Merge branch 'master' of https://github.com/electech6/ORB_SLAM3_detailed_comments
commit
43c195710b
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Win32",
|
||||
"name": "Linux",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/**"
|
||||
],
|
||||
|
@ -11,7 +11,7 @@
|
|||
"_UNICODE"
|
||||
],
|
||||
"windowsSdkVersion": "10.0.18362.0",
|
||||
"compilerPath": "d:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.24.28314/bin/Hostx64/x64/cl.exe",
|
||||
"compilerPath": "/usr/bin/g++",
|
||||
"cStandard": "c11",
|
||||
"cppStandard": "c++17",
|
||||
"intelliSenseMode": "msvc-x64"
|
||||
|
|
|
@ -51,40 +51,68 @@
|
|||
|
||||
|
||||
namespace ORB_SLAM3 {
|
||||
/**
|
||||
* @brief MLPnP 构造函数
|
||||
*
|
||||
* @param[in] F 输入帧的数据
|
||||
* @param[in] vpMapPointMatches 待匹配的特征点
|
||||
* @param[in] mnInliersi 内点的个数
|
||||
* @param[in] mnIterations Ransac迭代次数
|
||||
* @param[in] mnBestInliers 最佳内点数
|
||||
* @param[in] N 所有2D点的个数
|
||||
* @param[in] mpCamera 相机模型,利用该变量对3D点进行投影
|
||||
*/
|
||||
MLPnPsolver::MLPnPsolver(const Frame &F, const vector<MapPoint *> &vpMapPointMatches):
|
||||
mnInliersi(0), mnIterations(0), mnBestInliers(0), N(0), mpCamera(F.mpCamera){
|
||||
mvpMapPointMatches = vpMapPointMatches;
|
||||
mvBearingVecs.reserve(F.mvpMapPoints.size());
|
||||
mvP2D.reserve(F.mvpMapPoints.size());
|
||||
mvSigma2.reserve(F.mvpMapPoints.size());
|
||||
mvP3Dw.reserve(F.mvpMapPoints.size());
|
||||
mvKeyPointIndices.reserve(F.mvpMapPoints.size());
|
||||
mvAllIndices.reserve(F.mvpMapPoints.size());
|
||||
mnInliersi(0), // 内点的个数
|
||||
mnIterations(0), // Ransac迭代次数
|
||||
mnBestInliers(0), // 最佳内点数
|
||||
N(0), // 所有2D点的个数
|
||||
mpCamera(F.mpCamera) // 相机模型,利用该变量对3D点进行投影
|
||||
{
|
||||
mvpMapPointMatches = vpMapPointMatches; // 待匹配的特征点,是当前帧和候选关键帧用BoW进行快速匹配的结果
|
||||
mvBearingVecs.reserve(F.mvpMapPoints.size()); // ? 初始化3D点的单位向量
|
||||
mvP2D.reserve(F.mvpMapPoints.size()); // 初始化3D点的投影点
|
||||
mvSigma2.reserve(F.mvpMapPoints.size()); // 初始化卡方检验中的sigma值
|
||||
mvP3Dw.reserve(F.mvpMapPoints.size()); // 初始化3D点坐标
|
||||
mvKeyPointIndices.reserve(F.mvpMapPoints.size()); // 初始化3D点的索引值
|
||||
mvAllIndices.reserve(F.mvpMapPoints.size()); // 初始化所有索引值
|
||||
|
||||
// 一些必要的初始化操作
|
||||
int idx = 0;
|
||||
for(size_t i = 0, iend = mvpMapPointMatches.size(); i < iend; i++){
|
||||
MapPoint* pMP = vpMapPointMatches[i];
|
||||
|
||||
// 如果pMP存在,则接下来初始化一些参数,否则什么都不做
|
||||
if(pMP){
|
||||
// 判断是否是坏点
|
||||
if(!pMP -> isBad()){
|
||||
// 如果记录的点个数超过总数,则不做任何事情,否则继续记录
|
||||
if(i >= F.mvKeysUn.size()) continue;
|
||||
const cv::KeyPoint &kp = F.mvKeysUn[i];
|
||||
|
||||
// 保存3D点的投影点
|
||||
mvP2D.push_back(kp.pt);
|
||||
|
||||
// 保存卡方检验中的sigma值
|
||||
mvSigma2.push_back(F.mvLevelSigma2[kp.octave]);
|
||||
|
||||
//Bearing vector should be normalized
|
||||
// 特征点投影,并计算单位向量
|
||||
cv::Point3f cv_br = mpCamera->unproject(kp.pt);
|
||||
cv_br /= cv_br.z;
|
||||
bearingVector_t br(cv_br.x,cv_br.y,cv_br.z);
|
||||
mvBearingVecs.push_back(br);
|
||||
|
||||
//3D coordinates
|
||||
// 获取当前特征点的3D坐标
|
||||
cv::Mat cv_pos = pMP -> GetWorldPos();
|
||||
point_t pos(cv_pos.at<float>(0),cv_pos.at<float>(1),cv_pos.at<float>(2));
|
||||
mvP3Dw.push_back(pos);
|
||||
|
||||
// 记录当前特征点的索引值,挑选后的
|
||||
mvKeyPointIndices.push_back(i);
|
||||
|
||||
// 记录所有特征点的索引值
|
||||
mvAllIndices.push_back(idx);
|
||||
|
||||
idx++;
|
||||
|
@ -96,57 +124,89 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
|
||||
//RANSAC methods
|
||||
/**
|
||||
* @brief MLPnP迭代计算相机位姿
|
||||
*
|
||||
* @param[in] nIterations 迭代次数
|
||||
* @param[in] bNoMore 达到最大迭代次数的标志
|
||||
* @param[in] vbInliers 内点的标记
|
||||
* @param[in] nInliers 总共内点数
|
||||
* @return cv::Mat 计算出来的位姿
|
||||
*/
|
||||
cv::Mat MLPnPsolver::iterate(int nIterations, bool &bNoMore, vector<bool> &vbInliers, int &nInliers){
|
||||
bNoMore = false;
|
||||
vbInliers.clear();
|
||||
nInliers=0;
|
||||
|
||||
bNoMore = false; // 已经达到最大迭代次数的标志
|
||||
vbInliers.clear(); // 清除保存判断是否是内点的容器
|
||||
nInliers=0; // 当前次迭代时的内点数
|
||||
// N为所有2D点的个数, mRansacMinInliers为正常退出RANSAC迭代过程中最少的inlier数
|
||||
// Step 1: 判断,如果2D点个数不足以启动RANSAC迭代过程的最小下限,则退出
|
||||
if(N<mRansacMinInliers)
|
||||
{
|
||||
bNoMore = true;
|
||||
return cv::Mat();
|
||||
}
|
||||
|
||||
// mvAllIndices为所有参与PnP的2D点的索引
|
||||
// vAvailableIndices为每次从mvAllIndices中随机挑选mRansacMinSet组3D-2D对应点进行一次RANSAC
|
||||
vector<size_t> vAvailableIndices;
|
||||
|
||||
// 当前的迭代次数id
|
||||
int nCurrentIterations = 0;
|
||||
