添加IMU注释内容
parent
62da5259f8
commit
b9823b7892
|
@ -4,16 +4,16 @@ project(ORB_SLAM3)
|
|||
IF(NOT CMAKE_BUILD_TYPE)
|
||||
SET(CMAKE_BUILD_TYPE Release)
|
||||
ENDIF()
|
||||
|
||||
# set(CMAKE_BUILD_TYPE "Debug")
|
||||
MESSAGE("Build type: " ${CMAKE_BUILD_TYPE})
|
||||
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -O3")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -O3")
|
||||
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -march=native")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -march=native")
|
||||
# set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -march=native")
|
||||
# set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -march=native")
|
||||
|
||||
# set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wno-deprecated -O3 -march=native ")
|
||||
# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-deprecated -O3 -march=native")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wno-deprecated -O3 -march=native ")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-deprecated -O3 -march=native")
|
||||
|
||||
# Check C++11 or C++0x support
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
|
|
@ -103,8 +103,10 @@ int main(int argc, char **argv)
|
|||
|
||||
// Find first imu to be considered, supposing imu measurements start first
|
||||
// Step 3 默认IMU数据早于图像数据记录,找到和第一帧图像时间戳最接近的imu时间戳索引,记录在first_imu[seq]中
|
||||
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][0])
|
||||
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][0]){
|
||||
first_imu[seq]++;
|
||||
cout << "first_imu[seq] = " << first_imu[seq] << endl;
|
||||
}
|
||||
// 因为上面退出while循环时IMU时间戳刚刚超过图像时间戳,所以这里需要再减一个索引
|
||||
first_imu[seq]--; // first imu measurement to be considered
|
||||
|
||||
|
@ -125,22 +127,26 @@ int main(int argc, char **argv)
|
|||
// Step 4 SLAM系统的初始化,包括读取配置文件、字典,创建跟踪、局部建图、闭环、显示线程
|
||||
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
|
||||
|
||||
//遍历所有数据
|
||||
int proccIm = 0;
|
||||
for (seq = 0; seq<num_seq; seq++)
|
||||
{
|
||||
// Main loop
|
||||
cv::Mat im;
|
||||
//存放imu数据容器,包含该加速度,角速度,时间戳
|
||||
vector<ORB_SLAM3::IMU::Point> vImuMeas;
|
||||
proccIm = 0;
|
||||
//直方图均衡化,直方图均衡化的思想就是这样的:
|
||||
//假设我有灰度级255的图像,但是都是属于[100,110]的灰度,图像对比度就很低,我应该尽可能拉到整个[0,255]
|
||||
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));
|
||||
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
|
||||
{
|
||||
// Read image from file
|
||||
// Step 5 读取每一帧图像并转换为灰度图存储在im
|
||||
// Step 5 读取每一帧图像并转换为灰度图存储在im,seq表示第几个数据集,ni表示这个数据集的第几个数据
|
||||
im = cv::imread(vstrImageFilenames[seq][ni],cv::IMREAD_GRAYSCALE);
|
||||
|
||||
// clahe
|
||||
// ?这里是什么作用?
|
||||
//直方图均衡化
|
||||
clahe->apply(im,im);
|
||||
|
||||
|
||||
|
@ -163,7 +169,7 @@ int main(int argc, char **argv)
|
|||
{
|
||||
// cout << "t_cam " << tframe << endl;
|
||||
// Step 6 把上一图像帧和当前图像帧之间的imu信息存储在vImuMeas里
|
||||
// 注意第一个图像帧没有对应的imu数据
|
||||
// 注意第一个图像帧没有对应的imu数据 //?是否存在一帧,因为之前是从最接近图像第一帧的imu算起,可能无效
|
||||
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][ni])
|
||||
{
|
||||
vImuMeas.push_back(ORB_SLAM3::IMU::Point(vAcc[seq][first_imu[seq]].x,vAcc[seq][first_imu[seq]].y,vAcc[seq][first_imu[seq]].z,
|
||||
|
|
4
build.sh
4
build.sh
|
@ -27,5 +27,5 @@ echo "Configuring and building ORB_SLAM3 ..."
|
|||
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DCMAKE_BUILD_TYPE=Release
|
||||
make -j
|
||||
cmake .. -DCMAKE_BUILD_TYPE=Debug
|
||||
make
|
||||
|
|
|
@ -193,7 +193,7 @@ protected:
|
|||
bool mHasTumbnail;
|
||||
bool mbBad = false;
|
||||
|
||||
bool mbIsInertial;
|
||||
bool mbIsInertial; //标记是否有imu
|
||||
bool mbIMU_BA1;
|
||||
bool mbIMU_BA2;
|
||||
|
||||
|
|
|
@ -99,6 +99,17 @@ public:
|
|||
public:
|
||||
|
||||
// Initialize the SLAM system. It launches the Local Mapping, Loop Closing and Viewer threads.
