添加跟踪时IMU数据预测位姿的注释
parent
60be87c3f9
commit
2f44474715
11
src/Frame.cc
11
src/Frame.cc
|
@ -488,15 +488,24 @@ void Frame::SetVelocity(const cv::Mat &Vwb)
|
|||
{
|
||||
mVw = Vwb.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 设置IMU的速度预测位姿,最后用imu到相机的位姿和世界坐标系到imu的位姿更新相机和世界坐标系的位姿
|
||||
* 目的:得到相机在世界坐标系的位姿
|
||||
*
|
||||
* @param[in] Rwb 旋转值
|
||||
* @param[in] twb 位移值
|
||||
* @param[in] Vwb 速度值
|
||||
*/
|
||||
void Frame::SetImuPoseVelocity(const cv::Mat &Rwb, const cv::Mat &twb, const cv::Mat &Vwb)
|
||||
{
|
||||
//Twb -> Tbw 求逆的过程,根据旋转矩阵的逆求得,参见十四讲(第一版)P44公式(3.13)
|
||||
mVw = Vwb.clone();
|
||||
cv::Mat Rbw = Rwb.t();
|
||||
cv::Mat tbw = -Rbw*twb;
|
||||
cv::Mat Tbw = cv::Mat::eye(4,4,CV_32F);
|
||||
Rbw.copyTo(Tbw.rowRange(0,3).colRange(0,3));
|
||||
tbw.copyTo(Tbw.rowRange(0,3).col(3));
|
||||
// 外参值mImuCalib.Tcb与Tbw求mTcw
|
||||
mTcw = mImuCalib.Tcb*Tbw;
|
||||
UpdatePoseMatrices();
|
||||
}
|
||||
|
|
|
@ -343,6 +343,7 @@ void Preintegrated::IntegrateNewMeasurement(const cv::Point3f &acceleration, con
|
|||
// Update rotation jacobian wrt bias correction
|
||||
// 计算偏置的雅克比矩阵,r对bg的导数,∂ΔRij/∂bg = (ΔRjj-1) * ∂ΔRij-1/∂bg - Jr(j-1)*t
|
||||
// 论文作者对forster论文公式的基础上做了变形,然后递归更新,参见 https://github.com/UZ-SLAMLab/ORB_SLAM3/issues/212
|
||||
// ? 为什么先更新JPa、JPg、JVa、JVg最后更新JRg? 答:这里必须先更新dRi才能更新到这个值,但是为什么JPg和JVg依赖的上一个JRg值进行更新的?
|
||||
JRg = dRi.deltaR.t()*JRg - dRi.rightJ*dt;
|
||||
|
||||
// Total integrated time
|
||||
|
@ -398,7 +399,10 @@ IMU::Bias Preintegrated::GetDeltaBias(const Bias &b_)
|
|||
cv::Mat Preintegrated::GetDeltaRotation(const Bias &b_)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mMutex);
|
||||
// ? 计算偏置的变化量
|
||||
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
|
||||
// ? 考虑偏置后,dR对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13~P14
|
||||
// ? Forster论文公式(44)yP17也有结果(但没有推导),后面两个函数GetDeltaPosition和GetDeltaPosition也是基于此推导的
|
||||
return NormalizeRotation(dR*ExpSO3(JRg*dbg));
|
||||
}
|
||||
|
||||
|
@ -407,6 +411,7 @@ cv::Mat Preintegrated::GetDeltaVelocity(const Bias &b_)
|
|||
std::unique_lock<std::mutex> lock(mMutex);
|
||||
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
|
||||
cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz);
|
||||
// ? 考虑偏置后,dV对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13,JPg和JPa在预积分处理中更新
|
||||
return dV + JVg*dbg + JVa*dba;
|
||||
}
|
||||
|
||||
|
@ -415,6 +420,7 @@ cv::Mat Preintegrated::GetDeltaPosition(const Bias &b_)
|
|||
std::unique_lock<std::mutex> lock(mMutex);
|
||||
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
|
||||
cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz);
|
||||
// ? 考虑偏置后,dP对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13,JPg和JPa在预积分处理中更新
|
||||
return dP + JPg*dbg + JPa*dba;
|
||||
}
|
||||
|
||||
|
|
|
@ -1276,7 +1276,12 @@ void Tracking::PreintegrateIMU()
|
|||
Verbose::PrintMess("Preintegration is finished!! ", Verbose::VERBOSITY_DEBUG);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief 跟踪不成功的时候,用初始化好的imu数据做跟踪处理
|
||||
*
|
||||
* @return true
|
||||
* @return false
|
||||
*/
|
||||
bool Tracking::PredictStateIMU()
|
||||
{
|
||||
if(!mCurrentFrame.mpPrevFrame)
|
||||
|
@ -1284,7 +1289,7 @@ bool Tracking::PredictStateIMU()
|
|||
Verbose::PrintMess("No last frame", Verbose::VERBOSITY_NORMAL);
|
||||
return false;
|
||||
}
|
||||
|
||||
// 地图更新时,并且上一个图像关键帧存在
|
||||
if(mbMapUpdated && mpLastKeyFrame)
|
||||
{
|
||||
const cv::Mat twb1 = mpLastKeyFrame->GetImuPosition();
|
||||
|
@ -1292,12 +1297,18 @@ bool Tracking::PredictStateIMU()
|
|||
const cv::Mat Vwb1 = mpLastKeyFrame->GetVelocity();
|
||||
|
||||
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
|
||||
// ? mpImuPreintegratedFromLastKF是将图像帧转成imu格式的?
|
||||
const float t12 = mpImuPreintegratedFromLastKF->dT;
|
||||
|
||||
// 计算当前帧在世界坐标系的位姿,原理都是用预积分的位姿(预积分的值不会变化)与上一帧的位姿(会迭代变化)进行更新
|
||||
// 旋转 R_wb2 = R_wb1 * R_b1b2
|
||||
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mpImuPreintegratedFromLastKF->GetDeltaRotation(mpLastKeyFrame->GetImuBias()));
|
||||
// 位移
|
||||
cv::Mat twb2 = twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mpImuPreintegratedFromLastKF->GetDeltaPosition(mpLastKeyFrame->GetImuBias());
|
||||
// 速度
|
||||
cv::Mat Vwb2 = Vwb1 + t12*Gz + Rwb1*mpImuPreintegratedFromLastKF->GetDeltaVelocity(mpLastKeyFrame->GetImuBias());
|
||||
// 设置当前帧的世界坐标系的相机位姿
|
||||
mCurrentFrame.SetImuPoseVelocity(Rwb2,twb2,Vwb2);
|
||||
// ? 预测当前帧imu在世界坐标系的位姿,以及记录偏置bias和bias更新
|
||||
mCurrentFrame.mPredRwb = Rwb2.clone();
|
||||
mCurrentFrame.mPredtwb = twb2.clone();
|
||||
mCurrentFrame.mPredVwb = Vwb2.clone();
|
||||
|
@ -1305,12 +1316,14 @@ bool Tracking::PredictStateIMU()
|
|||
mCurrentFrame.mPredBias = mCurrentFrame.mImuBias;
|
||||
return true;
|
||||
}
|
||||
// 地图未更新时
|
||||
else if(!mbMapUpdated)
|
||||
{
|
||||
const cv::Mat twb1 = mLastFrame.GetImuPosition();
|
||||
const cv::Mat Rwb1 = mLastFrame.GetImuRotation();
|
||||
const cv::Mat Vwb1 = mLastFrame.mVw;
|
||||
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
|
||||
// ? mpImuPreintegratedFrame是当前帧上一帧,未必是关键帧的图像帧?
|
||||
const float t12 = mCurrentFrame.mpImuPreintegratedFrame->dT;
|
||||
|
||||
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaRotation(mLastFrame.mImuBias));
|
||||
|
|
Loading…
Reference in New Issue