|
||||
// Step 2: 正常迭代计算进行相机位姿估计,如果满足效果上限,直接返回最佳估计结果,否则就继续利用最小集(6个点)估计位姿
|
||||
// 进行迭代的条件:
|
||||
// 条件1: 历史进行的迭代次数少于最大迭代值
|
||||
// 条件2: 当前进行的迭代次数少于当前函数给定的最大迭代值
|
||||
while(mnIterations<mRansacMaxIts || nCurrentIterations<nIterations)
|
||||
{
|
||||
// 迭代次数更新加1,直到达到最大迭代次数
|
||||
nCurrentIterations++;
|
||||
mnIterations++;
|
||||
|
||||
// 清空已有的匹配点的计数,为新的一次迭代作准备
|
||||
vAvailableIndices = mvAllIndices;
|
||||
|
||||
//Bearing vectors and 3D points used for this ransac iteration
|
||||
// 初始化单位向量和3D点,给当前ransac迭代使用
|
||||
bearingVectors_t bearingVecs(mRansacMinSet);
|
||||
points_t p3DS(mRansacMinSet);
|
||||
vector<int> indexes(mRansacMinSet);
|
||||
|
||||
// Get min set of points
|
||||
// 选取最小集,从vAvailableIndices中选取mRansacMinSet个点进行操作,这里应该是6
|
||||
for(short i = 0; i < mRansacMinSet; ++i)
|
||||
{
|
||||
// 在所有备选点中随机抽取一个,通过随机抽取索引数组vAvailableIndices的索引[randi]来实现
|
||||
int randi = DUtils::Random::RandomInt(0, vAvailableIndices.size()-1);
|
||||
|
||||
// vAvailableIndices[randi]才是备选点真正的索引值,randi是索引数组的索引值,不要搞混了
|
||||
int idx = vAvailableIndices[randi];
|
||||
|
||||
bearingVecs[i] = mvBearingVecs[idx];
|
||||
p3DS[i] = mvP3Dw[idx];
|
||||
indexes[i] = i;
|
||||
|
||||
// 把抽取出来的点从所有备选点数组里删除掉,概率论中不放回的操作
|
||||
vAvailableIndices[randi] = vAvailableIndices.back();
|
||||
vAvailableIndices.pop_back();
|
||||
}
|
||||
} // 选取最小集
|
||||
|
||||
//By the moment, we are using MLPnP without covariance info
|
||||
// 目前为止,还没有使用协方差的信息,所以这里生成一个size=1的值为0的协方差矩阵
|
||||
// |0 0 0|
|
||||
// covs[0] = |0 0 0|
|
||||
// |0 0 0|
|
||||
// ? 为什么不用协方差的SVD分解,计算耗时还是效果不明显?
|
||||
cov3_mats_t covs(1);
|
||||
|
||||
//Result
|
||||
transformation_t result;
|
||||
|
||||
// Compute camera pose
|
||||
// 相机位姿估计,MLPnP最主要的操作在这里
|
||||
computePose(bearingVecs,p3DS,covs,indexes,result);
|
||||
|
||||
//Save result
|
||||
// 论文中12个待求值赋值保存在mRi中,每个求解器都有保存各自的计算结果
|
||||
mRi[0][0] = result(0,0);
|
||||
mRi[0][1] = result(0,1);
|
||||
mRi[0][2] = result(0,2);
|
||||
|
@ -162,15 +222,17 @@ namespace ORB_SLAM3 {
|
|||
mti[0] = result(0,3);mti[1] = result(1,3);mti[2] = result(2,3);
|
||||
|
||||
// Check inliers
|
||||
// 卡方检验内点,和EPnP基本类似
|
||||
CheckInliers();
|
||||
|
||||
if(mnInliersi>=mRansacMinInliers)
|
||||
{
|
||||
// If it is the best solution so far, save it
|
||||
// 如果该结果是目前内点数最多的,说明该结果是目前最好的,保存起来
|
||||
if(mnInliersi>mnBestInliers)
|
||||
{
|
||||
mvbBestInliers = mvbInliersi;
|
||||
mnBestInliers = mnInliersi;
|
||||
mvbBestInliers = mvbInliersi; // 每个点是否是内点的标记
|
||||
mnBestInliers = mnInliersi; // 内点个数
|
||||
|
||||
cv::Mat Rcw(3,3,CV_64F,mRi);
|
||||
cv::Mat tcw(3,1,CV_64F,mti);
|
||||
|
@ -181,6 +243,7 @@ namespace ORB_SLAM3 {
|
|||
tcw.copyTo(mBestTcw.rowRange(0,3).col(3));
|
||||
}
|
||||
|
||||
// 用新的内点对相机位姿精求解,提高位姿估计精度,这里如果有足够内点的话,函数直接返回该值,不再继续计算
|
||||
if(Refine())
|
||||
{
|
||||
nInliers = mnRefinedInliers;
|
||||
|
@ -194,8 +257,11 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
|
||||
}
|
||||
}
|
||||
} // 迭代
|
||||
|
||||
// Step 3: 选择最小集中效果最好的相机位姿估计结果,如果没有,只能用6个点去计算这个值了
|
||||
// 程序运行到这里,说明Refine失败了,说明精求解过程中,内点的个数不满足最小阈值,那就只能在当前结果中选择内点数最多的那个最小集
|
||||
// 但是也意味着这样子的结果最终是用6个点来求出来的,近似效果一般
|
||||
if(mnIterations>=mRansacMaxIts)
|
||||
{
|
||||
bNoMore=true;
|
||||
|
@ -215,18 +281,30 @@ namespace ORB_SLAM3 {
|
|||
return cv::Mat();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 设置RANSAC迭代的参数
|
||||
*
|
||||
* @param[in] probability 模型最大概率值,默认0.9
|
||||
* @param[in] minInliers 内点的最小阈值,默认8
|
||||
* @param[in] maxIterations 最大迭代次数,默认300
|
||||
* @param[in] minSet 最小集,每次采样六个点,即最小集应该设置为6,论文里面写着I > 5
|
||||
* @param[in] epsilon 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4
|
||||
* @param[in] th2 卡方检验阈值
|
||||
*
|
||||
*/
|
||||
void MLPnPsolver::SetRansacParameters(double probability, int minInliers, int maxIterations, int minSet, float epsilon, float th2){
|
||||
mRansacProb = probability;
|
||||
mRansacMinInliers = minInliers;
|
||||
mRansacMaxIts = maxIterations;
|
||||
mRansacEpsilon = epsilon;
|
||||
mRansacMinSet = minSet;
|
||||
mRansacProb = probability; // 模型最大概率值,默认0.9
|
||||
mRansacMinInliers = minInliers; // 内点的最小阈值,默认8
|
||||
mRansacMaxIts = maxIterations; // 最大迭代次数,默认300
|
||||
mRansacEpsilon = epsilon; // 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4
|
||||
mRansacMinSet = minSet; // 每次采样六个点,即最小集应该设置为6,论文里面写着I > 5
|
||||
|
||||
N = mvP2D.size(); // number of correspondences
|
||||
|
||||
mvbInliersi.resize(N);
|
||||
mvbInliersi.resize(N); // 是否是内点的标记位
