;
// 优化结束,开始遍历参与优化的每一条误差边(单目或双相机的相机1)
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose *e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
// 如果这条误差边是来自于outlier,也就是上一次优化去掉的
// 重新计算,因为上一次外点这一次可能成为内点
if (pFrame->mvbOutlier[idx])
{
e->computeError();
}
// 就是error*\Omega*error,表征了这个点的误差大小(考虑置信度以后)
const float chi2 = e->chi2();
if (chi2 > chi2Mono[it])
{
pFrame->mvbOutlier[idx] = true;
e->setLevel(1); // 设置为outlier , level 1 对应为外点,上面的过程中我们设置其为不优化
nBad++;
}
else
{
pFrame->mvbOutlier[idx] = false;
e->setLevel(0); // 设置为inlier, level 0 对应为内点,上面的过程中我们就是要优化这些关系
}
if (it == 2)
e->setRobustKernel(0); // 除了前两次优化需要RobustKernel以外, 其余的优化都不需要 -- 因为重投影的误差已经有明显的下降了
}
// 对于相机2
for (size_t i = 0, iend = vpEdgesMono_FHR.size(); i < iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *e = vpEdgesMono_FHR[i];
const size_t idx = vnIndexEdgeRight[i];
if (pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if (chi2 > chi2Mono[it])
{
pFrame->mvbOutlier[idx] = true;
e->setLevel(1);
nBad++;
}
else
{
pFrame->mvbOutlier[idx] = false;
e->setLevel(0);
}
if (it == 2)
e->setRobustKernel(0);
}
// 对于双目
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
g2o::EdgeStereoSE3ProjectXYZOnlyPose *e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if (pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if (chi2 > chi2Stereo[it])
{
pFrame->mvbOutlier[idx] = true;
e->setLevel(1);
nBad++;
}
else
{
e->setLevel(0);
pFrame->mvbOutlier[idx] = false;
}
if (it == 2)
e->setRobustKernel(0);
}
if (optimizer.edges().size() < 10)
break;
}
// Recover optimized pose and return number of inliers
// Step 5 得到优化后的当前帧的位姿
g2o::VertexSE3Expmap *vSE3_recov = static_cast(optimizer.vertex(0));
g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
Sophus::SE3 pose(
SE3quat_recov.rotation().cast(),
SE3quat_recov.translation().cast());
pFrame->SetPose(pose);
// 并且返回内点数目
return nInitialCorrespondences - nBad;
}
/**
* @brief 使用上一关键帧+当前帧的视觉信息和IMU信息,优化当前帧位姿
*
* 可分为以下几个步骤:
* // Step 1:创建g2o优化器,初始化顶点和边
* // Step 2:启动多轮优化,剔除外点
* // Step 3:更新当前帧位姿、速度、IMU偏置
* // Step 4:记录当前帧的优化状态,包括参数信息和对应的海森矩阵
*
* @param[in] pFrame 当前帧,也是待优化的帧
* @param[in] bRecInit 调用这个函数的位置并没有传这个参数,因此它的值默认为false
* @return int 返回优化后的内点数
*/
int Optimizer::PoseInertialOptimizationLastKeyFrame(Frame *pFrame, bool bRecInit)
{
// 1. 创建g2o优化器,初始化顶点和边
// 构建一个稀疏求解器
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType *linearSolver;
// 使用dense的求解器,(常见非dense求解器有cholmod线性求解器和shur补线性求解器)
linearSolver = new g2o::LinearSolverDense();
g2o::BlockSolverX *solver_ptr = new g2o::BlockSolverX(linearSolver);
// 使用高斯牛顿求解器
g2o::OptimizationAlgorithmGaussNewton *solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setVerbose(false);
optimizer.setAlgorithm(solver);
// 当前帧单(左)目地图点数目
int nInitialMonoCorrespondences = 0;
int nInitialStereoCorrespondences = 0;
//上面两项的和,即参与优化的地图点总数目
int nInitialCorrespondences = 0;
// Set Frame vertex
// 2. 确定节点
// 当前帧的位姿,旋转+平移,6-dim
VertexPose *VP = new VertexPose(pFrame);
VP->setId(0);
VP->setFixed(false);
optimizer.addVertex(VP);
// 当前帧的速度,3-dim
VertexVelocity *VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
// 当前帧的陀螺仪偏置,3-dim
VertexGyroBias *VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
// 当前帧的加速度偏置,3-dim
VertexAccBias *VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// setFixed(false)这个设置使以上四个顶点(15个参数)在优化时更新
// Set MapPoint vertices
// 当前帧的特征点总数
const int N = pFrame->N;
// 当前帧左目的特征点总数
const int Nleft = pFrame->Nleft;
// 当前帧是否存在右目(即是否为双目)
const bool bRight = (Nleft != -1);
vector vpEdgesMono;
vector vpEdgesStereo;
vector vnIndexEdgeMono;
vector vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
// 自由度为2的卡方分布,显著性水平为0.05,对应的临界阈值5.991
const float thHuberMono = sqrt(5.991);
// 自由度为3的卡方分布,显著性水平为0.05,对应的临界阈值7.815
const float thHuberStereo = sqrt(7.815);
{
// 锁定地图点。由于需要使用地图点来构造顶点和边,因此不希望在构造的过程中部分地图点被改写造成不一致甚至是段错误
// 3. 投影边
unique_lock lock(MapPoint::mGlobalMutex);
for (int i = 0; i < N; i++)
{
MapPoint *pMP = pFrame->mvpMapPoints[i];
if (pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
// 这里说的Left monocular包含两种情况:1.单目情况 2.双目情况下的左目
if ((!bRight && pFrame->mvuRight[i] < 0) || i < Nleft)
{
// 如果是双目情况下的左目
if (i < Nleft) // pair left-right
//使用未畸变校正的特征点
kpUn = pFrame->mvKeys[i];
// 如果是单目
else
// 使用畸变校正过的特征点
kpUn = pFrame->mvKeysUn[i];
// 单目地图点计数增加
nInitialMonoCorrespondences++;
// 当前地图点默认设置为不是外点
pFrame->mvbOutlier[i] = false;
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
// 第一种边(视觉重投影约束):地图点投影到该帧图像的坐标与特征点坐标偏差尽可能小
EdgeMonoOnlyPose *e = new EdgeMonoOnlyPose(pMP->GetWorldPos(), 0);
// 将位姿作为第一个顶点
e->setVertex(0, VP);
// 设置观测值,即去畸变后的像素坐标
e->setMeasurement(obs);
// Add here uncerteinty
// 获取不确定度,这里调用uncertainty2返回固定值1.0
// ?这里的1.0是作为缺省值的意思吗?是否可以根据对视觉信息的信任度动态修改这个值,比如标定的误差?
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
// invSigma2 = (Inverse(协方差矩阵))^2,表明该约束在各个维度上的可信度
// 图像金字塔层数越高,可信度越差
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
// 设置该约束的信息矩阵
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
// 设置鲁棒核函数,避免其误差的平方项出现数值过大的增长 注:后续在优化2次后会用e->setRobustKernel(0)禁掉鲁棒核函数
e->setRobustKernel(rk);
// 重投影误差的自由度为2,设置对应的卡方阈值
rk->setDelta(thHuberMono);
// 将第一种边加入优化器
optimizer.addEdge(e);
// 将第一种边加入vpEdgesMono
vpEdgesMono.push_back(e);
// 将对应的特征点索引加入vnIndexEdgeMono
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
else if (!bRight)
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose *e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix3d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if (bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose *e = new EdgeMonoOnlyPose(pMP->GetWorldPos(), 1);
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
// 统计参与优化的地图点总数目
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
// 4. 上一个关键帧节点
// pKF为上一关键帧
KeyFrame *pKF = pFrame->mpLastKeyFrame;
// 上一关键帧的位姿,旋转+平移,6-dim
VertexPose *VPk = new VertexPose(pKF);
VPk->setId(4);
VPk->setFixed(true);
optimizer.addVertex(VPk);
// 上一关键帧的速度,3-dim
VertexVelocity *VVk = new VertexVelocity(pKF);
VVk->setId(5);
VVk->setFixed(true);
optimizer.addVertex(VVk);
// 上一关键帧的陀螺仪偏置,3-dim
VertexGyroBias *VGk = new VertexGyroBias(pKF);
VGk->setId(6);
VGk->setFixed(true);
optimizer.addVertex(VGk);
// 上一关键帧的加速度偏置,3-dim
VertexAccBias *VAk = new VertexAccBias(pKF);
VAk->setId(7);
VAk->setFixed(true);
optimizer.addVertex(VAk);
// setFixed(true)这个设置使以上四个顶点(15个参数)的值在优化时保持固定
// 既然被选为关键帧,就不能太善变
// 5. 第二种边(IMU预积分约束):两帧之间位姿的变化量与IMU预积分的值偏差尽可能小
EdgeInertial *ei = new EdgeInertial(pFrame->mpImuPreintegrated);
// 将上一关键帧四个顶点(P、V、BG、BA)和当前帧两个顶点(P、V)加入第二种边
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
// 把第二种边加入优化器
optimizer.addEdge(ei);
// 6. 第三种边(陀螺仪随机游走约束):陀螺仪的随机游走值在相近帧间不会相差太多 residual=VG-VGk
// 用大白话来讲就是用固定的VGK拽住VG,防止VG在优化中放飞自我
EdgeGyroRW *egr = new EdgeGyroRW();
// 将上一关键帧的BG加入第三种边
egr->setVertex(0, VGk);
// 将当前帧的BG加入第三种边
egr->setVertex(1, VG);
// C值在预积分阶段更新,range(9,12)对应陀螺仪偏置的协方差,最终cvInfoG值为inv(∑(GyroRW^2/freq))
Eigen::Matrix3d InfoG = pFrame->mpImuPreintegrated->C.block<3, 3>(9, 9).cast().inverse();
egr->setInformation(InfoG);
// 把第三种边加入优化器
optimizer.addEdge(egr);
// 7. 第四种边(加速度随机游走约束):加速度的随机游走值在相近帧间不会相差太多 residual=VA-VAk
// 用大白话来讲就是用固定的VAK拽住VA,防止VA在优化中放飞自我
EdgeAccRW *ear = new EdgeAccRW();
// 将上一关键帧的BA加入第四种边
ear->setVertex(0, VAk);
// 将当前帧的BA加入第四种边
ear->setVertex(1, VA);
// C值在预积分阶段更新,range(12,15)对应加速度偏置的协方差,最终cvInfoG值为inv(∑(AccRW^2/freq))
Eigen::Matrix3d InfoA = pFrame->mpImuPreintegrated->C.block<3, 3>(12, 12).cast().inverse();
ear->setInformation(InfoA);
// 把第四种边加入优化器
optimizer.addEdge(ear);
// 8. 启动多轮优化,剔除外点
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
// 卡方检验值呈递减趋势,目的是让检验越来越苛刻
float chi2Mono[4] = {12, 7.5, 5.991, 5.991};
float chi2Stereo[4] = {15.6, 9.8, 7.815, 7.815};
// 4次优化的迭代次数都为10
int its[4] = {10, 10, 10, 10};
// 坏点数
int nBad = 0;
// 单目坏点数
int nBadMono = 0;
// 双目坏点数
int nBadStereo = 0;
// 单目内点数
int nInliersMono = 0;
// 双目内点数
int nInliersStereo = 0;
// 内点数
int nInliers = 0;
bool bOut = false;
// 进行4次优化
for (size_t it = 0; it < 4; it++)
{
// 初始化优化器,这里的参数0代表只对level为0的边进行优化(不传参数默认也是0)
optimizer.initializeOptimization(0);
// 每次优化迭代十次
optimizer.optimize(its[it]);
// 每次优化都重新统计各类点的数目
nBad = 0;
nBadMono = 0;
nBadStereo = 0;
nInliers = 0;
nInliersMono = 0;
nInliersStereo = 0;
// 使用1.5倍的chi2Mono作为“近点”的卡方检验值,意味着地图点越近,检验越宽松
// 地图点如何定义为“近点”在下面的代码中有解释
float chi2close = 1.5 * chi2Mono[it];
// For monocular observations
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
EdgeMonoOnlyPose *e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
// 如果这条误差边是来自于outlier
if (pFrame->mvbOutlier[idx])
{
// 计算这条边上次优化后的误差
e->computeError();
}
// 就是error*\Omega*error,表示了这条边考虑置信度以后的误差大小
const float chi2 = e->chi2();
// 当地图点在当前帧的深度值小于10时,该地图点属于close(近点)
// mTrackDepth是在Frame.cc的isInFrustum函数中计算出来的
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth < 10.f;
// 判断某地图点为外点的条件有以下三种:
// 1.该地图点不是近点并且误差大于卡方检验值chi2Mono[it]
// 2.该地图点是近点并且误差大于卡方检验值chi2close
// 3.深度不为正
// 每次优化后,用更小的卡方检验值,原因是随着优化的进行,对划分为内点的信任程度越来越低
if ((chi2 > chi2Mono[it] && !bClose) || (bClose && chi2 > chi2close) || !e->isDepthPositive())
{
// 将该点设置为外点
pFrame->mvbOutlier[idx] = true;
// 外点不参与下一轮优化
e->setLevel(1);
// 单目坏点数+1
nBadMono++;
}
else
{
// 将该点设置为内点(暂时)
pFrame->mvbOutlier[idx] = false;
// 内点继续参与下一轮优化
e->setLevel(0);
// 单目内点数+1
nInliersMono++;
}
// 从第三次优化开始就不设置鲁棒核函数了,原因是经过两轮优化已经趋向准确值,不会有太大误差
if (it == 2)
e->setRobustKernel(0);
}
// For stereo observations
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
EdgeStereoOnlyPose *e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if (pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if (chi2 > chi2Stereo[it])
{
pFrame->mvbOutlier[idx] = true;
e->setLevel(1); // not included in next optimization
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx] = false;
e->setLevel(0);
nInliersStereo++;
}
if (it == 2)
e->setRobustKernel(0);
}
// 内点总数=单目内点数+双目内点数
nInliers = nInliersMono + nInliersStereo;
// 坏点数=单目坏点数+双目坏点数
nBad = nBadMono + nBadStereo;
if (optimizer.edges().size() < 10)
{
cout << "PIOLKF: NOT ENOUGH EDGES" << endl;
break;
}
}
// If not too much tracks, recover not too bad points
// 9. 若4次优化后内点数小于30,尝试恢复一部分不那么糟糕的坏点
if ((nInliers < 30) && !bRecInit)
{
// 重新从0开始统计坏点数
nBad = 0;
// 单目可容忍的卡方检验最大值(如果误差比这还大就不要挣扎了...)
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose *e1;
EdgeStereoOnlyPose *e2;
// 遍历所有单目特征点
for (size_t i = 0, iend = vnIndexEdgeMono.size(); i < iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
// 获取这些特征点对应的边
e1 = vpEdgesMono[i];
e1->computeError();
// 判断误差值是否超过单目可容忍的卡方检验最大值,是的话就把这个点保下来
if (e1->chi2() < chi2MonoOut)
pFrame->mvbOutlier[idx] = false;
else
nBad++;
}
for (size_t i = 0, iend = vnIndexEdgeStereo.size(); i < iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2() < chi2StereoOut)
pFrame->mvbOutlier[idx] = false;
else
nBad++;
}
}
// 10. 更新当前帧位姿、速度、IMU偏置
// Recover optimized pose, velocity and biases
// 给当前帧设置优化后的旋转、位移、速度,用来更新位姿
pFrame->SetImuPoseVelocity(VP->estimate().Rwb.cast(), VP->estimate().twb.cast(), VV->estimate().cast());
Vector6d b;
b << VG->estimate(), VA->estimate();
// 给当前帧设置优化后的bg,ba
pFrame->mImuBias = IMU::Bias(b[3], b[4], b[5], b[0], b[1], b[2]);
// 11. 记录当前帧的优化状态,包括参数信息和对应的海森矩阵
// Recover Hessian, marginalize keyFframe states and generate new prior for frame
Eigen::Matrix H;
H.setZero();
// H(x)=J(x).t()*info*J(x)
// J(x)取的是EdgeInertial中的_jacobianOplus[4]和_jacobianOplus[5],即EdgeInertial::computeError计算出来的er,ev,ep对当前帧Pose和Velocity的偏导
//因此ei->GetHessian2的结果为:
// H(∂er/∂r) H(∂er/∂t) H(∂er/∂v)
// H(∂ev/∂r) H(∂ev/∂t) H(∂ev/∂v)
// H(∂ep/∂r) H(∂ep/∂t) H(∂ep/∂v)
//每项H都是3x3,故GetHessian2的结果是9x9
H.block<9, 9>(0, 0) += ei->GetHessian2();
// J(x)取的是EdgeGyroRW中的_jacobianOplusXj,即EdgeGyroRW::computeError计算出来的_error(ebg)对当前帧bg的偏导
//因此egr->GetHessian2的结果为:
// H(∂ebg/∂bg) ,3x3
H.block<3, 3>(9, 9) += egr->GetHessian2();
// J(x)取的是EdgeAccRW中的_jacobianOplusXj,即EdgeAccRW::computeError计算出来的_error(ebg)对当前帧ba的偏导
//因此ear->GetHessian2的结果为:
// H(∂eba/∂ba) ,3x3
H.block<3, 3>(12, 12) += ear->GetHessian2();
//经过前面几步,Hessian Matrix长这个样子(注:省略了->GetHessian2())
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
int tot_in = 0, tot_out = 0;
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
EdgeMonoOnlyPose *e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if (!pFrame->mvbOutlier[idx])
{
H.block<6, 6>(0, 0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
EdgeStereoOnlyPose *e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if (!pFrame->mvbOutlier[idx])
{
H.block<6, 6>(0, 0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
// 设eie = ei->GetHessian2()+∑(e->GetHessian())
// 则最终Hessian Matrix长这样
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// eie eie eie eie eie eie ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// ei ei ei ei ei ei ei ei ei 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 egr egr egr 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
// 0 0 0 0 0 0 0 0 0 0 0 0 ear ear ear
// 构造一个ConstraintPoseImu对象,为下一帧提供先验约束
// 构造对象所使用的参数是当前帧P、V、BG、BA的估计值和H矩阵
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb, VP->estimate().twb, VV->estimate(), VG->estimate(), VA->estimate(), H);
// 在PoseInertialOptimizationLastFrame函数中,会将ConstraintPoseImu信息作为“上一帧先验约束”生成一条优化边
// 返回值:内点数 = 总地图点数目 - 坏点(外点)数目
return nInitialCorrespondences - nBad;
}
/**
* @brief 使用上一帧+当前帧的视觉信息和IMU信息,优化当前帧位姿
*
* 可分为以下几个步骤:
* // Step 1:创建g2o优化器,初始化顶点和边
* // Step 2:启动多轮优化,剔除外点
* // Step 3:更新当前帧位姿、速度、IMU偏置
* // Step 4:记录当前帧的优化状态,包括参数信息和边缘化后的海森矩阵
*
* @param[in] pFrame 当前帧,也是待优化的帧
* @param[in] bRecInit 调用这个函数的位置并没有传这个参数,因此它的值默认为false
* @return int 返回优化后的内点数
*/
int Optimizer::PoseInertialOptimizationLastFrame(Frame *pFrame, bool bRecInit)
{
// Step 1:创建g2o优化器,初始化顶点和边
// 构建一个稀疏求解器
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType *linearSolver;
// 使用dense的求解器,(常见非dense求解器有cholmod线性求解器和shur补线性求解器)
linearSolver = new g2o::LinearSolverDense();
g2o::BlockSolverX *solver_ptr = new g2o::BlockSolverX(linearSolver);
// 使用高斯牛顿求解器
g2o::OptimizationAlgorithmGaussNewton *solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// 当前帧单(左)目地图点数目
int nInitialMonoCorrespondences = 0;
int nInitialStereoCorrespondences = 0;
int nInitialCorrespondences = 0;
// Set Current Frame vertex
// 当前帧的位姿,旋转+平移,6-dim
VertexPose *VP = new VertexPose(pFrame);
VP->setId(0);
VP->setFixed(false); // 需要优化,所以不固定
optimizer.addVertex(VP);
// 当前帧的速度,3-dim
VertexVelocity *VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
// 当前帧的陀螺仪偏置,3-dim
VertexGyroBias *VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
// 当前帧的加速度偏置,3-dim
VertexAccBias *VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// Set MapPoint vertices
// 当前帧的特征点总数 N = Nleft + Nright
// 对于单目 N!=0, Nleft=-1,Nright=-1
// 对于双目 N!=0, Nleft!=-1,Nright!=-1
const int N = pFrame->N;
// 当前帧左目的特征点总数
const int Nleft = pFrame->Nleft;
// 当前帧是否存在右目(即是否为双目),存在为true
//?感觉可以更直接点啊 bRight = (Nright!=-1)
const bool bRight = (Nleft != -1);
vector vpEdgesMono;
vector vpEdgesStereo;
vector vnIndexEdgeMono;
vector vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
// 自由度为2的卡方分布,显著性水平为0.05,对应的临界阈值5.991
const float thHuberMono = sqrt(5.991);
// 自由度为3的卡方分布,显著性水平为0.05,对应的临界阈值7.815
const float thHuberStereo = sqrt(7.815);
{
// 锁定地图点。由于需要使用地图点来构造顶点和边,因此不希望在构造的过程中部分地图点被改写造成不一致甚至是段错误
unique_lock lock(MapPoint::mGlobalMutex);
for (int i = 0; i < N; i++)
{
MapPoint *pMP = pFrame->mvpMapPoints[i];
if (pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
// 这里说的Left monocular包含两种情况:1.单目情况 2.双目情况下的左目
if ((!bRight && pFrame->mvuRight[i] < 0) || i < Nleft)
{
// 如果是双目情况下的左目
if (i < Nleft) // pair left-right
// 使用未畸变校正的特征点
kpUn = pFrame->mvKeys[i];
// 如果是单目
else
// 使用畸变校正过的特征点
kpUn = pFrame->mvKeysUn[i];
// 单目地图点计数增加
nInitialMonoCorrespondences++;
// 当前地图点默认设置为不是外点
pFrame->mvbOutlier[i] = false;
// 观测的特征点
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
// 第一种边(视觉重投影约束):地图点投影到该帧图像的坐标与特征点坐标偏差尽可能小
EdgeMonoOnlyPose *e = new EdgeMonoOnlyPose(pMP->GetWorldPos(), 0);
// 将位姿作为第一个顶点
e->setVertex(0, VP);
// 设置观测值,即去畸变后的像素坐标
e->setMeasurement(obs);
// Add here uncerteinty
// 获取不确定度,这里调用uncertainty2返回固定值1.0
// ?这里返回1.0是作为缺省值,是否可以根据对视觉信息的信任度动态修改这个值,比如标定的误差?
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
// invSigma2 = (Inverse(协方差矩阵))^2,表明该约束在各个维度上的可信度
// 图像金字塔层数越高,可信度越差
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
// 设置该约束的信息矩阵
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
// 设置鲁棒核函数,避免其误差的平方项出现数值过大的增长 注:后续在优化2次后会用e->setRobustKernel(0)禁掉鲁棒核函数
e->setRobustKernel(rk);
// 重投影误差的自由度为2,设置对应的卡方阈值
rk->setDelta(thHuberMono);
// 将第一种边加入优化器
optimizer.addEdge(e);
// 将第一种边加入vpEdgesMono
vpEdgesMono.push_back(e);
// 将对应的特征点索引加入vnIndexEdgeMono
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
else if (!bRight)
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose *e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix3d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if (bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose *e = new EdgeMonoOnlyPose(pMP->GetWorldPos(), 1);
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
// 统计参与优化的地图点总数目
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
// Set Previous Frame Vertex
// pFp为上一帧
Frame *pFp = pFrame->mpPrevFrame;
// 上一帧的位姿,旋转+平移,6-dim
VertexPose *VPk = new VertexPose(pFp);
VPk->setId(4);
VPk->setFixed(false);
optimizer.addVertex(VPk);
// 上一帧的速度,3-dim
VertexVelocity *VVk = new VertexVelocity(pFp);
VVk->setId(5);
VVk->setFixed(false);
optimizer.addVertex(VVk);
// 上一帧的陀螺仪偏置,3-dim
VertexGyroBias *VGk = new VertexGyroBias(pFp);
VGk->setId(6);
VGk->setFixed(false);
optimizer.addVertex(VGk);
// 上一帧的加速度偏置,3-dim
VertexAccBias *VAk = new VertexAccBias(pFp);
VAk->setId(7);
VAk->setFixed(false);
optimizer.addVertex(VAk);
// setFixed(false)这个设置使以上四个顶点(15个参数)的值随优化而变,这样做会给上一帧再提供一些优化空间
// 但理论上不应该优化过多,否则会有不良影响,故后面的代码会用第五种边来约束上一帧的变化量
// 第二种边(IMU预积分约束):两帧之间位姿的变化量与IMU预积分的值偏差尽可能小
EdgeInertial *ei = new EdgeInertial(pFrame->mpImuPreintegratedFrame);
// 将上一帧四个顶点(P、V、BG、BA)和当前帧两个顶点(P、V)加入第二种边
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
// 把第二种边加入优化器
optimizer.addEdge(ei);
// 第三种边(陀螺仪随机游走约束):陀螺仪的随机游走值在相邻帧间不会相差太多 residual=VG-VGk
// 用大白话来讲就是用固定的VGK拽住VG,防止VG在优化中放飞自我
EdgeGyroRW *egr = new EdgeGyroRW();
// 将上一帧的BG加入第三种边
egr->setVertex(0, VGk);
// 将当前帧的BG加入第三种边
egr->setVertex(1, VG);
// C值在预积分阶段更新,range(9,12)对应陀螺仪偏置的协方差,最终cvInfoG值为inv(∑(GyroRW^2/freq))
Eigen::Matrix3d InfoG = pFrame->mpImuPreintegrated->C.block<3, 3>(9, 9).cast().inverse();
egr->setInformation(InfoG);
// 把第三种边加入优化器
optimizer.addEdge(egr);
// 第四种边(加速度随机游走约束):加速度的随机游走值在相近帧间不会相差太多 residual=VA-VAk
// 用大白话来讲就是用固定的VAK拽住VA,防止VA在优化中放飞自我
EdgeAccRW *ear = new EdgeAccRW();
// 将上一帧的BA加入第四种边
ear->setVertex(0, VAk);
// 将当前帧的BA加入第四种边
ear->setVertex(1, VA);
// C值在预积分阶段更新,range(12,15)对应加速度偏置的协方差,最终cvInfoG值为inv(∑(AccRW^2/freq))
Eigen::Matrix3d InfoA = pFrame->mpImuPreintegrated->C.block<3, 3>(12, 12).cast().inverse();
ear->setInformation(InfoA);
// 把第四种边加入优化器
optimizer.addEdge(ear);
// ?既然有判空的操作,可以区分一下有先验信息(五条边)和无先验信息(四条边)的情况
if (!pFp->mpcpi)
Verbose::PrintMess("pFp->mpcpi does not exist!!!\nPrevious Frame " + to_string(pFp->mnId), Verbose::VERBOSITY_NORMAL);
// 第五种边(先验约束):上一帧信息随优化的改变量要尽可能小
EdgePriorPoseImu *ep = new EdgePriorPoseImu(pFp->mpcpi);
// 将上一帧的四个顶点(P、V、BG、BA)加入第五种边
ep->setVertex(0, VPk);
ep->setVertex(1, VVk);
ep->setVertex(2, VGk);
ep->setVertex(3, VAk);
g2o::RobustKernelHuber *rkp = new g2o::RobustKernelHuber;
ep->setRobustKernel(rkp);
rkp->setDelta(5);
// 把第五种边加入优化器
optimizer.addEdge(ep);
// Step 2:启动多轮优化,剔除外点
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
//与PoseInertialOptimizationLastKeyFrame函数对比,区别在于:在优化过程中保持卡方阈值不变
// 以下参数的解释
// 自由度为2的卡方分布,显著性水平为0.05,对应的临界阈值5.991
// 自由度为3的卡方分布,显著性水平为0.05,对应的临界阈值7.815
// 自由度为3的卡方分布,显著性水平为0.02,对应的临界阈值9.8
// 自由度为3的卡方分布,显著性水平为0.001,对应的临界阈值15.6
// 计算方法:https://stattrek.com/online-calculator/chi-square.aspx
const float chi2Mono[4] = {5.991, 5.991, 5.991, 5.991};
const float chi2Stereo[4] = {15.6f, 9.8f, 7.815f, 7.815f};
// 4次优化的迭代次数都为10
const int its[4] = {10, 10, 10, 10};
// 坏点数
int nBad = 0;
// 单目坏点数
int nBadMono = 0;
// 双目坏点数
int nBadStereo = 0;
// 单目内点数
int nInliersMono = 0;
// 双目内点数
int nInliersStereo = 0;
// 内点数
int nInliers = 0;
for (size_t it = 0; it < 4; it++)
{
// 初始化优化器,这里的参数0代表只对level为0的边进行优化(不传参数默认也是0)
optimizer.initializeOptimization(0);
// 每次优化迭代十次
optimizer.optimize(its[it]);
// 每次优化都重新统计各类点的数目
nBad = 0;
nBadMono = 0;
nBadStereo = 0;
nInliers = 0;
nInliersMono = 0;
nInliersStereo = 0;
// 使用1.5倍的chi2Mono作为“近点”的卡方检验值,意味着地图点越近,检验越宽松
// 地图点如何定义为“近点”在下面的代码中有解释
float chi2close = 1.5 * chi2Mono[it];
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
EdgeMonoOnlyPose *e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
// 当地图点在当前帧的深度值小于10时,该地图点属于close(近点)
// mTrackDepth是在Frame.cc的isInFrustum函数中计算出来的
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth < 10.f;
// 如果这条误差边是来自于outlier
if (pFrame->mvbOutlier[idx])
{
//计算本次优化后的误差
e->computeError();
}
// 就是error*\Omega*error,表示了这条边考虑置信度以后的误差大小
const float chi2 = e->chi2();
// 判断某地图点为外点的条件有以下三种:
// 1.该地图点不是近点并且误差大于卡方检验值chi2Mono[it]
// 2.该地图点是近点并且误差大于卡方检验值chi2close
// 3.深度不为正
// 每次优化后,用更小的卡方检验值,原因是随着优化的进行,对划分为内点的信任程度越来越低
if ((chi2 > chi2Mono[it] && !bClose) || (bClose && chi2 > chi2close) || !e->isDepthPositive())
{
// 将该点设置为外点
pFrame->mvbOutlier[idx] = true;
// 外点不参与下一轮优化
e->setLevel(1);
// 单目坏点数+1
nBadMono++;
}
else
{
// 将该点设置为内点(暂时)
pFrame->mvbOutlier[idx] = false;
// 内点继续参与下一轮优化
e->setLevel(0);
// 单目内点数+1
nInliersMono++;
}
// 从第三次优化开始就不设置鲁棒核函数了,原因是经过两轮优化已经趋向准确值,不会有太大误差
if (it == 2)
e->setRobustKernel(0);
}
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
EdgeStereoOnlyPose *e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if (pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if (chi2 > chi2Stereo[it])
{
pFrame->mvbOutlier[idx] = true;
e->setLevel(1);
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx] = false;
e->setLevel(0);
nInliersStereo++;
}
if (it == 2)
e->setRobustKernel(0);
}
// 内点总数=单目内点数+双目内点数
nInliers = nInliersMono + nInliersStereo;
// 坏点数=单目坏点数+双目坏点数
nBad = nBadMono + nBadStereo;
if (optimizer.edges().size() < 10)
{
cout << "PIOLF: NOT ENOUGH EDGES" << endl;
break;
}
}
// 若4次优化后内点数小于30,尝试恢复一部分不那么糟糕的坏点
if ((nInliers < 30) && !bRecInit)
{
// 重新从0开始统计坏点数
nBad = 0;
// 单目可容忍的卡方检验最大值(如果误差比这还大就不要挣扎了...)
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose *e1;
EdgeStereoOnlyPose *e2;
// 遍历所有单目特征点
for (size_t i = 0, iend = vnIndexEdgeMono.size(); i < iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
// 获取这些特征点对应的边
e1 = vpEdgesMono[i];
e1->computeError();
if (e1->chi2() < chi2MonoOut)
pFrame->mvbOutlier[idx] = false;
else
nBad++;
}
for (size_t i = 0, iend = vnIndexEdgeStereo.size(); i < iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2() < chi2StereoOut)
pFrame->mvbOutlier[idx] = false;
else
nBad++;
}
}
// ?多此一举?优化过程中nInliers这个值已经计算过了,nInliersMono和nInliersStereo在后续代码中一直保持不变
nInliers = nInliersMono + nInliersStereo;
// Step 3:更新当前帧位姿、速度、IMU偏置
// Recover optimized pose, velocity and biases
// 给当前帧设置优化后的旋转、位移、速度,用来更新位姿
pFrame->SetImuPoseVelocity(VP->estimate().Rwb.cast(), VP->estimate().twb.cast(), VV->estimate().cast());
Vector6d b;
b << VG->estimate(), VA->estimate();
// 给当前帧设置优化后的bg,ba
pFrame->mImuBias = IMU::Bias(b[3], b[4], b[5], b[0], b[1], b[2]);
// Step 4:记录当前帧的优化状态,包括参数信息和边缘化后的海森矩阵
// Recover Hessian, marginalize previous frame states and generate new prior for frame
// 包含本次优化所有信息矩阵的和,它代表本次优化对确定性的影响
Eigen::Matrix H;
H.setZero();
//第1步,加上EdgeInertial(IMU预积分约束)的海森矩阵
// ei的定义
// EdgeInertial* ei = new EdgeInertial(pFrame->mpImuPreintegratedFrame);
// ei->setVertex(0, VPk);
// ei->setVertex(1, VVk);
// ei->setVertex(2, VGk);
// ei->setVertex(3, VAk);
// ei->setVertex(4, VP); // VertexPose* VP = new VertexPose(pFrame);
// ei->setVertex(5, VV); // VertexVelocity* VV = new VertexVelocity(pFrame);
// ei->GetHessian() = J.t * J 下同,不做详细标注了
// J
// rn + tn vn gn an rn+1 + tn+1 vn+1
// er Jp1 Jv1 Jg1 Ja1 Jp2 Jv2
// 角标1表示上一帧,2表示当前帧
// 6 3 3 3 6 3
// Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 Jp1.t * Jp2 Jp1.t * Jv2 6
// Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 Jv1.t * Jp2 Jv1.t * Jv2 3
// Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 Jg1.t * Ja1 Jg1.t * Jp2 Jg1.t * Jv2 3
// Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 Ja1.t * Jp2 Ja1.t * Jv2 3
// Jp2.t * Jp1 Jp2.t * Jv1 Jp2.t * Jg1 Jp2.t * Ja1 Jp2.t * Jp2 Jp2.t * Jv2 6
// Jv2.t * Jp1 Jv2.t * Jv1 Jv2.t * Jg1 Jv2.t * Ja1 Jv2.t * Jp2 Jv2.t * Jv2 3
// 所以矩阵是24*24 的
H.block<24, 24>(0, 0) += ei->GetHessian();
// 经过这步H变成了
// 列数 6 3 3 3 6 3 6
// ---------------------------------------------------------------------------------- 行数
// Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 Jp1.t * Jp2 Jp1.t * Jv2 0 | 6
// Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 Jv1.t * Jp2 Jv1.t * Jv2 0 | 3
// Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 Jg1.t * Ja1 Jg1.t * Jp2 Jg1.t * Jv2 0 | 3
// Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 Ja1.t * Jp2 Ja1.t * Jv2 0 | 3
// Jp2.t * Jp1 Jp2.t * Jv1 Jp2.t * Jg1 Jp2.t * Ja1 Jp2.t * Jp2 Jp2.t * Jv2 0 | 6
// Jv2.t * Jp1 Jv2.t * Jv1 Jv2.t * Jg1 Jv2.t * Ja1 Jv2.t * Jp2 Jv2.t * Jv2 0 | 3
// 0 0 0 0 0 0 0 | 6
// ----------------------------------------------------------------------------------
//第2步,加上EdgeGyroRW(陀螺仪随机游走约束)的信息矩阵:
//| 0~8 | 9~11 | 12~23 | 24~26 |27~29
// 9~11是上一帧的bg(3-dim),24~26是当前帧的bg(3-dim)
// egr的定义
// EdgeGyroRW* egr = new EdgeGyroRW();
// egr->setVertex(0, VGk);
// egr->setVertex(1, VG);
Eigen::Matrix Hgr = egr->GetHessian();
H.block<3, 3>(9, 9) += Hgr.block<3, 3>(0, 0); // Jgr1.t * Jgr1
H.block<3, 3>(9, 24) += Hgr.block<3, 3>(0, 3); // Jgr1.t * Jgr2
H.block<3, 3>(24, 9) += Hgr.block<3, 3>(3, 0); // Jgr2.t * Jgr1
H.block<3, 3>(24, 24) += Hgr.block<3, 3>(3, 3); // Jgr2.t * Jgr2
// 经过这步H变成了
// 列数 6 3 3 3 6 3 3 3
// ----------------------------------------------------------------------------------------------------------------- 行数
// Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 Jp1.t * Jp2 Jp1.t * Jv2 0 0 | 6
// Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 Jv1.t * Jp2 Jv1.t * Jv2 0 0 | 3
// Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 + Jgr1.t * Jgr1 Jg1.t * Ja1 Jg1.t * Jp2 Jg1.t * Jv2 Jgr1.t * Jgr2 0 | 3
// Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 Ja1.t * Jp2 Ja1.t * Jv2 0 0 | 3
// Jp2.t * Jp1 Jp2.t * Jv1 Jp2.t * Jg1 Jp2.t * Ja1 Jp2.t * Jp2 Jp2.t * Jv2 0 0 | 6
// Jv2.t * Jp1 Jv2.t * Jv1 Jv2.t * Jg1 Jv2.t * Ja1 Jv2.t * Jp2 Jv2.t * Jv2 0 0 | 3
// 0 0 Jgr2.t * Jgr1 0 0 0 Jgr2.t * Jgr2 0 | 3
// 0 0 0 0 0 0 0 0 | 3
// -----------------------------------------------------------------------------------------------------------------
//第3步,加上EdgeAccRW(加速度随机游走约束)的信息矩阵:
//| 0~11 | 12~14 | 15~26 | 27~29 |30
// 12~14是上一帧的ba(3-dim),27~29是当前帧的ba(3-dim)
// ear的定义
// EdgeAccRW* ear = new EdgeAccRW();
// ear->setVertex(0, VAk);
// ear->setVertex(1, VA);
Eigen::Matrix Har = ear->GetHessian();
H.block<3, 3>(12, 12) += Har.block<3, 3>(0, 0); // Jar1.t * Jar1
H.block<3, 3>(12, 27) += Har.block<3, 3>(0, 3); // Jar1.t * Jar2
H.block<3, 3>(27, 12) += Har.block<3, 3>(3, 0); // Jar2.t * Jar1
H.block<3, 3>(27, 27) += Har.block<3, 3>(3, 3); // Jar2.t * Jar2
// 经过这步H变成了
// 列数 6 3 3 3 6 3 3 3
// --------------------------------------------------------------------------------------------------------------------------------------------------- 行数
// | Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 | Jp1.t * Jp2 Jp1.t * Jv2 0 0 | 6
// | Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 | Jv1.t * Jp2 Jv1.t * Jv2 0 0 | 3
// | Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 + Jgr1.t * Jgr1 Jg1.t * Ja1 | Jg1.t * Jp2 Jg1.t * Jv2 Jgr1.t * Jgr2 0 | 3
// | Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 + Jar1.t * Jar1 | Ja1.t * Jp2 Ja1.t * Jv2 0 Jar1.t * Jar2 | 3
// |--------------------------------------------------------------------------------------------------------------------------------------------------
// | Jp2.t * Jp1 Jp2.t * Jv1 Jp2.t * Jg1 Jp2.t * Ja1 | Jp2.t * Jp2 Jp2.t * Jv2 0 0 | 6
// | Jv2.t * Jp1 Jv2.t * Jv1 Jv2.t * Jg1 Jv2.t * Ja1 | Jv2.t * Jp2 Jv2.t * Jv2 0 0 | 3
// | 0 0 Jgr2.t * Jgr1 0 | 0 0 Jgr2.t * Jgr2 0 | 3
// | 0 0 0 Jar2.t * Jar1 | 0 0 0 Jar2.t * Jar2 | 3
// ---------------------------------------------------------------------------------------------------------------------------------------------------
//第4步,加上EdgePriorPoseImu(先验约束)的信息矩阵:
//| 0~14 | 15~29
// 0~14是上一帧的P(6-dim)、V(3-dim)、BG(3-dim)、BA(3-dim)
// ep定义
// EdgePriorPoseImu* ep = new EdgePriorPoseImu(pFp->mpcpi);
// ep->setVertex(0, VPk);
// ep->setVertex(1, VVk);
// ep->setVertex(2, VGk);
// ep->setVertex(3, VAk);
// 6 3 3 3
// Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 6
// Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 3
// Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 Jg1.t * Ja1 3
// Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 3
H.block<15, 15>(0, 0) += ep->GetHessian(); // 上一帧 的H矩阵,矩阵太大了不写了。。。总之就是加到下标为1相关的了
int tot_in = 0, tot_out = 0;
// 第5步 关于位姿的海森
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
EdgeMonoOnlyPose *e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if (!pFrame->mvbOutlier[idx])
{
// 0~14 | 15~20 | 21~29
// 15~20是当前帧的P(6-dim)
H.block<6, 6>(15, 15) += e->GetHessian(); // 当前帧的H矩阵,矩阵太大了不写了。。。总之就是加到p2相关的了
tot_in++;
}
else
tot_out++;
}
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
EdgeStereoOnlyPose *e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if (!pFrame->mvbOutlier[idx])
{
// 0~14 | 15~20 | 21~29
H.block<6, 6>(15, 15) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
// H = |B E.t| ------> |0 0|
// |E A| |0 A-E*B.inv*E.t|
H = Marginalize(H, 0, 14);
/*
Marginalize里的函数在此处的调用等效于:
Eigen::JacobiSVD svd(H.block(0, 0, 15, 15), Eigen::ComputeThinU | Eigen::ComputeThinV);
Eigen::JacobiSVD::SingularValuesType singularValues_inv = svd.singularValues();
for (int i = 0; i < 15; ++i)
{
if (singularValues_inv(i) > 1e-6)
singularValues_inv(i) = 1.0 / singularValues_inv(i);
else
singularValues_inv(i) = 0;
}
Eigen::MatrixXd invHb = svd.matrixV() * singularValues_inv.asDiagonal() * svd.matrixU().transpose();
H.block(15, 15, 15, 15) = H.block(15, 15, 15, 15) - H.block(15, 0, 15, 15) * invHb - H.block(0, 15, 15, 15);
*/
//构造一个ConstraintPoseImu对象,为下一帧提供先验约束
//构造对象所使用的参数是当前帧P、V、BG、BA的估计值和边缘化后的H矩阵
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb, VP->estimate().twb, VV->estimate(), VG->estimate(), VA->estimate(), H.block<15, 15>(15, 15));
//下一帧使用的EdgePriorPoseImu参数来自于此
delete pFp->mpcpi;
pFp->mpcpi = NULL;
//返回值:内点数 = 总地图点数目 - 坏点(外点)数目
return nInitialCorrespondences - nBad;
}
/**
* @brief PoseInertialOptimizationLastFrame 中使用 Marginalize(H, 0, 14);
* 使用舒尔补的方式边缘化海森矩阵,边缘化。
* 列数 6 3 3 3 6 3 3 3
* --------------------------------------------------------------------------------------------------------------------------------------------------- 行数
* | Jp1.t * Jp1 Jp1.t * Jv1 Jp1.t * Jg1 Jp1.t * Ja1 | Jp1.t * Jp2 Jp1.t * Jv2 0 0 | 6
* | Jv1.t * Jp1 Jv1.t * Jv1 Jv1.t * Jg1 Jv1.t * Ja1 | Jv1.t * Jp2 Jv1.t * Jv2 0 0 | 3
* | Jg1.t * Jp1 Jg1.t * Jv1 Jg1.t * Jg1 + Jgr1.t * Jgr1 Jg1.t * Ja1 | Jg1.t * Jp2 Jg1.t * Jv2 Jgr1.t * Jgr2 0 | 3
* | Ja1.t * Jp1 Ja1.t * Jv1 Ja1.t * Jg1 Ja1.t * Ja1 + Jar1.t * Jar1 | Ja1.t * Jp2 Ja1.t * Jv2 Jar1.t * Jar2 0 | 3
* |--------------------------------------------------------------------------------------------------------------------------------------------------
* | Jp2.t * Jp1 Jp2.t * Jv1 Jp2.t * Jg1 Jp2.t * Ja1 | Jp2.t * Jp2 Jp2.t * Jv2 0 0 | 6
* | Jv2.t * Jp1 Jv2.t * Jv1 Jv2.t * Jg1 Jv2.t * Ja1 | Jv2.t * Jp2 Jv2.t * Jv2 0 0 | 3
* | 0 0 Jgr2.t * Jgr1 0 | 0 0 Jgr2.t * Jgr2 0 | 3
* | 0 0 0 Jar2.t * Jar1 | 0 0 0 Jar2.t * Jar2 | 3
* ---------------------------------------------------------------------------------------------------------------------------------------------------
* @param H 30*30的海森矩阵
* @param start 开始位置
* @param end 结束位置
*/
Eigen::MatrixXd Optimizer::Marginalize(const Eigen::MatrixXd &H, const int &start, const int &end)
{
// Goal
// a | ab | ac a* | 0 | ac*
// ba | b | bc --> 0 | 0 | 0
// ca | cb | c ca* | 0 | c*
// Size of block before block to marginalize
const int a = start;
// Size of block to marginalize
const int b = end - start + 1;
// Size of block after block to marginalize
const int c = H.cols() - (end + 1);
// Reorder as follows:
// a | ab | ac a | ac | ab
// ba | b | bc --> ca | c | cb
// ca | cb | c ba | bc | b
Eigen::MatrixXd Hn = Eigen::MatrixXd::Zero(H.rows(), H.cols());
if (a > 0)
{
Hn.block(0, 0, a, a) = H.block(0, 0, a, a);
Hn.block(0, a + c, a, b) = H.block(0, a, a, b);
Hn.block(a + c, 0, b, a) = H.block(a, 0, b, a);
}
if (a > 0 && c > 0)
{
Hn.block(0, a, a, c) = H.block(0, a + b, a, c);
Hn.block(a, 0, c, a) = H.block(a + b, 0, c, a);
}
if (c > 0)
{
Hn.block(a, a, c, c) = H.block(a + b, a + b, c, c);
Hn.block(a, a + c, c, b) = H.block(a + b, a, c, b);
Hn.block(a + c, a, b, c) = H.block(a, a + b, b, c);
}
Hn.block(a + c, a + c, b, b) = H.block(a, a, b, b);
// Perform marginalization (Schur complement)
Eigen::JacobiSVD svd(Hn.block(a + c, a + c, b, b), Eigen::ComputeThinU | Eigen::ComputeThinV);
Eigen::JacobiSVD::SingularValuesType singularValues_inv = svd.singularValues();
for (int i = 0; i < b; ++i)
{
if (singularValues_inv(i) > 1e-6)
singularValues_inv(i) = 1.0 / singularValues_inv(i);
else
singularValues_inv(i) = 0;
}
Eigen::MatrixXd invHb = svd.matrixV() * singularValues_inv.asDiagonal() * svd.matrixU().transpose();
Hn.block(0, 0, a + c, a + c) = Hn.block(0, 0, a + c, a + c) - Hn.block(0, a + c, a + c, b) * invHb * Hn.block(a + c, 0, b, a + c);
Hn.block(a + c, a + c, b, b) = Eigen::MatrixXd::Zero(b, b);
Hn.block(0, a + c, a + c, b) = Eigen::MatrixXd::Zero(a + c, b);
Hn.block(a + c, 0, b, a + c) = Eigen::MatrixXd::Zero(b, a + c);
// Inverse reorder
// a* | ac* | 0 a* | 0 | ac*
// ca* | c* | 0 --> 0 | 0 | 0
// 0 | 0 | 0 ca* | 0 | c*
Eigen::MatrixXd res = Eigen::MatrixXd::Zero(H.rows(), H.cols());
if (a > 0)
{
res.block(0, 0, a, a) = Hn.block(0, 0, a, a);
res.block(0, a, a, b) = Hn.block(0, a + c, a, b);
res.block(a, 0, b, a) = Hn.block(a + c, 0, b, a);
}
if (a > 0 && c > 0)
{
res.block(0, a + b, a, c) = Hn.block(0, a, a, c);
res.block(a + b, 0, c, a) = Hn.block(a, 0, c, a);
}
if (c > 0)
{
res.block(a + b, a + b, c, c) = Hn.block(a, a, c, c);
res.block(a + b, a, c, b) = Hn.block(a, a + c, c, b);
res.block(a, a + b, b, c) = Hn.block(a + c, a, b, c);
}
res.block(a, a, b, b) = Hn.block(a + c, a + c, b, b);
return res;
}
/**************************************以下为局部地图优化**************************************************************/
/**
* @brief Local Bundle Adjustment LocalMapping::Run() 使用,纯视觉
* @param pKF KeyFrame
* @param pbStopFlag 是否停止优化的标志
* @param pMap 在优化后,更新状态时需要用到Map的互斥量mMutexMapUpdate
* @param 剩下的都是调试用的
*
* 总结下与ORBSLAM2的不同
* 前面操作基本一样,但优化时2代去掉了误差大的点又进行优化了,3代只是统计但没有去掉继续优化,而后都是将误差大的点干掉
*/
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool *pbStopFlag, Map *pMap, int &num_fixedKF, int &num_OptKF, int &num_MPs, int &num_edges)
{
// 该优化函数用于LocalMapping线程的局部BA优化
// Local KeyFrames: First Breath Search from Current Keyframe
list lLocalKeyFrames;
// 步骤1:将当前关键帧加入lLocalKeyFrames
lLocalKeyFrames.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
Map *pCurrentMap = pKF->GetMap();
// 步骤2:找到关键帧连接的关键帧(一级相连),加入lLocalKeyFrames中
const vector vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
for (int i = 0, iend = vNeighKFs.size(); i < iend; i++)
{
KeyFrame *pKFi = vNeighKFs[i];
// 记录局部优化id,该数为不断变化,数值等于局部化的关键帧的id,该id用于防止重复添加
pKFi->mnBALocalForKF = pKF->mnId;
if (!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lLocalKeyFrames.push_back(pKFi);
}
// Local MapPoints seen in Local KeyFrames
num_fixedKF = 0;
// 步骤3:遍历lLocalKeyFrames中关键帧,将它们观测的MapPoints加入到lLocalMapPoints
list lLocalMapPoints;
set sNumObsMP;
for (list::iterator lit = lLocalKeyFrames.begin(), lend = lLocalKeyFrames.end(); lit != lend; lit++)
{
KeyFrame *pKFi = *lit;
if (pKFi->mnId == pMap->GetInitKFid())
{
num_fixedKF = 1;
}
vector vpMPs = pKFi->GetMapPointMatches();
for (vector::iterator vit = vpMPs.begin(), vend = vpMPs.end(); vit != vend; vit++)
{
MapPoint *pMP = *vit;
if (pMP)
if (!pMP->isBad() && pMP->GetMap() == pCurrentMap)
{
if (pMP->mnBALocalForKF != pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF = pKF->mnId;
}
}
}
}
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
// 步骤4:得到能被局部MapPoints观测到,但不属于局部关键帧的关键帧,这些关键帧在局部BA优化时不优化
list lFixedCameras;
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
map> observations = (*lit)->GetObservations();
for (map>::iterator mit = observations.begin(), mend = observations.end(); mit != mend; mit++)
{
KeyFrame *pKFi = mit->first;
if (pKFi->mnBALocalForKF != pKF->mnId && pKFi->mnBAFixedForKF != pKF->mnId)
{
pKFi->mnBAFixedForKF = pKF->mnId;
if (!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lFixedCameras.push_back(pKFi);
}
}
}
// 步骤4.1:相比ORBSLAM2多出了判断固定关键帧的个数,最起码要两个固定的,如果实在没有就把lLocalKeyFrames中最早的KF固定,还是不够再加上第二早的KF固定
num_fixedKF = lFixedCameras.size() + num_fixedKF;
// 1.0 版本没有以下这段
// if (num_fixedKF < 2)
// {
// list::iterator lit = lLocalKeyFrames.begin();
// int lowerId = pKF->mnId;
// KeyFrame *pLowerKf;
// int secondLowerId = pKF->mnId;
// KeyFrame *pSecondLowerKF;
// for (; lit != lLocalKeyFrames.end(); lit++)
// {
// KeyFrame *pKFi = *lit;
// if (pKFi == pKF || pKFi->mnId == pMap->GetInitKFid())
// {
// continue;
// }
// if (pKFi->mnId < lowerId)
// {
// lowerId = pKFi->mnId;
// pLowerKf = pKFi;
// }
// else if (pKFi->mnId < secondLowerId)
// {
// secondLowerId = pKFi->mnId;
// pSecondLowerKF = pKFi;
// }
// }
// lFixedCameras.push_back(pLowerKf);
// lLocalKeyFrames.remove(pLowerKf);
// num_fixedKF++;
// if (num_fixedKF < 2)
// {
// lFixedCameras.push_back(pSecondLowerKF);
// lLocalKeyFrames.remove(pSecondLowerKF);
// num_fixedKF++;
// }
// }
if (num_fixedKF == 0)
{
Verbose::PrintMess("LM-LBA: There are 0 fixed KF in the optimizations, LBA aborted", Verbose::VERBOSITY_NORMAL);
return;
}
// Setup optimizer
// 步骤5:构造g2o优化器
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverEigen();
g2o::BlockSolver_6_3 *solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
if (pMap->IsInertial())
solver->setUserLambdaInit(100.0);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if (pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
unsigned long maxKFid = 0;
// DEBUG LBA
pCurrentMap->msOptKFs.clear();
pCurrentMap->msFixedKFs.clear();
// Set Local KeyFrame vertices
// 步骤6:添加顶点:Pose of Local KeyFrame
for (list::iterator lit = lLocalKeyFrames.begin(), lend = lLocalKeyFrames.end(); lit != lend; lit++)
{
KeyFrame *pKFi = *lit;
g2o::VertexSE3Expmap *vSE3 = new g2o::VertexSE3Expmap();
Sophus::SE3 Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast(), Tcw.translation().cast()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(pKFi->mnId == pMap->GetInitKFid());
optimizer.addVertex(vSE3);
if (pKFi->mnId > maxKFid)
maxKFid = pKFi->mnId;
// DEBUG LBA
pCurrentMap->msOptKFs.insert(pKFi->mnId);
}
num_OptKF = lLocalKeyFrames.size();
// Set Fixed KeyFrame vertices
// 步骤7:添加顶点:Pose of Fixed KeyFrame,注意这里调用了vSE3->setFixed(true)。
for (list::iterator lit = lFixedCameras.begin(), lend = lFixedCameras.end(); lit != lend; lit++)
{
KeyFrame *pKFi = *lit;
g2o::VertexSE3Expmap *vSE3 = new g2o::VertexSE3Expmap();
Sophus::SE3 Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast(), Tcw.translation().cast()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if (pKFi->mnId > maxKFid)
maxKFid = pKFi->mnId;
// DEBUG LBA
pCurrentMap->msFixedKFs.insert(pKFi->mnId);
}
// Set MapPoint vertices
// 步骤7:添加3D顶点
// 存放的方式(举例)
// 边id: 1 2 3 4 5 6 7 8 9
// KFid: 1 2 3 4 1 2 3 2 3
// MPid: 1 1 1 1 2 2 2 3 3
// 所以这个个数大约是点数×帧数,实际肯定比这个要少
const int nExpectedSize = (lLocalKeyFrames.size() + lFixedCameras.size()) * lLocalMapPoints.size();
// 存放单目时的边
vector vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
// 存放双目鱼眼时另一个相机的边
vector vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
// 存放单目时的KF
vector vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
// 存放单目时的MP
// 存放双目鱼眼时另一个相机的KF
vector vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
// 存放单目时的MP
vector vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
// 存放双目鱼眼时另一个相机的MP
vector vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
// 存放双目时的边
vector vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
// 存放双目时的KF
vector vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
// 存放双目时的MP
vector vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
int nPoints = 0;
int nEdges = 0;
// 添加顶点:MapPoint
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
MapPoint *pMP = *lit;
g2o::VertexSBAPointXYZ *vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(pMP->GetWorldPos().cast());
int id = pMP->mnId + maxKFid + 1;
vPoint->setId(id);
// 这里的边缘化与滑动窗口不同,而是为了加速稀疏矩阵的计算BlockSolver_6_3默认了6维度的不边缘化,3自由度的三维点被边缘化,所以所有三维点都设置边缘化
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
nPoints++;
const map> observations = pMP->GetObservations();
// Set edges
// 步骤8:对每一对关联的MapPoint和KeyFrame构建边
for (map>::const_iterator mit = observations.begin(), mend = observations.end(); mit != mend; mit++)
{
KeyFrame *pKFi = mit->first;
if (!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int leftIndex = get<0>(mit->second);
// Monocular observation
// 单目
if (leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)] < 0)
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ *e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->pCamera = pKFi->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
nEdges++;
}
else if (leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)] >= 0) // Stereo observation
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix obs;
const float kp_ur = pKFi->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ *e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity() * invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
e->bf = pKFi->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
nEdges++;
}
if (pKFi->mpCamera2)
{
int rightIndex = get<1>(mit->second);
if (rightIndex != -1)
{
rightIndex -= pKFi->NLeft;
Eigen::Matrix obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
Sophus::SE3f Trl = pKFi->GetRelativePoseTrl();
e->mTrl = g2o::SE3Quat(Trl.unit_quaternion().cast(), Trl.translation().cast());
e->pCamera = pKFi->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKFi);
vpMapPointEdgeBody.push_back(pMP);
nEdges++;
}
}
}
}
}
num_edges = nEdges;
if (pbStopFlag)
if (*pbStopFlag)
return;
// 步骤9:开始优化
optimizer.initializeOptimization();
optimizer.optimize(10);
vector> vToErase;
vToErase.reserve(vpEdgesMono.size() + vpEdgesBody.size() + vpEdgesStereo.size());
// Check inlier observations
// 步骤10:在优化后重新计算误差,剔除连接误差比较大的关键帧和MapPoint
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ *e = vpEdgesMono[i];
MapPoint *pMP = vpMapPointEdgeMono[i];
if (pMP->isBad())
continue;
if (e->chi2() > 5.991 || !e->isDepthPositive())
{
KeyFrame *pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi, pMP));
}
}
for (size_t i = 0, iend = vpEdgesBody.size(); i < iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = vpEdgesBody[i];
MapPoint *pMP = vpMapPointEdgeBody[i];
if (pMP->isBad())
continue;
if (e->chi2() > 5.991 || !e->isDepthPositive())
{
KeyFrame *pKFi = vpEdgeKFBody[i];
vToErase.push_back(make_pair(pKFi, pMP));
}
}
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
g2o::EdgeStereoSE3ProjectXYZ *e = vpEdgesStereo[i];
MapPoint *pMP = vpMapPointEdgeStereo[i];
if (pMP->isBad())
continue;
if (e->chi2() > 7.815 || !e->isDepthPositive())
{
KeyFrame *pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi, pMP));
}
}
// Get Map Mutex
unique_lock lock(pMap->mMutexMapUpdate);
if (!vToErase.empty())
{
for (size_t i = 0; i < vToErase.size(); i++)
{
KeyFrame *pKFi = vToErase[i].first;
MapPoint *pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
// Keyframes
bool bShowStats = false;
for (list::iterator lit = lLocalKeyFrames.begin(), lend = lLocalKeyFrames.end(); lit != lend; lit++)
{
KeyFrame *pKFi = *lit;
g2o::VertexSE3Expmap *vSE3 = static_cast(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
Sophus::SE3f Tiw(SE3quat.rotation().cast(), SE3quat.translation().cast());
pKFi->SetPose(Tiw);
}
// Points
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
MapPoint *pMP = *lit;
g2o::VertexSBAPointXYZ *vPoint = static_cast(optimizer.vertex(pMP->mnId + maxKFid + 1));
pMP->SetWorldPos(vPoint->estimate().cast());
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
/**
* @brief 局部地图+惯导BA LocalMapping IMU中使用,地图经过imu初始化时用这个函数代替LocalBundleAdjustment
*
* @param[in] pKF //关键帧
* @param[in] pbStopFlag //是否停止的标志
* @param[in] pMap //地图
* @param[in] num_fixedKF //固定不优化关键帧的数目
* @param[in] num_OptKF
* @param[in] num_MPs
* @param[in] num_edges
* @param[in] bLarge 成功跟踪匹配的点数是否足够多
* @param[in] bRecInit 经过BA2初始化后这个变量为false
*/
void Optimizer::LocalInertialBA(
KeyFrame *pKF, bool *pbStopFlag, Map *pMap, int &num_fixedKF, int &num_OptKF,
int &num_MPs, int &num_edges, bool bLarge, bool bRecInit)
{
// Step 1. 确定待优化的关键帧们
Map *pCurrentMap = pKF->GetMap();
int maxOpt = 10; // 最大优化关键帧数目
int opt_it = 10; // 每次优化的迭代次数
if (bLarge)
{
maxOpt = 25;
opt_it = 4;
}
// 预计待优化的关键帧数,min函数是为了控制优化关键帧的数量
const int Nd = std::min((int)pCurrentMap->KeyFramesInMap() - 2, maxOpt);
const unsigned long maxKFid = pKF->mnId;
vector vpOptimizableKFs;
const vector vpNeighsKFs = pKF->GetVectorCovisibleKeyFrames();
list lpOptVisKFs;
vpOptimizableKFs.reserve(Nd);
vpOptimizableKFs.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
for (int i = 1; i < Nd; i++)
{
if (vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pKF->mnId;
}
else
break;
}
int N = vpOptimizableKFs.size();
// Optimizable points seen by temporal optimizable keyframes
// Step 2. 确定这些关键帧对应的地图点,存入lLocalMapPoints
list lLocalMapPoints;
for (int i = 0; i < N; i++)
{
vector vpMPs = vpOptimizableKFs[i]->GetMapPointMatches();
for (vector::iterator vit = vpMPs.begin(), vend = vpMPs.end(); vit != vend; vit++)
{
MapPoint *pMP = *vit;
if (pMP)
if (!pMP->isBad())
if (pMP->mnBALocalForKF != pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF = pKF->mnId;
}
}
}
// Fixed Keyframe: First frame previous KF to optimization window)
// Step 3. 固定一帧,为vpOptimizableKFs中最早的那一关键帧的上一关键帧,如果没有上一关键帧了就用最早的那一帧,毕竟目前得到的地图虽然有尺度但并不是绝对的位置
list lFixedKeyFrames;
if (vpOptimizableKFs.back()->mPrevKF)
{
lFixedKeyFrames.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBAFixedForKF = pKF->mnId;
}
else
{
vpOptimizableKFs.back()->mnBALocalForKF = 0;
vpOptimizableKFs.back()->mnBAFixedForKF = pKF->mnId;
lFixedKeyFrames.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
// Optimizable visual KFs
// 4. 做了一系列操作发现最后lpOptVisKFs为空。这段应该是调试遗留代码,如果实现的话其实就是把共视图中在前面没有加过的关键帧们加进来,
// 但作者可能发现之前就把共视图的全部帧加进来了,也有可能发现优化的效果不好浪费时间
// 获得与当前关键帧有共视关系的一些关键帧,大于15个点,排序为从小到大
const int maxCovKF = 0;
for (int i = 0, iend = vpNeighsKFs.size(); i < iend; i++)
{
if (lpOptVisKFs.size() >= maxCovKF)
break;
KeyFrame *pKFi = vpNeighsKFs[i];
if (pKFi->mnBALocalForKF == pKF->mnId || pKFi->mnBAFixedForKF == pKF->mnId)
continue;
pKFi->mnBALocalForKF = pKF->mnId;
if (!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
lpOptVisKFs.push_back(pKFi);
vector vpMPs = pKFi->GetMapPointMatches();
for (vector::iterator vit = vpMPs.begin(), vend = vpMPs.end(); vit != vend; vit++)
{
MapPoint *pMP = *vit;
if (pMP)
if (!pMP->isBad())
if (pMP->mnBALocalForKF != pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF = pKF->mnId;
}
}
}
}
// Fixed KFs which are not covisible optimizable
// 5. 将所有mp点对应的关键帧(除了前面加过的)放入到固定组里面,后面优化时不改变
const int maxFixKF = 200;
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
map> observations = (*lit)->GetObservations();
for (map>::iterator mit = observations.begin(), mend = observations.end(); mit != mend; mit++)
{
KeyFrame *pKFi = mit->first;
if (pKFi->mnBALocalForKF != pKF->mnId && pKFi->mnBAFixedForKF != pKF->mnId)
{
pKFi->mnBAFixedForKF = pKF->mnId;
if (!pKFi->isBad())
{
lFixedKeyFrames.push_back(pKFi);
break;
}
}
}
if (lFixedKeyFrames.size() >= maxFixKF)
break;
}
bool bNonFixed = (lFixedKeyFrames.size() == 0);
// Setup optimizer
// 6. 构造优化器,正式开始优化
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverEigen();
g2o::BlockSolverX *solver_ptr = new g2o::BlockSolverX(linearSolver);
if (bLarge)
{
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-2); // to avoid iterating for finding optimal lambda
optimizer.setAlgorithm(solver);
}
else
{
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e0);
optimizer.setAlgorithm(solver);
}
// Set Local temporal KeyFrame vertices
// 7. 建立关于关键帧的节点,其中包括,位姿,速度,以及两个偏置
N = vpOptimizableKFs.size();
for (int i = 0; i < N; i++)
{
KeyFrame *pKFi = vpOptimizableKFs[i];
VertexPose *VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if (pKFi->bImu)
{
VertexVelocity *VV = new VertexVelocity(pKFi);
VV->setId(maxKFid + 3 * (pKFi->mnId) + 1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias *VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid + 3 * (pKFi->mnId) + 2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias *VA = new VertexAccBias(pKFi);
VA->setId(maxKFid + 3 * (pKFi->mnId) + 3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
}
// Set Local visual KeyFrame vertices
// 8. 建立关于共视关键帧的节点,但这里为空
for (list::iterator it = lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it != itEnd; it++)
{
KeyFrame *pKFi = *it;
VertexPose *VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
}
// Set Fixed KeyFrame vertices
// 9. 建立关于固定关键帧的节点,其中包括,位姿,速度,以及两个偏置
for (list::iterator lit = lFixedKeyFrames.begin(), lend = lFixedKeyFrames.end(); lit != lend; lit++)
{
KeyFrame *pKFi = *lit;
VertexPose *VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
if (pKFi->bImu) // This should be done only for keyframe just before temporal window
{
VertexVelocity *VV = new VertexVelocity(pKFi);
VV->setId(maxKFid + 3 * (pKFi->mnId) + 1);
VV->setFixed(true);
optimizer.addVertex(VV);
VertexGyroBias *VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid + 3 * (pKFi->mnId) + 2);
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias *VA = new VertexAccBias(pKFi);
VA->setId(maxKFid + 3 * (pKFi->mnId) + 3);
VA->setFixed(true);
optimizer.addVertex(VA);
}
}
// Create intertial constraints
// 暂时没看到有什么用
vector vei(N, (EdgeInertial *)NULL);
vector vegr(N, (EdgeGyroRW *)NULL);
vector vear(N, (EdgeAccRW *)NULL);
// 10. 建立惯性边,没有imu跳过
for (int i = 0; i < N; i++)
{
KeyFrame *pKFi = vpOptimizableKFs[i];
if (!pKFi->mPrevKF)
{
cout << "NOT INERTIAL LINK TO PREVIOUS FRAME!!!!" << endl;
continue;
}
if (pKFi->bImu && pKFi->mPrevKF->bImu && pKFi->mpImuPreintegrated)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex *VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex *VV1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 1);
g2o::HyperGraph::Vertex *VG1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 2);
g2o::HyperGraph::Vertex *VA1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 3);
g2o::HyperGraph::Vertex *VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex *VV2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 1);
g2o::HyperGraph::Vertex *VG2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 2);
g2o::HyperGraph::Vertex *VA2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 3);
if (!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cerr << "Error " << VP1 << ", " << VV1 << ", " << VG1 << ", " << VA1 << ", " << VP2 << ", " << VV2 << ", " << VG2 << ", " << VA2 << endl;
continue;
}
vei[i] = new EdgeInertial(pKFi->mpImuPreintegrated);
vei[i]->setVertex(0, dynamic_cast(VP1));
vei[i]->setVertex(1, dynamic_cast(VV1));
vei[i]->setVertex(2, dynamic_cast(VG1));
vei[i]->setVertex(3, dynamic_cast(VA1));
vei[i]->setVertex(4, dynamic_cast(VP2));
vei[i]->setVertex(5, dynamic_cast(VV2));
// 到最早的一个可优化的关键帧或者地图没有ba2时添加鲁棒核函数
if (i == N - 1 || bRecInit)
{
// All inertial residuals are included without robust cost function, but not that one linking the
// last optimizable keyframe inside of the local window and the first fixed keyframe out. The
// information matrix for this measurement is also downweighted. This is done to avoid accumulating
// error due to fixing variables.
// 所有惯性残差都没有鲁棒核,但不包括窗口内最早一个可优化关键帧与第一个固定关键帧链接起来的惯性残差。
// 该度量的信息矩阵也被降权。这样做是为了避免由于固定变量而累积错误。
g2o::RobustKernelHuber *rki = new g2o::RobustKernelHuber;
vei[i]->setRobustKernel(rki);
if (i == N - 1)
vei[i]->setInformation(vei[i]->information() * 1e-2);
rki->setDelta(sqrt(16.92));
}
optimizer.addEdge(vei[i]);
vegr[i] = new EdgeGyroRW();
vegr[i]->setVertex(0, VG1);
vegr[i]->setVertex(1, VG2);
Eigen::Matrix3d InfoG = pKFi->mpImuPreintegrated->C.block<3, 3>(9, 9).cast().inverse();
vegr[i]->setInformation(InfoG);
optimizer.addEdge(vegr[i]);
vear[i] = new EdgeAccRW();
vear[i]->setVertex(0, VA1);
vear[i]->setVertex(1, VA2);
Eigen::Matrix3d InfoA = pKFi->mpImuPreintegrated->C.block<3, 3>(12, 12).cast().inverse();
vear[i]->setInformation(InfoA);
optimizer.addEdge(vear[i]);
}
else
cout << "ERROR building inertial edge" << endl;
}
// Set MapPoint vertices
const int nExpectedSize = (N + lFixedKeyFrames.size()) * lLocalMapPoints.size();
// Mono
vector vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
// Stereo
vector vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
// 11. 建立视觉边
const float thHuberMono = sqrt(5.991);
const float chi2Mono2 = 5.991;
const float thHuberStereo = sqrt(7.815);
const float chi2Stereo2 = 7.815;
const unsigned long iniMPid = maxKFid * 5;
map mVisEdges;
for (int i = 0; i < N; i++)
{
KeyFrame *pKFi = vpOptimizableKFs[i];
mVisEdges[pKFi->mnId] = 0;
}
for (list::iterator lit = lFixedKeyFrames.begin(), lend = lFixedKeyFrames.end(); lit != lend; lit++)
{
mVisEdges[(*lit)->mnId] = 0;
}
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
MapPoint *pMP = *lit;
g2o::VertexSBAPointXYZ *vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(pMP->GetWorldPos().cast());
unsigned long id = pMP->mnId + iniMPid + 1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map> observations = pMP->GetObservations();
// Create visual constraints
for (map>::const_iterator mit = observations.begin(), mend = observations.end(); mit != mend; mit++)
{
KeyFrame *pKFi = mit->first;
if (pKFi->mnBALocalForKF != pKF->mnId && pKFi->mnBAFixedForKF != pKF->mnId)
continue;
if (!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int leftIndex = get<0>(mit->second);
cv::KeyPoint kpUn;
// Monocular left observation
if (leftIndex != -1 && pKFi->mvuRight[leftIndex] < 0)
{
mVisEdges[pKFi->mnId]++;
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono *e = new EdgeMono(0);
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
// Stereo-observation
else if (leftIndex != -1) // Stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
mVisEdges[pKFi->mnId]++;
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo *e = new EdgeStereo(0);
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix3d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
// Monocular right observation
if (pKFi->mpCamera2)
{
int rightIndex = get<1>(mit->second);
if (rightIndex != -1)
{
rightIndex -= pKFi->NLeft;
mVisEdges[pKFi->mnId]++;
Eigen::Matrix obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
EdgeMono *e = new EdgeMono(1);
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave] / unc2;
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
}
}
}
}
// cout << "Total map points: " << lLocalMapPoints.size() << endl;
// TODO debug会报错先注释掉
for (map::iterator mit = mVisEdges.begin(), mend = mVisEdges.end(); mit != mend; mit++)
{
assert(mit->second >= 3);
}
// 12. 开始优化
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
float err = optimizer.activeRobustChi2();
optimizer.optimize(opt_it); // Originally to 2
float err_end = optimizer.activeRobustChi2();
if (pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
vector> vToErase;
vToErase.reserve(vpEdgesMono.size() + vpEdgesStereo.size());
// 13. 开始确认待删除的连接关系
// Check inlier observations
// Mono
for (size_t i = 0, iend = vpEdgesMono.size(); i < iend; i++)
{
EdgeMono *e = vpEdgesMono[i];
MapPoint *pMP = vpMapPointEdgeMono[i];
bool bClose = pMP->mTrackDepth < 10.f;
if (pMP->isBad())
continue;
if ((e->chi2() > chi2Mono2 && !bClose) || (e->chi2() > 1.5f * chi2Mono2 && bClose) || !e->isDepthPositive())
{
KeyFrame *pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi, pMP));
}
}
// Stereo
for (size_t i = 0, iend = vpEdgesStereo.size(); i < iend; i++)
{
EdgeStereo *e = vpEdgesStereo[i];
MapPoint *pMP = vpMapPointEdgeStereo[i];
if (pMP->isBad())
continue;
if (e->chi2() > chi2Stereo2)
{
KeyFrame *pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi, pMP));
}
}
// Get Map Mutex and erase outliers
unique_lock lock(pMap->mMutexMapUpdate);
// TODO: Some convergence problems have been detected here
if ((2 * err < err_end || isnan(err) || isnan(err_end)) && !bLarge) // bGN)
{
cout << "FAIL LOCAL-INERTIAL BA!!!!" << endl;
return;
}
// 14. 删除连接关系
if (!vToErase.empty())
{
for (size_t i = 0; i < vToErase.size(); i++)
{
KeyFrame *pKFi = vToErase[i].first;
MapPoint *pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
for (list::iterator lit = lFixedKeyFrames.begin(), lend = lFixedKeyFrames.end(); lit != lend; lit++)
(*lit)->mnBAFixedForKF = 0;
// 15. 取出结果
// Recover optimized data
// Local temporal Keyframes
N = vpOptimizableKFs.size();
for (int i = 0; i < N; i++)
{
KeyFrame *pKFi = vpOptimizableKFs[i];
VertexPose *VP = static_cast(optimizer.vertex(pKFi->mnId));
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast(), VP->estimate().tcw[0].cast());
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF = 0;
if (pKFi->bImu)
{
VertexVelocity *VV = static_cast(optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 1));
pKFi->SetVelocity(VV->estimate().cast());
VertexGyroBias *VG = static_cast(optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 2));
VertexAccBias *VA = static_cast(optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3], b[4], b[5], b[0], b[1], b[2]));
}
}
// Local visual KeyFrame
// 空
for (list::iterator it = lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it != itEnd; it++)
{
KeyFrame *pKFi = *it;
VertexPose *VP = static_cast(optimizer.vertex(pKFi->mnId));
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast(), VP->estimate().tcw[0].cast());
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF = 0;
}
// Points
for (list::iterator lit = lLocalMapPoints.begin(), lend = lLocalMapPoints.end(); lit != lend; lit++)
{
MapPoint *pMP = *lit;
g2o::VertexSBAPointXYZ *vPoint = static_cast(optimizer.vertex(pMP->mnId + iniMPid + 1));
pMP->SetWorldPos(vPoint->estimate().cast());
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
/**************************************以下为全局优化**************************************************************/
/**
* @brief 全局BA: pMap中所有的MapPoints和关键帧做bundle adjustment优化
* 这个全局BA优化在本程序中有两个地方使用:
* 1、单目初始化:CreateInitialMapMonocular函数
* 2、闭环优化:RunGlobalBundleAdjustment函数
* @param[in] pMap 地图点
* @param[in] nIterations 迭代次数
* @param[in] pbStopFlag 外部控制BA结束标志
* @param[in] nLoopKF 形成了闭环的当前关键帧的id
* @param[in] bRobust 是否使用鲁棒核函数
*/
void Optimizer::GlobalBundleAdjustemnt(Map *pMap, int nIterations, bool *pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
// 获取地图中的所有关键帧
vector vpKFs = pMap->GetAllKeyFrames();
// 获取地图中的所有地图点
vector vpMP = pMap->GetAllMapPoints();
// 调用GBA
BundleAdjustment(vpKFs, vpMP, nIterations, pbStopFlag, nLoopKF, bRobust);
}
/**
* @brief bundle adjustment 优化过程
* @param[in] vpKFs 参与BA的所有关键帧
* @param[in] vpMP 参与BA的所有地图点
* @param[in] nIterations 优化迭代次数
* @param[in] pbStopFlag 外部控制BA结束标志
* @param[in] nLoopKF 形成了闭环的当前关键帧的id
* @param[in] bRobust 是否使用核函数
*/
void Optimizer::BundleAdjustment(
const vector &vpKFs, const vector &vpMP,
int nIterations, bool *pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
// 不参与优化的地图点,下面会用到
vector vbNotIncludedMP;
vbNotIncludedMP.resize(vpMP.size());
Map *pMap = vpKFs[0]->GetMap();
// Step 1 初始化g2o优化器
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverEigen();
g2o::BlockSolver_6_3 *solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
// 使用LM算法优化
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// 如果这个时候外部请求终止,那就结束
// 注意这句执行之后,外部再请求结束BA,就结束不了了
if (pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
// 记录添加到优化器中的顶点的最大关键帧id
long unsigned int maxKFid = 0;
const int nExpectedSize = (vpKFs.size()) * vpMP.size();
vector vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
// Step 2 向优化器添加顶点
// Set KeyFrame vertices
// Step 2.1 :向优化器添加关键帧位姿顶点
// 对于当前地图中的所有关键帧
for (size_t i = 0; i < vpKFs.size(); i++)
{
KeyFrame *pKF = vpKFs[i];
// 去除无效的
if (pKF->isBad())
continue;
// 对于每一个能用的关键帧构造SE3顶点,其实就是当前关键帧的位姿
g2o::VertexSE3Expmap *vSE3 = new g2o::VertexSE3Expmap();
Sophus::SE3 Tcw = pKF->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast(), Tcw.translation().cast()));
vSE3->setId(pKF->mnId);
// 只有第0帧关键帧不优化(参考基准)
vSE3->setFixed(pKF->mnId == pMap->GetInitKFid());
// 向优化器中添加顶点,并且更新maxKFid
optimizer.addVertex(vSE3);
if (pKF->mnId > maxKFid)
maxKFid = pKF->mnId;
}
// 卡方分布 95% 以上可信度的时候的阈值
const float thHuber2D = sqrt(5.99); // 自由度为2
const float thHuber3D = sqrt(7.815); // 自由度为3
// Set MapPoint vertices
// Step 2.2:向优化器添加MapPoints顶点
// 遍历地图中的所有地图点
for (size_t i = 0; i < vpMP.size(); i++)
{
MapPoint *pMP = vpMP[i];
// 跳过无效地图点
if (pMP->isBad())
continue;
// 创建顶点
g2o::VertexSBAPointXYZ *vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(pMP->GetWorldPos().cast());
// 前面记录maxKFid 是在这里使用的
const int id = pMP->mnId + maxKFid + 1;
vPoint->setId(id);
// g2o在做BA的优化时必须将其所有地图点全部schur掉,否则会出错。
// 原因是使用了g2o::LinearSolver这个类型来指定linearsolver,
// 其中模板参数当中的位姿矩阵类型在程序中为相机姿态参数的维度,于是BA当中schur消元后解得线性方程组必须是只含有相机姿态变量。
// Ceres库则没有这样的限制
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
// 边的关系,其实就是点和关键帧之间观测的关系
const map> observations = pMP->GetObservations();
// 边计数
int nEdges = 0;
// SET EDGES
// Step 3:向优化器添加投影边(是在遍历地图点、添加地图点的顶点的时候顺便添加的)
// 遍历观察到当前地图点的所有关键帧
for (map>::const_iterator mit = observations.begin(); mit != observations.end(); mit++)
{
KeyFrame *pKF = mit->first;
// 滤出不合法的关键帧
if (pKF->isBad() || pKF->mnId > maxKFid)
continue;
if (optimizer.vertex(id) == NULL || optimizer.vertex(pKF->mnId) == NULL)
continue;
nEdges++;
const int leftIndex = get<0>(mit->second);
if (leftIndex != -1 && pKF->mvuRight[get<0>(mit->second)] < 0)
{
// 如果是单目相机按照下面操作
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
// 创建边
ORB_SLAM3::EdgeSE3ProjectXYZ *e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
// 填充数据,构造约束关系
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
// 信息矩阵,也是协方差,表明了这个约束的观测在各个维度(x,y)上的可信程度,在我们这里对于具体的一个点,两个坐标的可信程度都是相同的,
// 其可信程度受到特征点在图像金字塔中的图层有关,图层越高,可信度越差
// 为了避免出现信息矩阵中元素为负数的情况,这里使用的是sigma^(-2)
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
// 如果要使用鲁棒核函数
if (bRobust)
{
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
// 这里的重投影误差,自由度为2,所以这里设置为卡方分布中自由度为2的阈值,如果重投影的误差大约大于1个像素的时候,就认为不太靠谱的点了,
// 核函数是为了避免其误差的平方项出现数值上过大的增长
rk->setDelta(thHuber2D);
}
// 设置相机内参
e->pCamera = pKF->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMP);
}
else if (leftIndex != -1 && pKF->mvuRight[leftIndex] >= 0) // Stereo observation
{
// 双目或RGBD相机按照下面操作
// 双目相机的观测数据则是由三个部分组成:投影点的x坐标,投影点的y坐标,以及投影点在右目中的x坐标(默认y方向上已经对齐了)
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
// 对于双目输入,g2o也有专门的误差边
g2o::EdgeStereoSE3ProjectXYZ *e = new g2o::EdgeStereoSE3ProjectXYZ();
// 填充
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
// 信息矩阵这里是相同的,考虑的是左目特征点的所在图层
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity() * invSigma2;
e->setInformation(Info);
// 如果要使用鲁棒核函数
if (bRobust)
{
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
// 由于现在的观测有三个值,重投影误差会有三个平方项的和组成,因此对应的卡方分布的自由度为3,所以这里设置的也是自由度为3的时候的阈值
rk->setDelta(thHuber3D);
}
// 填充相机的基本参数
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMP);
}
if (pKF->mpCamera2)
{
int rightIndex = get<1>(mit->second);
if (rightIndex != -1 && rightIndex < pKF->mvKeysRight.size())
{
rightIndex -= pKF->NLeft;
Eigen::Matrix obs;
cv::KeyPoint kp = pKF->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
Sophus::SE3f Trl = pKF->GetRelativePoseTrl();
e->mTrl = g2o::SE3Quat(Trl.unit_quaternion().cast(), Trl.translation().cast());
e->pCamera = pKF->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKF);
vpMapPointEdgeBody.push_back(pMP);
}
}
}
// 如果因为一些特殊原因,实际上并没有任何关键帧观测到当前的这个地图点,那么就删除掉这个顶点,并且这个地图点也就不参与优化
if (nEdges == 0)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i] = true;
}
else
{
vbNotIncludedMP[i] = false;
}
}
// Optimize!
// Step 4:开始优化
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(nIterations);
Verbose::PrintMess("BA: End of the optimization", Verbose::VERBOSITY_NORMAL);
// Recover optimized data
// Step 5:得到优化的结果
// Step 5.1 Keyframes
// 遍历所有的关键帧
for (size_t i = 0; i < vpKFs.size(); i++)
{
KeyFrame *pKF = vpKFs[i];
if (pKF->isBad())
continue;
// 获取到优化结果
g2o::VertexSE3Expmap *vSE3 = static_cast(optimizer.vertex(pKF->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
if (nLoopKF == pMap->GetOriginKF()->mnId)
{
// 原则上来讲不会出现"当前闭环关键帧是第0帧"的情况,如果这种情况出现,只能够说明是在创建初始地图点的时候调用的这个全局BA函数.
// 这个时候,地图中就只有两个关键帧,其中优化后的位姿数据可以直接写入到帧的成员变量中
// 老白:视觉初始化时
pKF->SetPose(Sophus::SE3f(SE3quat.rotation().cast(), SE3quat.translation().cast()));
}
else
{
// 正常的操作,先把优化后的位姿写入到帧的一个专门的成员变量mTcwGBA中备用
pKF->mTcwGBA = Sophus::SE3d(SE3quat.rotation(), SE3quat.translation()).cast();
pKF->mnBAGlobalForKF = nLoopKF; // 标记这个关键帧参与了这次全局优化
// 下面都是一些调试操作,计算优化前后的位移
Sophus::SE3f mTwc = pKF->GetPoseInverse();
Sophus::SE3f mTcGBA_c = pKF->mTcwGBA * mTwc;
Eigen::Vector3f vector_dist = mTcGBA_c.translation();
double dist = vector_dist.norm();
if (dist > 1)
{
int numMonoBadPoints = 0, numMonoOptPoints = 0;
int numStereoBadPoints = 0, numStereoOptPoints = 0;
vector vpMonoMPsOpt, vpStereoMPsOpt;
for (size_t i2 = 0, iend = vpEdgesMono.size(); i2 < iend; i2++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ *e = vpEdgesMono[i2];
MapPoint *pMP = vpMapPointEdgeMono[i2];
KeyFrame *pKFedge = vpEdgeKFMono[i2];
if (pKF != pKFedge)
{
continue;
}
if (pMP->isBad())
continue;
if (e->chi2() > 5.991 || !e->isDepthPositive())
{
numMonoBadPoints++;
}
else
{
numMonoOptPoints++;
vpMonoMPsOpt.push_back(pMP);
}
}
for (size_t i2 = 0, iend = vpEdgesStereo.size(); i2 < iend; i2++)
{
g2o::EdgeStereoSE3ProjectXYZ *e = vpEdgesStereo[i2];
MapPoint *pMP = vpMapPointEdgeStereo[i2];
KeyFrame *pKFedge = vpEdgeKFMono[i2];
if (pKF != pKFedge)
{
continue;
}
if (pMP->isBad())
continue;
if (e->chi2() > 7.815 || !e->isDepthPositive())
{
numStereoBadPoints++;
}
else
{
numStereoOptPoints++;
vpStereoMPsOpt.push_back(pMP);
}
}
}
}
}
// Step 5.2 遍历所有地图点,去除其中没有参与优化过程的地图点
for (size_t i = 0; i < vpMP.size(); i++)
{
if (vbNotIncludedMP[i])
continue;
MapPoint *pMP = vpMP[i];
if (pMP->isBad())
continue;
// 获取优化之后的地图点的位置
g2o::VertexSBAPointXYZ *vPoint = static_cast(optimizer.vertex(pMP->mnId + maxKFid + 1));
if (nLoopKF == pMap->GetOriginKF()->mnId)
{
// 如果这个GBA是在创建初始地图的时候调用的话,那么地图点的位姿也可以直接写入
pMP->SetWorldPos(vPoint->estimate().cast());
pMP->UpdateNormalAndDepth();
}
else
{
// 反之,如果是正常的闭环过程调用,就先临时保存一下
pMP->mPosGBA = vPoint->estimate().cast();
pMP->mnBAGlobalForKF = nLoopKF;
}
}
}
/**
* @brief imu初始化优化,LocalMapping::InitializeIMU中使用 LoopClosing::RunGlobalBundleAdjustment
* 地图全部做BA。也就是imu版的GlobalBundleAdjustemnt
* @param pMap 地图
* @param its 迭代次数
* @param bFixLocal 是否固定局部,为false
* @param nLoopId 回环id
* @param pbStopFlag 是否停止的标志
* @param bInit 提供priorG时为true,此时偏置只优化最后一帧的至0,然后所有关键帧的偏置都赋值为优化后的值
* 若为false,则建立每两帧之间的偏置边,优化使其相差为0
* @param priorG 陀螺仪偏置的信息矩阵系数,主动设置时一般bInit为true,也就是只优化最后一帧的偏置,这个数会作为计算信息矩阵时使用
* @param priorA 加速度计偏置的信息矩阵系数
* @param vSingVal 没用,估计调试用的
* @param bHess 没用,估计调试用的
*/
void Optimizer::FullInertialBA(
Map *pMap, int its, const bool bFixLocal, const long unsigned int nLoopId, bool *pbStopFlag,
bool bInit, float priorG, float priorA, Eigen::VectorXd *vSingVal, bool *bHess)
{
// 获取地图里所有mp与kf,以及最大kf的id
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector vpKFs = pMap->GetAllKeyFrames();
const vector vpMPs = pMap->GetAllMapPoints();
// Setup optimizer
// 1. 很经典的一套设置优化器流程
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverEigen();
g2o::BlockSolverX *solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-5);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if (pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
int nNonFixed = 0;
// 2. 设置关键帧与偏置节点
// Set KeyFrame vertices
KeyFrame *pIncKF; // vpKFs中最后一个id符合要求的关键帧
for (size_t i = 0; i < vpKFs.size(); i++)
{
KeyFrame *pKFi = vpKFs[i];
if (pKFi->mnId > maxKFid)
continue;
VertexPose *VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
pIncKF = pKFi;
bool bFixed = false;
if (bFixLocal)
{
bFixed = (pKFi->mnBALocalForKF >= (maxKFid - 1)) || (pKFi->mnBAFixedForKF >= (maxKFid - 1));
if (!bFixed)
nNonFixed++;
VP->setFixed(bFixed); // 固定,这里可能跟回环有关
}
optimizer.addVertex(VP);
// 如果是初始化的那几个及后面的关键帧,加入速度节点
if (pKFi->bImu)
{
VertexVelocity *VV = new VertexVelocity(pKFi);
VV->setId(maxKFid + 3 * (pKFi->mnId) + 1);
VV->setFixed(bFixed);
optimizer.addVertex(VV);
// priorA==0.f 时 bInit为false,也就是又加入了偏置节点
if (!bInit)
{
VertexGyroBias *VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid + 3 * (pKFi->mnId) + 2);
VG->setFixed(bFixed);
optimizer.addVertex(VG);
VertexAccBias *VA = new VertexAccBias(pKFi);
VA->setId(maxKFid + 3 * (pKFi->mnId) + 3);
VA->setFixed(bFixed);
optimizer.addVertex(VA);
}
}
}
// priorA!=0.f 时 bInit为true,加入了偏置节点
if (bInit)
{
VertexGyroBias *VG = new VertexGyroBias(pIncKF);
VG->setId(4 * maxKFid + 2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias *VA = new VertexAccBias(pIncKF);
VA->setId(4 * maxKFid + 3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
// false
if (bFixLocal)
{
if (nNonFixed < 3)
return;
}
// 3. 添加关于imu的边
// IMU links
for (size_t i = 0; i < vpKFs.size(); i++)
{
KeyFrame *pKFi = vpKFs[i];
// 必须有对应的上一个关键帧,感觉跟下面的判定冲突了
if (!pKFi->mPrevKF)
{
Verbose::PrintMess("NOT INERTIAL LINK TO PREVIOUS FRAME!", Verbose::VERBOSITY_NORMAL);
continue;
}
if (pKFi->mPrevKF && pKFi->mnId <= maxKFid)
{
if (pKFi->isBad() || pKFi->mPrevKF->mnId > maxKFid)
continue;
// 这两个都必须为初始化后的关键帧
if (pKFi->bImu && pKFi->mPrevKF->bImu)
{
// 3.1 根据上一帧的偏置设定当前帧的新偏置
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
// 3.2 提取节点
g2o::HyperGraph::Vertex *VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex *VV1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 1);
g2o::HyperGraph::Vertex *VG1;
g2o::HyperGraph::Vertex *VA1;
g2o::HyperGraph::Vertex *VG2;
g2o::HyperGraph::Vertex *VA2;
// 根据不同输入配置相应的偏置节点
if (!bInit)
{
VG1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 2);
VA1 = optimizer.vertex(maxKFid + 3 * (pKFi->mPrevKF->mnId) + 3);
VG2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 2);
VA2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 3);
}
else
{
VG1 = optimizer.vertex(4 * maxKFid + 2);
VA1 = optimizer.vertex(4 * maxKFid + 3);
}
g2o::HyperGraph::Vertex *VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex *VV2 = optimizer.vertex(maxKFid + 3 * (pKFi->mnId) + 1);
if (!bInit)
{
if (!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cout << "Error" << VP1 << ", " << VV1 << ", " << VG1 << ", " << VA1 << ", " << VP2 << ", " << VV2 << ", " << VG2 << ", " << VA2 << endl;
continue;
}
}
else
{
if (!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2)
{
cout << "Error" << VP1 << ", " << VV1 << ", " << VG1 << ", " << VA1 << ", " << VP2 << ", " << VV2 << endl;
continue;
}
}
// 3.3 设置边
EdgeInertial *ei = new EdgeInertial(pKFi->mpImuPreintegrated);
ei->setVertex(0, dynamic_cast(VP1));
ei->setVertex(1, dynamic_cast(VV1));
ei->setVertex(2, dynamic_cast(VG1));
ei->setVertex(3, dynamic_cast(VA1));
ei->setVertex(4, dynamic_cast(VP2));
ei->setVertex(5, dynamic_cast(VV2));
g2o::RobustKernelHuber *rki = new g2o::RobustKernelHuber;
ei->setRobustKernel(rki);
// 9个自由度的卡方检验(0.05)
rki->setDelta(sqrt(16.92));
optimizer.addEdge(ei);
// 加了每一个关键帧的偏置时,还要优化两帧之间偏置的误差
if (!bInit)
{
EdgeGyroRW *egr = new EdgeGyroRW();
egr->setVertex(0, VG1);
egr->setVertex(1, VG2);
Eigen::Matrix3d InfoG = pKFi->mpImuPreintegrated->C.block<3, 3>(9, 9).cast().inverse();
egr->setInformation(InfoG);
egr->computeError();
optimizer.addEdge(egr);
EdgeAccRW *ear = new EdgeAccRW();
ear->setVertex(0, VA1);
ear->setVertex(1, VA2);
Eigen::Matrix3d InfoA = pKFi->mpImuPreintegrated->C.block<3, 3>(12, 12).cast().inverse();
ear->setInformation(InfoA);
ear->computeError();
optimizer.addEdge(ear);
}
}
else
cout << pKFi->mnId << " or " << pKFi->mPrevKF->mnId << " no imu" << endl;
}
}
// 只加入pIncKF帧的偏置,优化偏置到0
if (bInit)
{
g2o::HyperGraph::Vertex *VG = optimizer.vertex(4 * maxKFid + 2);
g2o::HyperGraph::Vertex *VA = optimizer.vertex(4 * maxKFid + 3);
// Add prior to comon biases
Eigen::Vector3f bprior;
bprior.setZero();
EdgePriorAcc *epa = new EdgePriorAcc(bprior);
epa->setVertex(0, dynamic_cast(VA));
double infoPriorA = priorA; //
epa->setInformation(infoPriorA * Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro *epg = new EdgePriorGyro(bprior);
epg->setVertex(0, dynamic_cast(VG));
double infoPriorG = priorG; //
epg->setInformation(infoPriorG * Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
}
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
const unsigned long iniMPid = maxKFid * 5;
vector vbNotIncludedMP(vpMPs.size(), false);
// 5. 添加关于mp的节点与边,这段比较好理解,很传统的视觉上的重投影误差
for (size_t i = 0; i < vpMPs.size(); i++)
{
MapPoint *pMP = vpMPs[i];
g2o::VertexSBAPointXYZ *vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(pMP->GetWorldPos().cast());
unsigned long id = pMP->mnId + iniMPid + 1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map> observations = pMP->GetObservations();
bool bAllFixed = true;
// Set edges
// 遍历所有能观测到这个点的关键帧
for (map>::const_iterator mit = observations.begin(), mend = observations.end(); mit != mend; mit++)
{
KeyFrame *pKFi = mit->first;
if (pKFi->mnId > maxKFid)
continue;
if (!pKFi->isBad())
{
const int leftIndex = get<0>(mit->second);
cv::KeyPoint kpUn;
// 添加边
if (leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)] < 0) // Monocular observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono *e = new EdgeMono(0);
g2o::OptimizableGraph::Vertex *VP = dynamic_cast(optimizer.vertex(pKFi->mnId));
if (bAllFixed)
if (!VP->fixed())
bAllFixed = false;
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
}
else if (leftIndex != -1 && pKFi->mvuRight[leftIndex] >= 0) // stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo *e = new EdgeStereo(0);
g2o::OptimizableGraph::Vertex *VP = dynamic_cast