|
||||
/**
|
||||
* @brief Construct a new System object
|
||||
*
|
||||
* @param[in] strVocFile //词袋文件所在路径
|
||||
* @param[in] strSettingsFile //配置文件所在路径
|
||||
* @param[in] sensor //传感器类型
|
||||
* @param[in] bUseViewer //指定是否使用可视化界面
|
||||
* @param[in] initFr //initFr表示初始化帧的id,开始设置为0
|
||||
* @param[out] strSequence //序列名,在跟踪线程和局部建图线程用得到
|
||||
* @param[in] strLoadingFile //看起来作者貌似想加地图重载功能的一个参数
|
||||
*/
|
||||
System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor, const bool bUseViewer = true, const int initFr = 0, const string &strSequence = std::string(), const string &strLoadingFile = std::string());
|
||||
|
||||
// Proccess the given stereo frame. Images must be synchronized and rectified.
|
||||
|
|
|
@ -244,6 +244,7 @@ bool Atlas::isInertial()
|
|||
void Atlas::SetInertialSensor()
|
||||
{
|
||||
unique_lock<mutex> lock(mMutexAtlas);
|
||||
//接着又调用Map类的SetInertialSensor成员函数,将其设置为imu属性,以后的跟踪和预积分将和这个标志有关
|
||||
mpCurrentMap->SetInertialSensor();
|
||||
}
|
||||
|
||||
|
|
|
@ -149,30 +149,44 @@ cv::Mat InverseRightJacobianSO3(const cv::Mat &v)
|
|||
return InverseRightJacobianSO3(v.at<float>(0),v.at<float>(1),v.at<float>(2));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief 计算旋转角度积分量
|
||||
*
|
||||
* @param[in] angVel 陀螺仪数据
|
||||
* @param[in] imuBias 陀螺仪偏置
|
||||
* @param[in] time 两帧间的时间差
|
||||
*/
|
||||
IntegratedRotation::IntegratedRotation(const cv::Point3f &angVel, const Bias &imuBias, const float &time):
|
||||
deltaT(time)
|
||||
{
|
||||
//得到考虑偏置后的角度旋转
|
||||
const float x = (angVel.x-imuBias.bwx)*time;
|
||||
const float y = (angVel.y-imuBias.bwy)*time;
|
||||
const float z = (angVel.z-imuBias.bwz)*time;
|
||||
|
||||
cv::Mat I = cv::Mat::eye(3,3,CV_32F);
|
||||
|
||||
//计算旋转矩阵的模值,后面用罗德里格公式计算旋转矩阵时会用到
|
||||
const float d2 = x*x+y*y+z*z;
|
||||
const float d = sqrt(d2);
|
||||
|
||||
//角度转成叉积的矩阵形式
|
||||
cv::Mat W = (cv::Mat_<float>(3,3) << 0, -z, y,
|
||||
z, 0, -x,
|
||||
-y, x, 0);
|
||||
// eps = 1e-4 是一个小量,根据罗德里格斯公式求极限,后面的高阶小量忽略掉得到此式
|
||||
if(d<eps)
|
||||
{
|
||||
//forster 经典预积分论文公式(4)
|
||||
deltaR = I + W;
|
||||
//小量时,右扰动 Jr = I
|
||||
rightJ = cv::Mat::eye(3,3,CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
//forster 经典预积分论文公式(3)
|
||||
deltaR = I + W*sin(d)/d + W*W*(1.0f-cos(d))/d2;
|
||||
//forster 经典预积分论文公式(8)
|
||||
rightJ = I - W*(1.0f-cos(d))/d2 + W*W*(d-sin(d))/(d2*d);
|
||||
}
|
||||
}
|
||||
|
@ -252,8 +266,16 @@ void Preintegrated::Reintegrate()
|
|||
IntegrateNewMeasurement(aux[i].a,aux[i].w,aux[i].t);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 预积分计算,更新noise
|
||||
*
|
||||
* @param[in] acceleration 加速度计数据
|
||||
* @param[in] angVel 陀螺仪数据
|
||||
* @param[in] dt 两帧之间时间差
|
||||
*/
|
||||
void Preintegrated::IntegrateNewMeasurement(const cv::Point3f &acceleration, const cv::Point3f &angVel, const float &dt)
|
||||
{
|
||||
// 保存imu数据,利用中值积分的结果构造一个预积分类保存在mvMeasurements中
|
||||
mvMeasurements.push_back(integrable(acceleration,angVel,dt));
|
||||
|
||||
// Position is updated firstly, as it depends on previously computed velocity and rotation.
|
||||
|
@ -261,20 +283,28 @@ void Preintegrated::IntegrateNewMeasurement(const cv::Point3f &acceleration, con
|
|||
// Rotation is the last to be updated.
|
||||
|
||||
//Matrices to compute covariance
|
||||
// Step 1.构造协方差矩阵 参考Forster论文公式(62),邱笑晨的《预积分总结与公式推导》的P12页也有详细推导:η_ij = A * η_i,j-1 + B_j-1 * η_j-1
|
||||
// ? 位姿第一个被更新,速度第二(因为这两个只依赖前一帧计算的旋转矩阵和速度),后面再更新旋转角度
|
||||
// 噪声矩阵的传递矩阵,这部分用于计算i到j-1历史噪声或者协方差
|
||||
cv::Mat A = cv::Mat::eye(9,9,CV_32F);
|
||||
// 噪声矩阵的传递矩阵,这部分用于计算j-1新的噪声或协方差,这两个矩阵里面的数都是当前时刻的,计算主要是为了下一时刻使用
|
||||
cv::Mat B = cv::Mat::zeros(9,6,CV_32F);
|
||||
|
||||
// 考虑偏置后的加速度、角速度
|
||||
cv::Mat acc = (cv::Mat_<float>(3,1) << acceleration.x-b.bax,acceleration.y-b.bay, acceleration.z-b.baz);
|
||||
cv::Mat accW = (cv::Mat_<float>(3,1) << angVel.x-b.bwx, angVel.y-b.bwy, angVel.z-b.bwz);
|
||||
|
||||
// 记录平均加速度和角速度
|
||||
avgA = (dT*avgA + dR*acc*dt)/(dT+dt);
|
||||
avgW = (dT*avgW + accW*dt)/(dT+dt);
|
||||
|
||||
// Update delta position dP and velocity dV (rely on no-updated delta rotation)
|
||||
// 根据没有更新的dR来更新dP与dV eq.(38)
|
||||
dP = dP + dV*dt + 0.5f*dR*acc*dt*dt;
|
||||
dV = dV + dR*acc*dt;
|
||||
|
||||
// Compute velocity and position parts of matrices A and B (rely on non-updated delta rotation)
|
||||
// 根据η_ij = A * η_i,j-1 + B_j-1 * η_j-1中的A矩阵和B矩阵对速度和位移进行更新
|
||||
cv::Mat Wacc = (cv::Mat_<float>(3,3) << 0, -acc.at<float>(2), acc.at<float>(1),
|
||||
acc.at<float>(2), 0, -acc.at<float>(0),
|
||||
-acc.at<float>(1), acc.at<float>(0), 0);
|
||||
|
@ -285,27 +315,36 @@ void Preintegrated::IntegrateNewMeasurement(const cv::Point3f &acceleration, con
|
|||
B.rowRange(6,9).colRange(3,6) = 0.5f*dR*dt*dt;
|
||||
|
||||
// Update position and velocity jacobians wrt bias correction
|
||||
// ? 更新bias雅克比,计算偏置的雅克比矩阵,pv 分别对ba与bg的偏导数,论文中没推这个值,邱笑晨那边有推导
|
||||
// 因为随着时间推移,不可能每次都重新计算雅克比矩阵,所以需要做J(k+1) = j(k) + (~)这类事,分解方式与AB矩阵相同
|
||||
JPa = JPa + JVa*dt -0.5f*dR*dt*dt;
|
||||
JPg = JPg + JVg*dt -0.5f*dR*dt*dt*Wacc*JRg;
|
||||
JVa = JVa - dR*dt;
|
||||
JVg = JVg - dR*dt*Wacc*JRg;
|
||||
|
||||
// Update delta rotation
|
||||
// Step 2. 构造函数,会根据更新后的bias进行角度积分
|
||||
IntegratedRotation dRi(angVel,b,dt);
|
||||
// 强行归一化使其符合旋转矩阵的格式
|
||||
dR = NormalizeRotation(dR*dRi.deltaR);
|
||||
|
||||
// Compute rotation parts of matrices A and B
|
||||
// 补充AB矩阵
|
||||
A.rowRange(0,3).colRange(0,3) = dRi.deltaR.t();
|
||||
B.rowRange(0,3).colRange(0,3) = dRi.rightJ*dt;
|
||||
|
||||
// 小量delta初始为0,更新后通常也为0,故省略了小量的更新
|
||||
// Update covariance
|
||||
// Step 3.更新协方差,frost经典预积分论文的第63个公式,推导了噪声(ηa, ηg)对dR dV dP 的影响
|
||||
C.rowRange(0,9).colRange(0,9) = A*C.rowRange(0,9).colRange(0,9)*A.t() + B*Nga*B.t();
|
||||
// 这一部分最开始是0矩阵,随着积分次数增加,每次都加上随机游走,偏置的信息矩阵
|
||||
C.rowRange(9,15).colRange(9,15) = C.rowRange(9,15).colRange(9,15) + NgaWalk;
|
||||
|
||||
// Update rotation jacobian wrt bias correction
|
||||
// 计算偏置的雅克比矩阵,r对bg的导数,∂ΔRij/∂bg = (ΔRjj-1) * ∂ΔRij-1/∂bg - Jr(j-1)*t
|
||||
JRg = dRi.deltaR.t()*JRg - dRi.rightJ*dt;
|
||||
|
||||
// Total integrated time
|
||||
// 更新总时间
|
||||
dT += dt;
|
||||
}
|
||||
|
||||
|
|
|
@ -342,6 +342,7 @@ void Map::ApplyScaledRotation(const cv::Mat &R, const float s, const bool bScale
|
|||
void Map::SetInertialSensor()
|
||||
{
|
||||
unique_lock<mutex> lock(mMutexMap);
|
||||
//将mbIsInertial设置为true,将其设置为imu属性,以后的跟踪和预积分将和这个标志有关
|
||||
mbIsInertial = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,11 +37,20 @@ namespace ORB_SLAM3
|
|||
{
|
||||
|
||||
Verbose::eLevel Verbose::th = Verbose::VERBOSITY_NORMAL;
|
||||
|
||||
System::System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor,
|
||||
const bool bUseViewer, const int initFr, const string &strSequence, const string &strLoadingFile):
|
||||
mSensor(sensor), mpViewer(static_cast<Viewer*>(NULL)), mbReset(false), mbResetActiveMap(false),
|
||||
mbActivateLocalizationMode(false), mbDeactivateLocalizationMode(false)
|
||||
// 系统的构造函数,将会启动其他的线程
|
||||
System::System(const string &strVocFile, //词袋文件所在路径
|
||||
const string &strSettingsFile, //配置文件所在路径
|
||||
const eSensor sensor, //传感器类型
|
||||
const bool bUseViewer, //是否使用可视化界面
|
||||
const int initFr, //initFr表示初始化帧的id,开始设置为0
|
||||
const string &strSequence, //序列名,在跟踪线程和局部建图线程用得到
|
||||
const string &strLoadingFile //看起来作者貌似想加地图重载功能的一个参数
|
||||
):
|
||||
mSensor(sensor), //初始化传感器类型
|
||||
mpViewer(static_cast<Viewer*>(NULL)), // ?空。。。对象指针? TODO
|
||||
mbReset(false), mbResetActiveMap(false),// ?重新设置ActiveMap
|
||||
mbActivateLocalizationMode(false), // ?是否开启局部定位功能开关
|
||||
mbDeactivateLocalizationMode(false) // ?没有这个模式转换标志
|
||||
{
|
||||
// Output welcome message
|
||||
cout << endl <<
|
||||
|
@ -54,15 +63,15 @@ System::System(const string &strVocFile, const string &strSettingsFile, const eS
|
|||
cout << "Input sensor was set to: ";
|
||||
// Step 1 输出当前传感器类型
|
||||
if(mSensor==MONOCULAR)
|
||||
cout << "Monocular" << endl;
|
||||
cout << "Monocular" << endl; //单目
|
||||
else if(mSensor==STEREO)
|
||||
cout << "Stereo" << endl;
|
||||
cout << "Stereo" << endl; //双目
|
||||
else if(mSensor==RGBD)
|
||||
cout << "RGB-D" << endl;
|
||||
cout << "RGB-D" << endl; //RGBD相机
|
||||
else if(mSensor==IMU_MONOCULAR)
|
||||
cout << "Monocular-Inertial" << endl;
|
||||
cout << "Monocular-Inertial" << endl; //单目 + imu
|
||||
else if(mSensor==IMU_STEREO)
|
||||
cout << "Stereo-Inertial" << endl;
|
||||
cout << "Stereo-Inertial" << endl; //双目 + imu
|
||||
|
||||
//Check settings file
|
||||
// Step 2 读取配置文件
|
||||
|
@ -75,6 +84,7 @@ System::System(const string &strVocFile, const string &strSettingsFile, const eS
|
|||
exit(-1);
|
||||
}
|
||||
|
||||
// ?ORBSLAM3新加的多地图管理功能,这里好像是加载Atlas标识符
|
||||
bool loadedAtlas = false;
|
||||
|
||||
//----
|
||||
|
@ -172,6 +182,7 @@ System::System(const string &strVocFile, const string &strSettingsFile, const eS
|
|||
|
||||
// 设置Atlas中的传感器类型
|
||||
if (mSensor==IMU_STEREO || mSensor==IMU_MONOCULAR)
|
||||
// ? 如果是有imu的传感器类型,将mbIsInertial设置为imu属性,以后的跟踪和预积分将和这个标志有关
|
||||
mpAtlas->SetInertialSensor();
|
||||
|
||||
// Step 6 依次创建跟踪、局部建图、闭环、显示线程
|
||||
|
@ -182,7 +193,7 @@ System::System(const string &strVocFile, const string &strSettingsFile, const eS
|
|||
|
||||
//Initialize the Tracking thread
|
||||
//(it will live in the main thread of execution, the one that called this constructor)
|
||||
// 创建跟踪线程(主线程)
|
||||
// 创建跟踪线程(主线程),不会立刻开启,会在对图像和imu预处理后在main主线程种执行
|
||||
cout << "Seq. Name: " << strSequence << endl;
|
||||
mpTracker = new Tracking(this, mpVocabulary, mpFrameDrawer, mpMapDrawer,
|
||||
mpAtlas, mpKeyFrameDatabase, strSettingsFile, mSensor, strSequence);
|
||||
|
@ -196,6 +207,7 @@ System::System(const string &strVocFile, const string &strSettingsFile, const eS
|
|||
mpLocalMapper->mInitFr = initFr;
|
||||
//设置最远3D地图点的深度值,如果超过阈值,说明可能三角化不太准确,丢弃
|
||||
mpLocalMapper->mThFarPoints = fsSettings["thFarPoints"];
|
||||
// ? 这里有个疑问,C++中浮点型跟0比较是否用精确?
|
||||
if(mpLocalMapper->mThFarPoints!=0)
|
||||
{
|
||||
cout << "Discard points further than " << mpLocalMapper->mThFarPoints << " m from current camera" << endl;
|
||||
|
@ -381,6 +393,7 @@ cv::Mat System::TrackMonocular(const cv::Mat &im, const double ×tamp, const
|
|||
|
||||
// Check mode change
|
||||
{
|
||||
// 独占锁,主要是为了mbActivateLocalizationMode和mbDeactivateLocalizationMode不会发生混乱
|
||||
unique_lock<mutex> lock(mMutexMode);
|
||||
// mbActivateLocalizationMode为true会关闭局部地图线程,仅跟踪模式
|
||||
if(mbActivateLocalizationMode)
|
||||
|
@ -394,6 +407,7 @@ cv::Mat System::TrackMonocular(const cv::Mat &im, const double ×tamp, const
|
|||
}
|
||||
// 局部地图关闭以后,只进行追踪的线程,只计算相机的位姿,没有对局部地图进行更新
|
||||
mpTracker->InformOnlyTracking(true);
|
||||
// 关闭线程可以使得别的线程得到更多的资源
|
||||
mbActivateLocalizationMode = false;
|
||||
}
|
||||
if(mbDeactivateLocalizationMode)
|
||||
|
@ -413,6 +427,7 @@ cv::Mat System::TrackMonocular(const cv::Mat &im, const double ×tamp, const
|
|||
mbReset = false;
|
||||
mbResetActiveMap = false;
|
||||
}
|
||||
//如果检测到重置活动地图,讲重置地图设置
|
||||
else if(mbResetActiveMap)
|
||||
{
|
||||
cout << "SYSTEM-> Reseting active map in monocular case" << endl;
|
||||
|
|
|
@ -1073,7 +1073,8 @@ cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im, const double ×tamp,
|
|||
}
|
||||
else if(mSensor == System::IMU_MONOCULAR)
|
||||
{
|
||||
if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET)
|
||||
//判断该帧是不是初始化
|
||||
if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET) //没有成功初始化的前一个状态就是NO_IMAGES_YET
|
||||
{
|
||||
mCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,mpORBVocabulary,mpCamera,mDistCoef,mbf,mThDepth,&mLastFrame,*mpImuCalib);
|
||||
}
|
||||
|
@ -1104,6 +1105,7 @@ cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im, const double ×tamp,
|
|||
f_track_stats << mvpLocalMapPoints.size() << ",";
|
||||
f_track_stats << setprecision(6) << t_track << endl;*/
|
||||
|
||||
//开启保存数据模式
|
||||
#ifdef SAVE_TIMES
|
||||
f_track_times << mCurrentFrame.mTimeORB_Ext << ",";
|
||||
f_track_times << mCurrentFrame.mTimeStereoMatch << ",";
|
||||
|
@ -1118,7 +1120,7 @@ cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im, const double ×tamp,
|
|||
return mCurrentFrame.mTcw.clone();
|
||||
}
|
||||
|
||||
|
||||
//将imu数据存放在mlQueueImuData的list链表里
|
||||
void Tracking::GrabImuData(const IMU::Point &imuMeasurement)
|
||||
{
|
||||
unique_lock<mutex> lock(mMutexImuQueue);
|
||||
|
@ -1127,11 +1129,13 @@ void Tracking::GrabImuData(const IMU::Point &imuMeasurement)
|
|||
|
||||
void Tracking::PreintegrateIMU()
|
||||
{
|
||||
//cout << "start preintegration" << endl;
|
||||
|
||||
// Step 1.拿到两两帧之间待处理的预积分数据,组成一个集合
|
||||
// cout << "start preintegration" << endl;
|
||||
// 上一帧不存在,说明两帧之间没有imu数据,不进行预积分
|
||||
if(!mCurrentFrame.mpPrevFrame)
|
||||
{
|
||||
Verbose::PrintMess("non prev frame ", Verbose::VERBOSITY_NORMAL);
|
||||
// ? 当前帧是否进行预积分标志
|
||||
mCurrentFrame.setIntegrated();
|
||||
return;
|
||||
}
|
||||
|
@ -1140,6 +1144,7 @@ void Tracking::PreintegrateIMU()
|
|||
|
||||
mvImuFromLastFrame.clear();
|
||||
mvImuFromLastFrame.reserve(mlQueueImuData.size());
|
||||
// 没有imu数据,不进行预积分
|
||||
if(mlQueueImuData.size() == 0)
|
||||
{
|
||||
Verbose::PrintMess("Not IMU data in mlQueueImuData!!", Verbose::VERBOSITY_NORMAL);
|
||||
|
@ -1149,17 +1154,22 @@ void Tracking::PreintegrateIMU()
|
|||
|
||||
while(true)
|
||||
{
|
||||
// 数据还没有时,会等待一段时间,直到mlQueueImuData中有imu数据.一开始不需要等待
|
||||
bool bSleep = false;
|
||||
{
|
||||
unique_lock<mutex> lock(mMutexImuQueue);
|
||||
if(!mlQueueImuData.empty())
|
||||
{
|
||||
// 拿到第一个imu数据作为起始数据
|
||||
IMU::Point* m = &mlQueueImuData.front();
|
||||
cout.precision(17);
|
||||
// imu起始数据会比当前帧的前一帧时间戳早,如果相差0.001则舍弃这个imu数据
|
||||
if(m->t<mCurrentFrame.mpPrevFrame->mTimeStamp-0.001l)
|
||||
{
|
||||
mlQueueImuData.pop_front();
|
||||
}
|
||||
// 同样最后一个的imu数据时间戳也不能理当前帧时间间隔多余0.001
|
||||
// ? (时间戳本身的差值,单位是s秒,tum数据集里面是19位时间戳,单位为ns,这里可能只保留了10位整数和9位小数)
|
||||
else if(m->t<mCurrentFrame.mTimeStamp-0.001l)
|
||||
{
|
||||
mvImuFromLastFrame.push_back(*m);
|
||||
|
@ -1167,6 +1177,7 @@ void Tracking::PreintegrateIMU()
|
|||
}
|
||||
else
|
||||
{
|
||||
// 得到两帧间的imu数据放入mvImuFromLastFrame中,得到后面预积分的处理数据
|
||||
mvImuFromLastFrame.push_back(*m);
|
||||
break;
|
||||
}
|
||||
|
@ -1181,32 +1192,55 @@ void Tracking::PreintegrateIMU()
|
|||
usleep(500);
|
||||
}
|
||||
|
||||
|
||||
// Step 2.对两帧之间进行中值积分处理
|
||||
// m个imu组数据会有m-1个预积分量
|
||||
const int n = mvImuFromLastFrame.size()-1;
|
||||
// 构造imu预处理器,并初始化标定数据
|
||||
IMU::Preintegrated* pImuPreintegratedFromLastFrame = new IMU::Preintegrated(mLastFrame.mImuBias,mCurrentFrame.mImuCalib);
|
||||
|
||||
// 针对预积分位置的不同做不同中值积分的处理
|
||||
/**
|
||||
* 根据上面imu帧的筛选,IMU与图像帧的时序如下:
|
||||
* Frame---IMU0---IMU1---IMU2---IMU3---IMU4---------------IMUx---Frame---IMUx+1
|
||||
* T_------T0-----T1-----T2-----T3-----T4-----------------Tx-----_T------Tx+1
|
||||
* A_------A0-----A1-----A2-----A3-----A4-----------------Ax-----_T------Ax+1
|
||||
* W_------W0-----W1-----W2-----W3-----W4-----------------Wx-----_T------Wx+1
|
||||
* T_和_T分别表示上一图像帧和当前图像帧的时间戳,A(加速度数据),W(陀螺仪数据),同理
|
||||
*/
|
||||
for(int i=0; i<n; i++)
|
||||
{
|
||||
float tstep;
|
||||
cv::Point3f acc, angVel;
|
||||
// 第一帧数据但不是最后两帧,imu总帧数大于2
|
||||
if((i==0) && (i<(n-1)))
|
||||
{
|
||||
// 时间差作为积分量
|
||||
float tab = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||||
// 根据上面分析的IMU与图像帧的时序分析,获取当前imu到上一帧的时间间隔
|
||||
// 在加加速度不变的假设上算出第一帧图像到第二个imu数据的中值积分
|
||||
float tini = mvImuFromLastFrame[i].t-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||||
// ? 这里采用离散中值积分进行预积分,获取当前imu到上一帧的时间间隔
|
||||
// 设当前时刻imu的加速度a0,下一时刻加速度a1,时间间隔tab 为t10,tini t0p
|
||||
// 正常情况下时为了求上一帧到当前时刻imu的一个平均加速度,但是imu时间不会正好落在上一帧图像的时刻,需要做补偿,要求得a0时刻到上一帧这段时间加速度的改变量
|
||||
// 有了这个改变量将其加到a0上之后就可以表示上一帧时的加速度了。其中a0 - (a1-a0)*(tini/tab) 为上一帧时刻的加速度再加上a1 之后除以2就为这段时间的加速度平均值
|
||||
// 其中tstep表示a1到上一帧的时间间隔,a0 - (a1-a0)*(tini/tab)这个式子中tini可以是正也可以是负表示时间上的先后,(a1-a0)也是一样,多种情况下这个式子依然成立
|
||||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a-
|
||||
(mvImuFromLastFrame[i+1].a-mvImuFromLastFrame[i].a)*(tini/tab))*0.5f;
|
||||
angVel = (mvImuFromLastFrame[i].w+mvImuFromLastFrame[i+1].w-
|
||||
(mvImuFromLastFrame[i+1].w-mvImuFromLastFrame[i].w)*(tini/tab))*0.5f;
|
||||
// 上一帧图像到下一帧imu(也就是第二个imu数据)的时间差
|
||||
tstep = mvImuFromLastFrame[i+1].t-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||||
}
|
||||
//中间帧直接求中值
|
||||
else if(i<(n-1))
|
||||
{
|
||||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a)*0.5f;
|
||||
angVel = (mvImuFromLastFrame[i].w+mvImuFromLastFrame[i+1].w)*0.5f;
|
||||
tstep = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||||
}
|
||||
//最后一帧,但不是第一帧
|
||||
else if((i>0) && (i==(n-1)))
|
||||
{
|
||||
// 直到倒数第二个imu时刻时,计算过程跟第一时刻类似,都需要考虑帧与imu时刻的关系
|
||||
float tab = mvImuFromLastFrame[i+1].t-mvImuFromLastFrame[i].t;
|
||||
float tend = mvImuFromLastFrame[i+1].t-mCurrentFrame.mTimeStamp;
|
||||
acc = (mvImuFromLastFrame[i].a+mvImuFromLastFrame[i+1].a-
|
||||
|
@ -1215,23 +1249,28 @@ void Tracking::PreintegrateIMU()
|
|||
(mvImuFromLastFrame[i+1].w-mvImuFromLastFrame[i].w)*(tend/tab))*0.5f;
|
||||
tstep = mCurrentFrame.mTimeStamp-mvImuFromLastFrame[i].t;
|
||||
}
|
||||
//只有两帧的情况
|
||||
else if((i==0) && (i==(n-1)))
|
||||
{
|
||||
// ? 就两个数据时使用第一个时刻的,之前size减一了,最后一帧imu好像没遍历,这时候应该还有一帧在后面,但这里直接没有算中值积分?
|
||||
acc = mvImuFromLastFrame[i].a;
|
||||
angVel = mvImuFromLastFrame[i].w;
|
||||
tstep = mCurrentFrame.mTimeStamp-mCurrentFrame.mpPrevFrame->mTimeStamp;
|
||||
}
|
||||
|
||||
// Step 3.依次进行预积分计算
|
||||
// 应该是必存在的吧,一个是相对上一关键帧,一个是相对上一帧
|
||||
if (!mpImuPreintegratedFromLastKF)
|
||||
cout << "mpImuPreintegratedFromLastKF does not exist" << endl;
|
||||
mpImuPreintegratedFromLastKF->IntegrateNewMeasurement(acc,angVel,tstep);
|
||||
pImuPreintegratedFromLastFrame->IntegrateNewMeasurement(acc,angVel,tstep);
|
||||
}
|
||||
|
||||
// 记录当前预积分的图像帧
|
||||
mCurrentFrame.mpImuPreintegratedFrame = pImuPreintegratedFromLastFrame;
|
||||
mCurrentFrame.mpImuPreintegrated = mpImuPreintegratedFromLastKF;
|
||||
mCurrentFrame.mpLastKeyFrame = mpLastKeyFrame;
|
||||
|
||||
// ? 设置为已预积分状态
|
||||
mCurrentFrame.setIntegrated();
|
||||
|
||||
Verbose::PrintMess("Preintegration is finished!! ", Verbose::VERBOSITY_DEBUG);
|
||||
|
@ -1399,7 +1438,11 @@ void Tracking::ResetFrameIMU()
|
|||
|
||||
/**
|
||||
* @brief 跟踪过程,包括恒速模型跟踪、参考关键帧跟踪、局部地图跟踪
|
||||
* track包含两部分:估计运动、跟踪局部地图
|
||||
*
|
||||
* Step 1:初始化
|
||||
* Step 2:跟踪
|
||||
* Step 3:记录位姿信息,用于轨迹复现
|
||||
*/
|
||||
void Tracking::Track()
|
||||
{
|
||||
|
@ -1409,7 +1452,7 @@ void Tracking::Track()
|
|||
mTime_LocalMapTrack = 0;
|
||||
mTime_NewKF_Dec = 0;
|
||||
#endif
|
||||
|
||||
// ? 还不清楚这个标识符,跟绘图相关?
|
||||
if (bStepByStep)
|
||||
{
|
||||
while(!mbStep)
|
||||
|
@ -1445,12 +1488,14 @@ void Tracking::Track()
|
|||
{
|
||||
// 如果当前图像时间戳和前一帧图像时间戳大于1s,说明时间戳明显跳变了,重置地图后直接返回
|
||||
cout << "id last: " << mLastFrame.mnId << " id curr: " << mCurrentFrame.mnId << endl;
|
||||
//根据是否是imu模式,进行imu的补偿
|
||||
if(mpAtlas->isInertial())
|
||||
{
|
||||
// 如果当前地图imu成功初始化
|
||||
if(mpAtlas->isImuInitialized())
|
||||
{
|
||||
cout << "Timestamp jump detected. State set to LOST. Reseting IMU integration..." << endl;
|
||||
// ? BA2标志代表什么?,BA优化成功?
|
||||
if(!pCurrentMap->GetIniertialBA2())
|
||||
{
|
||||
// 如果当前子图中imu没有经过BA2,重置active地图
|
||||
|
@ -1474,8 +1519,9 @@ void Tracking::Track()
|
|||
}
|
||||
}
|
||||
|
||||
// Step 3 IMU模式下设置IMU的Bias参数
|
||||
// Step 3 IMU模式下设置IMU的Bias参数,还要保证上一帧存在非空
|
||||
if ((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO) && mpLastKeyFrame)
|
||||
//认为bias在两帧间不变
|
||||
mCurrentFrame.SetNewBias(mpLastKeyFrame->GetImuBias());
|
||||
|
||||
if(mState==NO_IMAGES_YET)
|
||||
|
@ -1484,7 +1530,7 @@ void Tracking::Track()
|
|||
}
|
||||
|
||||
mLastProcessedState=mState;
|
||||
// Step 4 IMU模式下对IMU数据进行预积分
|
||||
// Step 4 IMU模式下对IMU数据进行预积分 -> // ? 没有创建地图的情况下
|
||||
if ((mSensor == System::IMU_MONOCULAR || mSensor == System::IMU_STEREO) && !mbCreatedMap)
|
||||
{
|
||||
#ifdef SAVE_TIMES
|
||||
|
|
Loading…
Reference in New Issue