|
||||
|
||||
// Adjust Parameters according to number of correspondences
|
||||
// 计算最少个数点,选择(给定内点数, 最小集, 理论内点数)的最小值
|
||||
int nMinInliers = N*mRansacEpsilon;
|
||||
if(nMinInliers<mRansacMinInliers)
|
||||
nMinInliers=mRansacMinInliers;
|
||||
|
@ -234,10 +312,12 @@ namespace ORB_SLAM3 {
|
|||
nMinInliers=minSet;
|
||||
mRansacMinInliers = nMinInliers;
|
||||
|
||||
// 根据最终得到的"最小内点数"来调整 内点数/总体数 比例epsilon
|
||||
if(mRansacEpsilon<(float)mRansacMinInliers/N)
|
||||
mRansacEpsilon=(float)mRansacMinInliers/N;
|
||||
|
||||
// Set RANSAC iterations according to probability, epsilon, and max iterations
|
||||
// 根据给出的各种参数计算RANSAC的理论迭代次数,并且敲定最终在迭代过程中使用的RANSAC最大迭代次数
|
||||
int nIterations;
|
||||
|
||||
if(mRansacMinInliers==N)
|
||||
|
@ -247,6 +327,7 @@ namespace ORB_SLAM3 {
|
|||
|
||||
mRansacMaxIts = max(1,min(nIterations,mRansacMaxIts));
|
||||
|
||||
// 计算不同图层上的特征点在进行内点检验的时候,所使用的不同判断误差阈值
|
||||
mvMaxError.resize(mvSigma2.size());
|
||||
for(size_t i=0; i<mvSigma2.size(); i++)
|
||||
mvMaxError[i] = mvSigma2[i]*th2;
|
||||
|
@ -342,55 +423,124 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
|
||||
//MLPnP methods
|
||||
/**
|
||||
* @brief MLPnP相机位姿估计
|
||||
*
|
||||
* @param[in] f 单位向量
|
||||
* @param[in] p 点的3D坐标
|
||||
* @param[in] covMats 协方差矩阵
|
||||
* @param[in] indices 对应点的索引值
|
||||
* @param[in] result 相机位姿估计结果
|
||||
*
|
||||
*/
|
||||
void MLPnPsolver::computePose(const bearingVectors_t &f, const points_t &p, const cov3_mats_t &covMats,
|
||||
const std::vector<int> &indices, transformation_t &result) {
|
||||
// Step 1: 判断点的数量是否满足计算条件,否则直接报错
|
||||
// 因为每个观测值会产生2个残差,所以至少需要6个点来计算公式12,所以要检验当前的点个数是否满足大于5的条件
|
||||
size_t numberCorrespondences = indices.size();
|
||||
// 当numberCorrespondences不满足>5的条件时会发生错误(如果小于6根本进不来)
|
||||
assert(numberCorrespondences > 5);
|
||||
|
||||
// ? 用来标记是否满足平面条件,(平面情况下矩阵有相关性,秩为2,矩阵形式可以简化,但需要跟多的约束求解)
|
||||
bool planar = false;
|
||||
// compute the nullspace of all vectors
|
||||
|
||||
// compute the nullspace of all vectors
|
||||
// step 2: 计算点的单位(方向向量)向量的零空间
|
||||
// 利用公式7 Jvr(v) = null(v^T) = [r s]
|
||||
|
||||
// 给每个向量都开辟一个零空间,所以数量相等
|
||||
std::vector<Eigen::MatrixXd> nullspaces(numberCorrespondences);
|
||||
|
||||
// 存储世界坐标系下空间点的矩阵,3行N列,N是numberCorrespondences,即点的总个数
|
||||
// |x1, x2, xn|
|
||||
// points3 = |y1, y2, ..., yn|
|
||||
// |z1, z2, zn|
|
||||
Eigen::MatrixXd points3(3, numberCorrespondences);
|
||||
|
||||
// 空间点向量
|
||||
// |xi|
|
||||
// points3v = |yi|
|
||||
// |zi|
|
||||
points_t points3v(numberCorrespondences);
|
||||
|
||||
// 单个空间点的齐次坐标矩阵,TODO:没用到啊
|
||||
// |xi|
|
||||
// points4v = |yi|
|
||||
// |zi|
|
||||
// |1 |
|
||||
points4_t points4v(numberCorrespondences);
|
||||
|
||||
// numberCorrespondences不等于所有点,而是提取出来的内点的数量,其作为连续索引值对indices进行索引
|
||||
// 因为内点的索引并非连续,想要方便遍历,必须用连续的索引值,
|
||||
// 所以就用了indices[i]嵌套形式,i表示内点数量numberCorrespondences范围内的连续形式
|
||||
// indices里面保存的是不连续的内点的索引值
|
||||
for (size_t i = 0; i < numberCorrespondences; i++) {
|
||||
// 当前空间点的单位向量,indices[i]是当前点坐标和向量的索引值,
|
||||
bearingVector_t f_current = f[indices[i]];
|
||||
|
||||
// 取出当前点记录到 points3 空间点矩阵里
|
||||
points3.col(i) = p[indices[i]];
|
||||
|
||||
// nullspace of right vector
|
||||
// 求解方程 Jvr(v) = null(v^T) = [r s]
|
||||
// A = U * S * V^T
|
||||
// 这里只求解了V的完全解,没有求解U
|
||||
Eigen::JacobiSVD<Eigen::MatrixXd, Eigen::HouseholderQRPreconditioner>
|
||||
svd_f(f_current.transpose(), Eigen::ComputeFullV);
|
||||
|
||||
// 取特征值最小的那两个对应的2个特征向量
|
||||
// |r1 s1|
|
||||
// nullspaces = |r2 s2|
|
||||
// |r3 s3|
|
||||
nullspaces[i] = svd_f.matrixV().block(0, 1, 3, 2);
|
||||
// 取出当前点记录到 points3v 空间点向量
|
||||
points3v[i] = p[indices[i]];
|
||||
}
|
||||
|
||||
// Step 3: 通过计算S的秩来判断是在平面情况还是在正常情况
|
||||
// 令S = M * M^T,其中M = [p1,p2,...,pi],即 points3 空间点矩阵
|
||||
//////////////////////////////////////
|
||||
// 1. test if we have a planar scene
|
||||
// 在平面条件下,会产生4个解,因此需要另外判断和解决平面条件下的问题
|
||||
//////////////////////////////////////
|
||||
|
||||
// 令S = M * M^T,其中M = [p1,p2,...,pi],即 points3 空间点矩阵
|
||||
// 如果矩阵S的秩为3且最小特征值不接近于0,则不属于平面条件,否则需要解决一下
|
||||
Eigen::Matrix3d planarTest = points3 * points3.transpose();
|
||||
Eigen::FullPivHouseholderQR<Eigen::Matrix3d> rankTest(planarTest);
|
||||
//int r, c;
|
||||
//double minEigenVal = abs(eigen_solver.eigenvalues().real().minCoeff(&r, &c));
|
||||
// 特征旋转矩阵,用在平面条件下的计算
|
||||
Eigen::Matrix3d eigenRot;
|
||||
eigenRot.setIdentity();
|
||||
|
||||
// if yes -> transform points to new eigen frame
|
||||
//if (minEigenVal < 1e-3 || minEigenVal == 0.0)
|
||||
//rankTest.setThreshold(1e-10);
|
||||
// 当矩阵S的秩为2时,属于平面条件,
|
||||
if (rankTest.rank() == 2) {
|
||||
planar = true;
|
||||
// self adjoint is faster and more accurate than general eigen solvers
|
||||
// also has closed form solution for 3x3 self-adjoint matrices
|
||||
// in addition this solver sorts the eigenvalues in increasing order
|
||||
// 计算矩阵S的特征值和特征向量
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver(planarTest);
|
||||
|
||||
// 得到QR分解的结果
|
||||
eigenRot = eigen_solver.eigenvectors().real();
|
||||
|
||||
// 把eigenRot变成其转置矩阵,即论文公式20的系数 R_S^T
|
||||
eigenRot.transposeInPlace();
|
||||
|
||||
// 公式20: pi' = R_S^T * pi
|
||||
for (size_t i = 0; i < numberCorrespondences; i++)
|
||||
points3.col(i) = eigenRot * points3.col(i);
|
||||
}
|
||||
//////////////////////////////////////
|
||||
// 2. stochastic model
|
||||
//////////////////////////////////////
|
||||
// Step 4: 计算随机模型中的协方差矩阵
|
||||
// 但是作者并没有用到协方差信息
|
||||
Eigen::SparseMatrix<double> P(2 * numberCorrespondences,
|
||||
2 * numberCorrespondences);
|
||||
bool use_cov = false;
|
||||
|
@ -398,6 +548,8 @@ namespace ORB_SLAM3 {
|
|||
|
||||
// if we do have covariance information
|
||||
// -> fill covariance matrix
|
||||
// 如果协方差矩阵的个数等于空间点的个数,说明前面已经计算好了,表示有协方差信息
|
||||
// 目前版本是没有用到协方差信息的,所以调用本函数前就把协方差矩阵个数置为1了
|
||||
if (covMats.size() == numberCorrespondences) {
|
||||
use_cov = true;
|
||||
int l = 0;
|
||||
|
@ -413,12 +565,22 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
}
|
||||
|
||||
// Step 5: 构造矩阵A来完成线性方程组的构建
|
||||
//////////////////////////////////////
|
||||
// 3. fill the design matrix A
|
||||
//////////////////////////////////////
|
||||
// 公式12,设矩阵A,则有 Au = 0
|
||||
// u = [r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, t2, t3]^T
|
||||
// 对单位向量v的2个零空间向量做微分,所以有[dr, ds]^T,一个点有2行,N个点就有2*N行
|
||||
const int rowsA = 2 * numberCorrespondences;
|
||||
|
||||
// 对应上面u的列数,因为旋转矩阵有9个元素,加上平移矩阵3个元素,总共12个元素
|
||||
int colsA = 12;
|
||||
Eigen::MatrixXd A;
|
||||
|
||||
// 如果世界点位于分别跨2个坐标轴的平面上,即所有世界点的一个元素是常数的时候,可简单地忽略矩阵A中对应的列
|
||||
// 而且这不影响问题的结构本身,所以在计算公式20: pi' = R_S^T * pi的时候,忽略了r11,r21,r31,即第一列
|
||||
// 对应的u只有9个元素 u = [r12, r13, r22, r23, r32, r33, t1, t2, t3]^T 所以A的列个数是9个
|
||||
if (planar) {
|
||||
colsA = 9;
|
||||
A = Eigen::MatrixXd(rowsA, 9);
|
||||
|
@ -427,35 +589,37 @@ namespace ORB_SLAM3 {
|
|||
A.setZero();
|
||||
|
||||
// fill design matrix
|
||||
// 构造矩阵A,分平面和非平面2种情况
|
||||
if (planar) {
|
||||
for (size_t i = 0; i < numberCorrespondences; ++i) {
|
||||
// 列表示当前点的坐标
|
||||
point_t pt3_current = points3.col(i);
|
||||
|
||||
// r12
|
||||
// r12 r12 的系数 r1*py 和 s1*py
|
||||
A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[1];
|
||||
A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[1];
|
||||
// r13
|
||||
// r13 r13 的系数 r1*pz 和 s1*pz
|
||||
A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[2];
|
||||
A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[2];
|
||||
// r22
|
||||
// r22 r22 的系数 r2*py 和 s2*py
|
||||
A(2 * i, 2) = nullspaces[i](1, 0) * pt3_current[1];
|
||||
A(2 * i + 1, 2) = nullspaces[i](1, 1) * pt3_current[1];
|
||||
// r23
|
||||
// r23 r23 的系数 r2*pz 和 s2*pz
|
||||
A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[2];
|
||||
A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[2];
|
||||
// r32
|
||||
// r32 r32 的系数 r3*py 和 s3*py
|
||||
A(2 * i, 4) = nullspaces[i](2, 0) * pt3_current[1];
|
||||
A(2 * i + 1, 4) = nullspaces[i](2, 1) * pt3_current[1];
|
||||
// r33
|
||||
// r33 r33 的系数 r3*pz 和 s3*pz
|
||||
A(2 * i, 5) = nullspaces[i](2, 0) * pt3_current[2];
|
||||
A(2 * i + 1, 5) = nullspaces[i](2, 1) * pt3_current[2];
|
||||
// t1
|
||||
// t1 t1 的系数 r1 和 s1
|
||||
A(2 * i, 6) = nullspaces[i](0, 0);
|
||||
A(2 * i + 1, 6) = nullspaces[i](0, 1);
|
||||
// t2
|
||||
// t2 t2 的系数 r2 和 s2
|
||||
A(2 * i, 7) = nullspaces[i](1, 0);
|
||||
A(2 * i + 1, 7) = nullspaces[i](1, 1);
|
||||
// t3
|
||||
// t3 t3 的系数 r3 和 s3
|
||||
A(2 * i, 8) = nullspaces[i](2, 0);
|
||||
A(2 * i + 1, 8) = nullspaces[i](2, 1);
|
||||
}
|
||||
|
@ -463,6 +627,7 @@ namespace ORB_SLAM3 {
|
|||
for (size_t i = 0; i < numberCorrespondences; ++i) {
|
||||
point_t pt3_current = points3.col(i);
|
||||
|
||||
// 不是平面的情况下,三个列向量都保留求解
|
||||
// r11
|
||||
A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[0];
|
||||
A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[0];
|
||||
|
@ -502,18 +667,26 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
}
|
||||
|
||||
// Step 6: 计算线性方程组的最小二乘解
|
||||
//////////////////////////////////////
|
||||
// 4. solve least squares
|
||||
//////////////////////////////////////
|
||||
// 求解方程的最小二乘解
|
||||
Eigen::MatrixXd AtPA;
|
||||
if (use_cov)
|
||||
// 有协方差信息的情况下,一般方程是 A^T*P*A*u = N*u = 0
|
||||
AtPA = A.transpose() * P * A; // setting up the full normal equations seems to be unstable
|
||||
else
|
||||
// 无协方差信息的情况下,一般方程是 A^T*A*u = N*u = 0
|
||||
AtPA = A.transpose() * A;
|
||||
|
||||
// SVD分解,满秩求解V
|
||||
Eigen::JacobiSVD<Eigen::MatrixXd> svd_A(AtPA, Eigen::ComputeFullV);
|
||||
|
||||
// 解就是对应奇异值最小的列向量,即最后一列
|
||||
Eigen::MatrixXd result1 = svd_A.matrixV().col(colsA - 1);
|
||||
|
||||
// Step 7: 根据平面和非平面情况下选择最终位姿解
|
||||
////////////////////////////////
|
||||
// now we treat the results differently,
|
||||
// depending on the scene (planar or not)
|
||||
|
@ -526,30 +699,67 @@ namespace ORB_SLAM3 {
|
|||
rotation_t tmp;
|
||||
// until now, we only estimated
|
||||
// row one and two of the transposed rotation matrix
|
||||
// 暂时只估计了旋转矩阵的第1行和第2行,先记录到tmp中
|
||||
tmp << 0.0, result1(0, 0), result1(1, 0),
|
||||
0.0, result1(2, 0), result1(3, 0),
|
||||
0.0, result1(4, 0), result1(5, 0);
|
||||
//double scale = 1 / sqrt(tmp.col(1).norm() * tmp.col(2).norm());
|
||||
// row 3
|
||||
// 第3行等于第1行和第2行的叉积(这里应该是列,后面转置后成了行)
|
||||
tmp.col(0) = tmp.col(1).cross(tmp.col(2));
|
||||
|
||||
// 原来是:
|
||||
// |r11 r12 r13|
|
||||
// tmp = |r21 r22 r23|
|
||||
// |r31 r32 r33|
|
||||
// 转置变成:
|
||||
// |r11 r21 r31|
|
||||
// tmp = |r12 r22 r32|
|
||||
// |r13 r23 r33|
|
||||
tmp.transposeInPlace();
|
||||
|
||||
|
||||
double scale = 1.0 / std::sqrt(std::abs(tmp.col(1).norm() * tmp.col(2).norm()));
|
||||
// find best rotation matrix in frobenius sense
|
||||
// 利用Frobenious范数计算最佳的旋转矩阵,利用公式(19), R = U_R*V_R^T
|
||||
// 本质上,采用矩阵,将其元素平方,将它们加在一起并对结果平方根。计算得出的数字是矩阵的Frobenious范数
|
||||
// 由于列向量是单列矩阵,行向量是单行矩阵,所以这些矩阵的Frobenius范数等于向量的长度(L)
|
||||
Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
|
||||
|
||||
rotation_t Rout1 = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
|
||||
|
||||
// test if we found a good rotation matrix
|
||||
// 如果估计出来的旋转矩阵的行列式小于0,则乘以-1(EPnP也是同样的操作)
|
||||
if (Rout1.determinant() < 0)
|
||||
Rout1 *= -1.0;
|
||||
|
||||
// rotate this matrix back using the eigen frame
|
||||
// ? 因为是在平面情况下计算的,估计出来的旋转矩阵是要做一个转换的,根据公式(21),R = Rs*R
|
||||
// 其中,Rs表示特征向量的旋转矩阵
|
||||
// 注意eigenRot之前已经转置过了transposeInPlace(),所以这里Rout1在之前也转置了,即tmp.transposeInPlace()
|
||||
Rout1 = eigenRot.transpose() * Rout1;
|
||||
|
||||
// 估计最终的平移矩阵,带尺度信息的,根据公式(17),t = t^ / three-party(||r1||*||r2||*||r3||)
|
||||
// 这里是 t = t^ / sqrt(||r1||*||r2||)
|
||||
translation_t t = scale * translation_t(result1(6, 0), result1(7, 0), result1(8, 0));
|
||||
|
||||
// 把之前转置过来的矩阵再转回去,变成公式里面的形态:
|
||||
// |r11 r12 r13|
|
||||
// Rout1 = |r21 r22 r23|
|
||||
// |r31 r32 r33|
|
||||
Rout1.transposeInPlace();
|
||||
|
||||
// 这里乘以-1是为了计算4种结果
|
||||
Rout1 *= -1;
|
||||
if (Rout1.determinant() < 0.0)
|
||||
Rout1.col(2) *= -1;
|
||||
// now we have to find the best out of 4 combinations
|
||||
// |r11 r12 r13|
|
||||
// R1 = |r21 r22 r23|
|
||||
// |r31 r32 r33|
|
||||
// |-r11 -r12 -r13|
|
||||
// R2 = |-r21 -r22 -r23|
|
||||
// |-r31 -r32 -r33|
|
||||
rotation_t R1, R2;
|
||||
R1.col(0) = Rout1.col(0);
|
||||
R1.col(1) = Rout1.col(1);
|
||||
|
@ -558,6 +768,10 @@ namespace ORB_SLAM3 {
|
|||
R2.col(1) = -Rout1.col(1);
|
||||
R2.col(2) = Rout1.col(2);
|
||||
|
||||
// |R1 t|
|
||||
// Ts = |R1 -t|
|
||||
// |R2 t|
|
||||
// |R2 -t|
|
||||
vector<transformation_t, Eigen::aligned_allocator<transformation_t>> Ts(4);
|
||||
Ts[0].block<3, 3>(0, 0) = R1;
|
||||
Ts[0].block<3, 1>(0, 3) = t;
|
||||
|
@ -568,59 +782,124 @@ namespace ORB_SLAM3 {
|
|||
Ts[3].block<3, 3>(0, 0) = R2;
|
||||
Ts[3].block<3, 1>(0, 3) = -t;
|
||||
|
||||
// 遍历4种解
|
||||
vector<double> normVal(4);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
point_t reproPt;
|
||||
double norms = 0.0;
|
||||
// 计算世界点p到切线空间v的投影的残差,对应最小的就是最好的解
|
||||
// 用前6个点来验证4种解的残差
|
||||
for (int p = 0; p < 6; ++p) {
|
||||
// 重投影的向量
|
||||
reproPt = Ts[i].block<3, 3>(0, 0) * points3v[p] + Ts[i].block<3, 1>(0, 3);
|
||||
// 变成单位向量
|
||||
reproPt = reproPt / reproPt.norm();
|
||||
// f[indices[p]] 是当前空间点的单位向量
|
||||
// 利用欧氏距离来表示重投影向量(观测)和当前空间点向量(实际)的偏差
|
||||
// 即两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离
|
||||
norms += (1.0 - reproPt.transpose() * f[indices[p]]);
|
||||
}
|
||||
// 统计每种解的误差和,第i个解的误差和放入对应的变量normVal[i]
|
||||
normVal[i] = norms;
|
||||
}
|
||||
|
||||
// 搜索容器中的最小值,并返回该值对应的指针
|
||||
std::vector<double>::iterator
|
||||
findMinRepro = std::min_element(std::begin(normVal), std::end(normVal));
|
||||
|
||||
// 计算容器头指针到最小值指针的距离,即可作为该最小值的索引值
|
||||
int idx = std::distance(std::begin(normVal), findMinRepro);
|
||||
|
||||
// 得到最终相机位姿估计的结果
|
||||
Rout = Ts[idx].block<3, 3>(0, 0);
|
||||
tout = Ts[idx].block<3, 1>(0, 3);
|
||||
} else // non-planar
|
||||
{
|
||||
rotation_t tmp;
|
||||
// 从AtPA的SVD分解中得到旋转矩阵,先存下来
|
||||
// 注意这里的顺序是和公式16不同的
|
||||
// |r11 r21 r31|
|
||||
// tmp = |r12 r22 r32|
|
||||
// |r13 r23 r33|
|
||||
tmp << result1(0, 0), result1(3, 0), result1(6, 0),
|
||||
result1(1, 0), result1(4, 0), result1(7, 0),
|
||||
result1(2, 0), result1(5, 0), result1(8, 0);
|
||||
// get the scale
|
||||
// 计算尺度,根据公式(17),t = t^ / three-party(||r1||*||r2||*||r3||)
|
||||
double scale = 1.0 /
|
||||
std::pow(std::abs(tmp.col(0).norm() * tmp.col(1).norm() * tmp.col(2).norm()), 1.0 / 3.0);
|
||||
|
||||
//double scale = 1.0 / std::sqrt(std::abs(tmp.col(0).norm() * tmp.col(1).norm()));
|
||||
// find best rotation matrix in frobenius sense
|
||||
// 利用Frobenious范数计算最佳的旋转矩阵,利用公式(19), R = U_R*V_R^T
|
||||
Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
|
||||
Rout = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
|
||||
|
||||
// test if we found a good rotation matrix
|
||||
// 如果估计出来的旋转矩阵的行列式小于0,则乘以-1
|
||||
if (Rout.determinant() < 0)
|
||||
Rout *= -1.0;
|
||||
|
||||
// scale translation
|
||||
// 从相机坐标系到世界坐标系的转换关系是 lambda*v = R*pi+t
|
||||
// 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt
|
||||
// 旋转矩阵的性质 R^-1 = R^T
|
||||
// 所以,在下面的计算中,需要计算从世界坐标系到相机坐标系的转换,这里tout = -R^T*t,下面再计算前半部分R^T*v
|
||||
// 先恢复平移部分的尺度再计算
|
||||
tout = Rout * (scale * translation_t(result1(9, 0), result1(10, 0), result1(11, 0)));
|
||||
|
||||
// find correct direction in terms of reprojection error, just take the first 6 correspondences
|
||||
// 非平面情况下,一共有2种解,R,t和R,-t
|
||||
// 利用前6个点计算重投影误差,选择残差最小的一个解
|
||||
vector<double> error(2);
|
||||
vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d>> Ts(2);
|
||||
for (int s = 0; s < 2; ++s) {
|
||||
// 初始化error的值为0
|
||||
error[s] = 0.0;
|
||||
|
||||
// |1 0 0 0|
|
||||
// Ts[s] = |0 1 0 0|
|
||||
// |0 0 1 0|
|
||||
// |0 0 0 1|
|
||||
Ts[s] = Eigen::Matrix4d::Identity();
|
||||
|
||||
// |. . . 0|
|
||||
// Ts[s] = |. Rout . 0|
|
||||
// |. . . 0|
|
||||
// |0 0 0 1|
|
||||
Ts[s].block<3, 3>(0, 0) = Rout;
|
||||
if (s == 0)
|
||||
// |. . . . |
|
||||
// Ts[s] = |. Rout . tout|
|
||||
// |. . . . |
|
||||
// |0 0 0 1 |
|
||||
Ts[s].block<3, 1>(0, 3) = tout;
|
||||
else
|
||||
// |. . . . |
|
||||
// Ts[s] = |. Rout . -tout|
|
||||
// |. . . . |
|
||||
// |0 0 0 1 |
|
||||
Ts[s].block<3, 1>(0, 3) = -tout;
|
||||
|
||||
// 为了避免Eigen中aliasing的问题,后面在计算矩阵的逆的时候,需要添加eval()条件
|
||||
// a = a.transpose(); //error: aliasing
|
||||
// a = a.transpose().eval(); //ok
|
||||
// a.transposeInPlace(); //ok
|
||||
// Eigen中aliasing指的是在赋值表达式的左右两边存在矩阵的重叠区域,这种情况下,有可能得到非预期的结果。
|
||||
// 如mat = 2*mat或者mat = mat.transpose(),第一个例子中的alias是没有问题的,而第二的例子则会导致非预期的计算结果。
|
||||
Ts[s] = Ts[s].inverse().eval();
|
||||
for (int p = 0; p < 6; ++p) {
|
||||
// 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt
|
||||
// Ts[s].block<3, 3>(0, 0) * points3v[p] = Rout = R^T*v
|
||||
// Ts[s].block<3, 1>(0, 3) = tout = -R^Tt
|
||||
bearingVector_t v = Ts[s].block<3, 3>(0, 0) * points3v[p] + Ts[s].block<3, 1>(0, 3);
|
||||
// 变成单位向量
|
||||
v = v / v.norm();
|
||||
// 计算重投影向量(观测)和当前空间点向量(实际)的偏差
|
||||
error[s] += (1.0 - v.transpose() * f[indices[p]]);
|
||||
}
|
||||
}
|
||||
// 选择残差最小的解作为最终解
|
||||
if (error[0] < error[1])
|
||||
tout = Ts[0].block<3, 1>(0, 3);
|
||||
else
|
||||
|
@ -629,10 +908,18 @@ namespace ORB_SLAM3 {
|
|||
|
||||
}
|
||||
|
||||
// Step 8: 利用高斯牛顿法对位姿进行精确求解,提高位姿解的精度
|
||||
//////////////////////////////////////
|
||||
// 5. gauss newton
|
||||
//////////////////////////////////////
|
||||
// 求解非线性方程之前,需要得到罗德里格斯参数,来表达李群(SO3) -> 李代数(so3)的对数映射
|
||||
rodrigues_t omega = rot2rodrigues(Rout);
|
||||
// |r1|
|
||||
// |r2|
|
||||
// minx = |r3|
|
||||
// |t1|
|
||||
// |t2|
|
||||
// |t3|
|
||||
Eigen::VectorXd minx(6);
|
||||
minx[0] = omega[0];
|
||||
minx[1] = omega[1];
|
||||
|
@ -641,11 +928,15 @@ namespace ORB_SLAM3 {
|
|||
minx[4] = tout[1];
|
||||
minx[5] = tout[2];
|
||||
|
||||
// 利用高斯牛顿迭代法来提炼相机位姿 pose
|
||||
mlpnp_gn(minx, points3v, nullspaces, P, use_cov);
|
||||
|
||||
// 最终输出的结果
|
||||
Rout = rodrigues2rot(rodrigues_t(minx[0], minx[1], minx[2]));
|
||||
tout = translation_t(minx[3], minx[4], minx[5]);
|
||||
|
||||
// result inverse as opengv uses this convention
|
||||
// 这里是用来计算世界坐标系到相机坐标系的转换,所以是Pc=R^T*Pw-R^T*t,反变换
|
||||
result.block<3, 3>(0, 0) = Rout;//Rout.transpose();
|
||||
result.block<3, 1>(0, 3) = tout;//-result.block<3, 3>(0, 0) * tout;
|
||||
}
|
||||
|
@ -684,11 +975,25 @@ namespace ORB_SLAM3 {
|
|||
return omega;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief MLPnP的高斯牛顿解法
|
||||
* @param[in] x 未知量矩阵
|
||||
* @param[in] pts 3D点矩阵
|
||||
* @param[in] nullspaces 零空间向量
|
||||
* @param[in] Kll 协方差矩阵
|
||||
* @param[in] use_cov 协方差方法使用标记位
|
||||
*/
|
||||
void MLPnPsolver::mlpnp_gn(Eigen::VectorXd &x, const points_t &pts, const std::vector<Eigen::MatrixXd> &nullspaces,
|
||||
const Eigen::SparseMatrix<double> Kll, bool use_cov) {
|
||||
// 计算观测值数量
|
||||
const int numObservations = pts.size();
|
||||
|
||||
// 未知量是旋转向量和平移向量,即R和t,总共6个未知参数
|
||||
const int numUnknowns = 6;
|
||||
|
||||
// check redundancy
|
||||
// 检查观测数量是否满足计算条件,因为每个观测值都提供了2个约束,即r和s,所以这里乘以2
|
||||
assert((2 * numObservations - numUnknowns) > 0);
|
||||
|
||||
// =============
|
||||
|
@ -751,6 +1056,15 @@ namespace ORB_SLAM3 {
|
|||
// result
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算Jacobian矩阵和残差
|
||||
* @param[in] x 未知量矩阵
|
||||
* @param[in] pts 3D点矩阵
|
||||
* @param[in] nullspaces 零空间向量
|
||||
* @param[in] r f(x)函数
|
||||
* @param[out] fjac f(x)函数的Jacobian矩阵
|
||||
* @param[in] getJacs 是否可以得到Jacobian矩阵标记位
|
||||
*/
|
||||
void MLPnPsolver::mlpnp_residuals_and_jacs(const Eigen::VectorXd &x, const points_t &pts,
|
||||
const std::vector<Eigen::MatrixXd> &nullspaces, Eigen::VectorXd &r,
|
||||
Eigen::MatrixXd &fjac, bool getJacs) {
|
||||
|
@ -800,6 +1114,15 @@ namespace ORB_SLAM3 {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算Jacobian矩阵
|
||||
* @param[in] pt 3D点矩阵
|
||||
* @param[in] nullspace_r 零空间向量r
|
||||
* @param[in] nullspace_r 零空间向量s
|
||||
* @param[in] w 旋转向量w
|
||||
* @param[in] t 平移向量t
|
||||
* @param[out] jacs Jacobian矩阵
|
||||
*/
|
||||
void MLPnPsolver::mlpnpJacs(const point_t& pt, const Eigen::Vector3d& nullspace_r,
|
||||
const Eigen::Vector3d& nullspace_s, const rodrigues_t& w,
|
||||
const translation_t& t, Eigen::MatrixXd& jacs){
|
||||
|
|
|
@ -3430,12 +3430,15 @@ bool Tracking::Relocalization()
|
|||
{
|
||||
Verbose::PrintMess("Starting relocalization", Verbose::VERBOSITY_NORMAL);
|
||||
// Compute Bag of Words Vector
|
||||
// Step 1: 计算当前帧特征点的Bow映射
|
||||
mCurrentFrame.ComputeBoW();
|
||||
|
||||
// Relocalization is performed when tracking is lost
|
||||
// Track Lost: Query KeyFrame Database for keyframe candidates for relocalisation
|
||||
// Step 2:找到与当前帧相似的候选关键帧组
|
||||
vector<KeyFrame*> vpCandidateKFs = mpKeyFrameDB->DetectRelocalizationCandidates(&mCurrentFrame, mpAtlas->GetCurrentMap());
|
||||
|
||||
// 如果没有候选关键帧,则退出
|
||||
if(vpCandidateKFs.empty()) {
|
||||
Verbose::PrintMess("There are not candidates", Verbose::VERBOSITY_NORMAL);
|
||||
return false;
|
||||
|
@ -3447,17 +3450,22 @@ bool Tracking::Relocalization()
|
|||
// If enough matches are found we setup a PnP solver
|
||||
ORBmatcher matcher(0.75,true);
|
||||
|
||||
// 每个关键帧的解算器
|
||||
vector<MLPnPsolver*> vpMLPnPsolvers;
|
||||
vpMLPnPsolvers.resize(nKFs);
|
||||
|
||||
// 每个关键帧和当前帧中特征点的匹配关系
|
||||
vector<vector<MapPoint*> > vvpMapPointMatches;
|
||||
vvpMapPointMatches.resize(nKFs);
|
||||
|
||||
// 放弃某个关键帧的标记
|
||||
vector<bool> vbDiscarded;
|
||||
vbDiscarded.resize(nKFs);
|
||||
|
||||
// 有效的候选关键帧数目
|
||||
int nCandidates=0;
|
||||
|
||||
// Step 3:遍历所有的候选关键帧,通过BoW进行快速匹配,用匹配结果初始化PnP Solver
|
||||
for(int i=0; i<nKFs; i++)
|
||||
{
|
||||
KeyFrame* pKF = vpCandidateKFs[i];
|
||||
|
@ -3465,6 +3473,7 @@ bool Tracking::Relocalization()
|
|||
vbDiscarded[i] = true;
|
||||
else
|
||||
{
|
||||
// 当前帧和候选关键帧用BoW进行快速匹配,匹配结果记录在vvpMapPointMatches,nmatches表示匹配的数目
|
||||
int nmatches = matcher.SearchByBoW(pKF,mCurrentFrame,vvpMapPointMatches[i]);
|
||||
if(nmatches<15)
|
||||
{
|
||||
|
@ -3473,8 +3482,18 @@ bool Tracking::Relocalization()
|
|||
}
|
||||
else
|
||||
{
|
||||
// 如果匹配数目够用,用匹配结果初始化MLPnPsolver
|
||||
// ? 为什么用MLPnP? 因为考虑了鱼眼相机模型,解耦某些关系?
|
||||
// 参考论文《MLPNP-A REAL-TIME MAXIMUM LIKELIHOOD SOLUTION TO THE PERSPECTIVE-N-POINT PROBLEM》
|
||||
MLPnPsolver* pSolver = new MLPnPsolver(mCurrentFrame,vvpMapPointMatches[i]);
|
||||
pSolver->SetRansacParameters(0.99,10,300,6,0.5,5.991); //This solver needs at least 6 points
|
||||
// 构造函数调用了一遍,这里重新设置参数
|
||||
pSolver->SetRansacParameters(
|
||||
0.99, // 模型最大概率值,默认0.9
|
||||
10, // 内点的最小阈值,默认8
|
||||
300, // 最大迭代次数,默认300
|
||||
6, // 最小集,每次采样六个点,即最小集应该设置为6,论文里面写着I > 5
|
||||
0.5, // 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4
|
||||
5.991); // 卡方检验阈值 //This solver needs at least 6 points
|
||||
vpMLPnPsolvers[i] = pSolver;
|
||||
}
|
||||
}
|
||||
|
@ -3482,9 +3501,13 @@ bool Tracking::Relocalization()
|
|||
|
||||
// Alternatively perform some iterations of P4P RANSAC
|
||||
// Until we found a camera pose supported by enough inliers
|
||||
// 足够的内点才能匹配使用PNP算法,MLPnP需要至少6个点
|
||||
// 是否已经找到相匹配的关键帧的标志
|
||||
bool bMatch = false;
|
||||
ORBmatcher matcher2(0.9,true);
|
||||
|
||||
// Step 4: 通过一系列操作,直到找到能够匹配上的关键帧
|
||||
// 为什么搞这么复杂?答:是担心误闭环
|
||||
while(nCandidates>0 && !bMatch)
|
||||
{
|
||||
for(int i=0; i<nKFs; i++)
|
||||
|
@ -3493,14 +3516,22 @@ bool Tracking::Relocalization()
|
|||
continue;
|
||||
|
||||
// Perform 5 Ransac Iterations
|
||||
// 内点标记
|
||||
vector<bool> vbInliers;
|
||||
|
||||
// 内点数
|
||||
int nInliers;
|
||||
|
||||
// 表示RANSAC已经没有更多的迭代次数可用 -- 也就是说数据不够好,RANSAC也已经尽力了。。。
|
||||
bool bNoMore;
|
||||
|
||||
// Step 4.1:通过MLPnP算法估计姿态,迭代5次
|
||||
MLPnPsolver* pSolver = vpMLPnPsolvers[i];
|
||||
// PnP算法的入口函数
|
||||
cv::Mat Tcw = pSolver->iterate(5,bNoMore,vbInliers,nInliers);
|
||||
|
||||
// If Ransac reachs max. iterations discard keyframe
|
||||
// bNoMore 为true 表示已经超过了RANSAC最大迭代次数,就放弃当前关键帧
|
||||
if(bNoMore)
|
||||
{
|
||||
vbDiscarded[i]=true;
|
||||
|
@ -3510,12 +3541,15 @@ bool Tracking::Relocalization()
|
|||
// If a Camera Pose is computed, optimize
|
||||
if(!Tcw.empty())
|
||||
{
|
||||
// Step 4.2:如果MLPnP 计算出了位姿,对内点进行BA优化
|
||||
Tcw.copyTo(mCurrentFrame.mTcw);
|
||||
|
||||
// MLPnP 里RANSAC后的内点的集合
|
||||
set<MapPoint*> sFound;
|
||||
|
||||
const int np = vbInliers.size();
|
||||
|
||||
// 遍历所有内点
|
||||
for(int j=0; j<np; j++)
|
||||
{
|
||||
if(vbInliers[j])
|
||||
|
@ -3527,43 +3561,66 @@ bool Tracking::Relocalization()
|
|||
mCurrentFrame.mvpMapPoints[j]=NULL;
|
||||
}
|
||||
|
||||
// 只优化位姿,不优化地图点的坐标,返回的是内点的数量
|
||||
int nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||||
|
||||
// 如果优化之后的内点数目不多,跳过了当前候选关键帧,但是却没有放弃当前帧的重定位
|
||||
if(nGood<10)
|
||||
continue;
|
||||
|
||||
// 删除外点对应的地图点,这里直接设为空指针
|
||||
for(int io =0; io<mCurrentFrame.N; io++)
|
||||
if(mCurrentFrame.mvbOutlier[io])
|
||||
mCurrentFrame.mvpMapPoints[io]=static_cast<MapPoint*>(NULL);
|
||||
|
||||
// If few inliers, search by projection in a coarse window and optimize again
|
||||
// Step 4.3:如果内点较少,则通过投影的方式对之前未匹配的点进行匹配,再进行优化求解
|
||||
// 前面的匹配关系是用词袋匹配过程得到的
|
||||
if(nGood<50)
|
||||
{
|
||||
int nadditional =matcher2.SearchByProjection(mCurrentFrame,vpCandidateKFs[i],sFound,10,100);
|
||||
// 通过投影的方式将关键帧中未匹配的地图点投影到当前帧中, 生成新的匹配
|
||||
int nadditional =matcher2.SearchByProjection(
|
||||
mCurrentFrame, // 当前帧
|
||||
vpCandidateKFs[i], // 关键帧
|
||||
sFound, // 已经找到的地图点集合,不会用于PNP
|
||||
10, // 窗口阈值,会乘以金字塔尺度
|
||||
100); // 匹配的ORB描述子距离应该小于这个阈值
|
||||
|
||||
if(nadditional+nGood>=50)
|
||||
{
|
||||
// 根据投影匹配的结果,再次采用3D-2D pnp BA优化位姿
|
||||
nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||||
|
||||
// If many inliers but still not enough, search by projection again in a narrower window
|
||||
// the camera has been already optimized with many points
|
||||
// Step 4.4:如果BA后内点数还是比较少(<50)但是还不至于太少(>30),可以挽救一下, 最后垂死挣扎
|
||||
// 重新执行上一步 4.3的过程,只不过使用更小的搜索窗口
|
||||
// 这里的位姿已经使用了更多的点进行了优化,应该更准,所以使用更小的窗口搜索
|
||||
if(nGood>30 && nGood<50)
|
||||
{
|
||||
// 用更小窗口、更严格的描述子阈值,重新进行投影搜索匹配
|
||||
sFound.clear();
|
||||
for(int ip =0; ip<mCurrentFrame.N; ip++)
|
||||
if(mCurrentFrame.mvpMapPoints[ip])
|
||||
sFound.insert(mCurrentFrame.mvpMapPoints[ip]);
|
||||
nadditional =matcher2.SearchByProjection(mCurrentFrame,vpCandidateKFs[i],sFound,3,64);
|
||||
nadditional =matcher2.SearchByProjection(
|
||||
mCurrentFrame, // 当前帧
|
||||
vpCandidateKFs[i], // 候选的关键帧
|
||||
sFound, // 已经找到的地图点,不会用于PNP
|
||||
3, // 新的窗口阈值,会乘以金字塔尺度
|
||||
64); // 匹配的ORB描述子距离应该小于这个阈值
|
||||
|
||||
// Final optimization
|
||||
// 如果成功挽救回来,匹配数目达到要求,最后BA优化一下
|
||||
if(nGood+nadditional>=50)
|
||||
{
|
||||
nGood = Optimizer::PoseOptimization(&mCurrentFrame);
|
||||
|
||||
//更新地图点
|
||||
for(int io =0; io<mCurrentFrame.N; io++)
|
||||
if(mCurrentFrame.mvbOutlier[io])
|
||||
mCurrentFrame.mvpMapPoints[io]=NULL;
|
||||
}
|
||||
//如果还是不能够满足就放弃了
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -3573,6 +3630,7 @@ bool Tracking::Relocalization()
|
|||
if(nGood>=50)
|
||||
{
|
||||
bMatch = true;
|
||||
// 只要有一个候选关键帧重定位成功,就退出循环,不考虑其他候选关键帧了
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue