Merge branch 'master' of https://github.com/electech6/ORB_SLAM3_detailed_comments
commit
b9b28931ec
|
@ -6,7 +6,7 @@
|
|||
|
||||
![课程大纲](https://github.com/electech6/ORB_SLAM3_detailed_comments/blob/master/outline.png)
|
||||
|
||||
[ORB-SLAM3 逐行源码讲解](https://appafc4omci9700.h5.xiaoeknow.com/content_page/eyJ0eXBlIjoiMyIsInJlc291cmNlX3R5cGUiOjI1LCJyZXNvdXJjZV9pZCI6IiIsImFwcF9pZCI6ImFwcGFmYzRvbWNpOTcwMCIsInByb2R1Y3RfaWQiOiJ0ZXJtXzYxMzcxNTEwODY4MzNfQXRXa2YzIiwiZXhwYW5kX2RhdGEiOltdfQ)
|
||||
[ORB-SLAM3 逐行源码讲解](https://cvlife.net/detail/term_6255372036a53_o5VfgR/25)
|
||||
|
||||
----
|
||||
# ORB-SLAM3
|
||||
|
|
|
@ -223,7 +223,7 @@ public:
|
|||
|
||||
private:
|
||||
// Updated bias
|
||||
Bias bu;
|
||||
Bias bu; //更新后的零偏
|
||||
// Dif between original and updated bias
|
||||
// This is used to compute the updated values of the preintegration
|
||||
Eigen::Matrix<float,6,1> db;
|
||||
|
|
BIN
outline.png
BIN
outline.png
Binary file not shown.
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 103 KiB |
|
@ -579,12 +579,12 @@ EdgeInertial::EdgeInertial(IMU::Preintegrated *pInt):JRg(pInt->JRg.cast<double>(
|
|||
void EdgeInertial::computeError()
|
||||
{
|
||||
// TODO Maybe Reintegrate inertial measurments when difference between linearization point and current estimate is too big
|
||||
const VertexPose* VP1 = static_cast<const VertexPose*>(_vertices[0]);
|
||||
const VertexVelocity* VV1= static_cast<const VertexVelocity*>(_vertices[1]);
|
||||
const VertexGyroBias* VG1= static_cast<const VertexGyroBias*>(_vertices[2]);
|
||||
const VertexAccBias* VA1= static_cast<const VertexAccBias*>(_vertices[3]);
|
||||
const VertexPose* VP2 = static_cast<const VertexPose*>(_vertices[4]);
|
||||
const VertexVelocity* VV2 = static_cast<const VertexVelocity*>(_vertices[5]);
|
||||
const VertexPose* VP1 = static_cast<const VertexPose*>(_vertices[0]); //位姿Ti
|
||||
const VertexVelocity* VV1= static_cast<const VertexVelocity*>(_vertices[1]); //速度vi
|
||||
const VertexGyroBias* VG1= static_cast<const VertexGyroBias*>(_vertices[2]); //零偏Bgi
|
||||
const VertexAccBias* VA1= static_cast<const VertexAccBias*>(_vertices[3]); //零偏Bai
|
||||
const VertexPose* VP2 = static_cast<const VertexPose*>(_vertices[4]); //位姿Tj
|
||||
const VertexVelocity* VV2 = static_cast<const VertexVelocity*>(_vertices[5]); //速度vj
|
||||
const IMU::Bias b1(VA1->estimate()[0],VA1->estimate()[1],VA1->estimate()[2],VG1->estimate()[0],VG1->estimate()[1],VG1->estimate()[2]);
|
||||
const Eigen::Matrix3d dR = mpInt->GetDeltaRotation(b1).cast<double>();
|
||||
const Eigen::Vector3d dV = mpInt->GetDeltaVelocity(b1).cast<double>();
|
||||
|
|
|
@ -242,7 +242,7 @@ void Preintegrated::Reintegrate()
|
|||
*
|
||||
* @param[in] acceleration 加速度计数据
|
||||
* @param[in] angVel 陀螺仪数据
|
||||
* @param[in] dt 两帧之间时间差
|
||||
* @param[in] dt 两图像 帧之间时间差
|
||||
*/
|
||||
void Preintegrated::IntegrateNewMeasurement(const Eigen::Vector3f &acceleration, const Eigen::Vector3f &angVel, const float &dt)
|
||||
{
|
||||
|
|
|
@ -1547,10 +1547,8 @@ void LocalMapping::InitializeIMU(float priorG, float priorA, bool bFIBA)
|
|||
pKF = pKF->mPrevKF;
|
||||
}
|
||||
lpKF.push_front(pKF);
|
||||
// 以相同内容再构建一个vector
|
||||
// 同样内容再构建一个和lpKF一样的容器vpKF
|
||||
vector<KeyFrame*> vpKF(lpKF.begin(),lpKF.end());
|
||||
|
||||
// TODO 跟上面重复?
|
||||
if(vpKF.size()<nMinKF)
|
||||
return;
|
||||
|
||||
|
|
|
@ -178,9 +178,9 @@ void LoopClosing::Run()
|
|||
}
|
||||
// If inertial, force only yaw
|
||||
// 如果是imu模式并且完成了初始化,强制将焊接变换的 roll 和 pitch 设为0
|
||||
// 可以理解成两个坐标轴都经过了imu初始化,肯定都是水平的
|
||||
if ((mpTracker->mSensor==System::IMU_MONOCULAR || mpTracker->mSensor==System::IMU_STEREO || mpTracker->mSensor==System::IMU_RGBD) &&
|
||||
mpCurrentKF->GetMap()->GetIniertialBA1())
|
||||
// 通过物理约束来保证两个坐标轴都是水平的
|
||||
if ((mpTracker->mSensor==System::IMU_MONOCULAR ||mpTracker->mSensor==System::IMU_STEREO) &&
|
||||
mpCurrentKF->GetMap()->GetIniertialBA1()) // TODO, maybe with GetIniertialBA1
|
||||
{
|
||||
Eigen::Vector3d phi = LogSO3(mSold_new.rotation().toRotationMatrix());
|
||||
phi(0)=0;
|
||||
|
@ -465,6 +465,7 @@ bool LoopClosing::NewDetectCommonRegions()
|
|||
mnLoopNumCoincidences++;
|
||||
// 不再参与新的回环检测
|
||||
mpLoopLastCurrentKF->SetErase();
|
||||
// 将当前关键帧作为上次关键帧
|
||||
mpLoopLastCurrentKF = mpCurrentKF;
|
||||
mg2oLoopSlw = gScw; // 记录当前优化的结果为{last T_cw}即为 T_lw
|
||||
// 记录匹配到的点
|
||||
|
@ -505,7 +506,8 @@ bool LoopClosing::NewDetectCommonRegions()
|
|||
//Merge candidates
|
||||
bool bMergeDetectedInKF = false;
|
||||
// Step 3.2 融合的时序几何校验: 注意初始化时mnMergeNumCoincidences=0, 所以可以先跳过看后面
|
||||
// 如果成功验证总次数大于0
|
||||
// mnMergeNumCoincidences表示成功校验总次数,初始化为0
|
||||
// 会先经过后面共视几何校验,如果小于3,会进到如下判断开始时序几何校验
|
||||
if(mnMergeNumCoincidences > 0)
|
||||
{
|
||||
// Find from the last KF candidates
|
||||
|
@ -534,7 +536,7 @@ bool LoopClosing::NewDetectCommonRegions()
|
|||
mpMergeLastCurrentKF = mpCurrentKF;
|
||||
mg2oMergeSlw = gScw;
|
||||
mvpMergeMatchedMPs = vpMatchedMPs;
|
||||
// 如果验证数大于等于3则为成功回环
|
||||
// 如果验证数大于等于3则为成功
|
||||
mbMergeDetected = mnMergeNumCoincidences >= 3;
|
||||
}
|
||||
// 如果没找到共同区域(时序验证失败一次)
|
||||
|
@ -690,8 +692,9 @@ bool LoopClosing::DetectAndReffineSim3FromLastKF(KeyFrame* pCurrentKF, KeyFrame*
|
|||
// 若匹配的数量大于一定的数目
|
||||
if(numOptMatches > nProjOptMatches)
|
||||
{
|
||||
//!bug, 以下gScw_estimation应该通过上述sim3优化后的位姿来更新。以下mScw应该改为 gscm * gswm.t
|
||||
g2o::Sim3 gScw_estimation(gScw.rotation(), gScw.translation(),1.0);
|
||||
//!bug, 以下gScw_estimation应该通过上述sim3优化后的位姿来更新。以下mScw应该改为 gscm * gswm^-1
|
||||
g2o::Sim3 gScw_estimation(Converter::toMatrix3d(mScw.rowRange(0, 3).colRange(0, 3)),
|
||||
Converter::toVector3d(mScw.rowRange(0, 3).col(3)),1.0);
|
||||
|
||||
vector<MapPoint*> vpMatchedMP;
|
||||
vpMatchedMP.resize(mpCurrentKF->GetMapPointMatches().size(), static_cast<MapPoint*>(NULL));
|
||||
|
@ -1548,8 +1551,8 @@ void LoopClosing::CorrectLoop()
|
|||
mpAtlas->InformNewBigChange();
|
||||
|
||||
// Add loop edge
|
||||
// Step 8. 添加当前帧与闭环匹配帧之间的边(这个连接关系不优化)
|
||||
// !感觉这两句话应该放在OptimizeEssentialGraph之前,因为OptimizeEssentialGraph的步骤4.2中有优化
|
||||
// Step 7:添加当前帧与闭环匹配帧之间的边(这个连接关系不优化)
|
||||
// 它在下一次的Essential Graph里面使用
|
||||
mpLoopMatchedKF->AddLoopEdge(mpCurrentKF);
|
||||
mpCurrentKF->AddLoopEdge(mpLoopMatchedKF);
|
||||
|
||||
|
@ -2110,8 +2113,8 @@ void LoopClosing::MergeLocal()
|
|||
bool bStop = false;
|
||||
// 为Local BA的接口, 把set转为vector
|
||||
// Step 7 在缝合(Welding)区域进行local BA
|
||||
vpLocalCurrentWindowKFs.clear();
|
||||
vpMergeConnectedKFs.clear();
|
||||
vpLocalCurrentWindowKFs.clear(); //当前关键帧的窗口
|
||||
vpMergeConnectedKFs.clear(); //融合关键帧的窗口
|
||||
std::copy(spLocalWindowKFs.begin(), spLocalWindowKFs.end(), std::back_inserter(vpLocalCurrentWindowKFs));
|
||||
std::copy(spMergeConnectedKFs.begin(), spMergeConnectedKFs.end(), std::back_inserter(vpMergeConnectedKFs));
|
||||
if (mpTracker->mSensor==System::IMU_MONOCULAR || mpTracker->mSensor==System::IMU_STEREO || mpTracker->mSensor==System::IMU_RGBD)
|
||||
|
@ -2272,8 +2275,8 @@ void LoopClosing::MergeLocal()
|
|||
// Essential graph 优化后可以重新开始局部建图了
|
||||
mpLocalMapper->Release();
|
||||
|
||||
// 如果之前停掉了全局的BA,就开启全局BA
|
||||
// 这里没有imu, 所以isImuInitialized一定是false, 所以第二个条件(当前地图关键帧数量小于200且地图只有一个)一定是true
|
||||
// 全局的BA(永远不会执行)
|
||||
// 这里没有imu, 所以isImuInitialized一定是false, 此时地图融合Atlas至少2个地图,所以第二个条件也一定是false
|
||||
// Step 9 全局BA
|
||||
if(bRelaunchBA && (!pCurrentMap->isImuInitialized() || (pCurrentMap->KeyFramesInMap()<200 && mpAtlas->CountMaps()==1)))
|
||||
{
|
||||
|
@ -2404,7 +2407,7 @@ void LoopClosing::MergeLocal2()
|
|||
Optimizer::InertialOptimization(pCurrentMap,bg,ba);
|
||||
IMU::Bias b (ba[0],ba[1],ba[2],bg[0],bg[1],bg[2]);
|
||||
unique_lock<mutex> lock(mpAtlas->GetCurrentMap()->mMutexMapUpdate);
|
||||
// 用优化得到的 bias 更新地图
|
||||
// 用优化得到的 bias 更新普通帧位姿
|
||||
mpTracker->UpdateFrameIMU(1.0f,b,mpTracker->GetLastKeyFrame());
|
||||
|
||||
// Set map initialized
|
||||
|
@ -2457,9 +2460,9 @@ void LoopClosing::MergeLocal2()
|
|||
pMergeMap->EraseMapPoint(pMPi);
|
||||
}
|
||||
// ? BUG! pMergeMap没有设置为BAD
|
||||
// ? 感觉应该加入如下代码吧?
|
||||
// ? mpAtlas->SetMapBad(pCurrentMap);
|
||||
|
||||
// ? 应该加入如下代码吧?
|
||||
// ? mpAtlas->SetMapBad(pMergeMap);
|
||||
|
||||
// Save non corrected poses (already merged maps)
|
||||
// 存下所有关键帧在融合矫正之前的位姿
|
||||
vector<KeyFrame*> vpKFs = pCurrentMap->GetAllKeyFrames();
|
||||
|
@ -2510,7 +2513,7 @@ void LoopClosing::MergeLocal2()
|
|||
vector<MapPoint*> vpCheckFuseMapPoint; // MapPoint vector from current map to allow to fuse duplicated points with the old map (merge)
|
||||
vector<KeyFrame*> vpCurrentConnectedKFs;
|
||||
|
||||
// 为后续SearchAndFuse及welding BA准备数据
|
||||
// 为后续SearchAndFuse准备数据
|
||||
// 拿出融合帧的局部窗口, 确保最后是(1+5), 1: 融合帧自己 2: 5个共视关键帧
|
||||
mvpMergeConnectedKFs.push_back(mpMergeMatchedKF);
|
||||
vector<KeyFrame*> aux = mpMergeMatchedKF->GetVectorCovisibleKeyFrames();
|
||||
|
|
|
@ -4551,8 +4551,10 @@ int Optimizer::PoseInertialOptimizationLastKeyFrame(Frame *pFrame, bool bRecInit
|
|||
cv::KeyPoint kpUn;
|
||||
|
||||
// Left monocular observation
|
||||
// 这里说的Left monocular包含两种情况:1.单目情况 2.两个相机情况下的相机1
|
||||
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
|
||||
{
|
||||
//如果是两个相机情况下的相机1
|
||||
if(i < Nleft) // pair left-right
|
||||
kpUn = pFrame->mvKeys[i];
|
||||
else
|
||||
|
@ -4934,8 +4936,10 @@ int Optimizer::PoseInertialOptimizationLastFrame(Frame *pFrame, bool bRecInit)
|
|||
{
|
||||
cv::KeyPoint kpUn;
|
||||
// Left monocular observation
|
||||
// 这里说的Left monocular包含两种情况:1.单目情况 2.两个相机情况下的相机1
|
||||
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
|
||||
{
|
||||
//如果是两个相机情况下的相机1
|
||||
if(i < Nleft) // pair left-right
|
||||
kpUn = pFrame->mvKeys[i];
|
||||
else
|
||||
|
|
|
@ -3515,11 +3515,13 @@ bool Tracking::TrackLocalMap()
|
|||
if(!mbMapUpdated) // && (mnMatchesInliers>30))
|
||||
{
|
||||
Verbose::PrintMess("TLM: PoseInertialOptimizationLastFrame ", Verbose::VERBOSITY_DEBUG);
|
||||
// 使用上一普通帧以及当前帧的视觉信息和IMU信息联合优化当前帧位姿、速度和IMU零偏
|
||||
inliers = Optimizer::PoseInertialOptimizationLastFrame(&mCurrentFrame); // , !mpLastKeyFrame->GetMap()->GetIniertialBA1());
|
||||
}
|
||||
else
|
||||
{
|
||||
Verbose::PrintMess("TLM: PoseInertialOptimizationLastKeyFrame ", Verbose::VERBOSITY_DEBUG);
|
||||
// 使用上一关键帧以及当前帧的视觉信息和IMU信息联合优化当前帧位姿、速度和IMU零偏
|
||||
inliers = Optimizer::PoseInertialOptimizationLastKeyFrame(&mCurrentFrame); // , !mpLastKeyFrame->GetMap()->GetIniertialBA1());
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue