添加跟踪时IMU数据预测位姿的注释

master
ZhouJiafen 2020-12-29 23:55:04 -08:00
parent 60be87c3f9
commit 2f44474715
3 changed files with 33 additions and 5 deletions

View File

@ -488,15 +488,24 @@ void Frame::SetVelocity(const cv::Mat &Vwb)
{ {
mVw = Vwb.clone(); mVw = Vwb.clone();
} }
/**
* @brief IMU姿imu姿imu姿姿
* 姿
*
* @param[in] Rwb
* @param[in] twb
* @param[in] Vwb
*/
void Frame::SetImuPoseVelocity(const cv::Mat &Rwb, const cv::Mat &twb, const cv::Mat &Vwb) void Frame::SetImuPoseVelocity(const cv::Mat &Rwb, const cv::Mat &twb, const cv::Mat &Vwb)
{ {
//Twb -> Tbw 求逆的过程根据旋转矩阵的逆求得参见十四讲第一版P44公式3.13
mVw = Vwb.clone(); mVw = Vwb.clone();
cv::Mat Rbw = Rwb.t(); cv::Mat Rbw = Rwb.t();
cv::Mat tbw = -Rbw*twb; cv::Mat tbw = -Rbw*twb;
cv::Mat Tbw = cv::Mat::eye(4,4,CV_32F); cv::Mat Tbw = cv::Mat::eye(4,4,CV_32F);
Rbw.copyTo(Tbw.rowRange(0,3).colRange(0,3)); Rbw.copyTo(Tbw.rowRange(0,3).colRange(0,3));
tbw.copyTo(Tbw.rowRange(0,3).col(3)); tbw.copyTo(Tbw.rowRange(0,3).col(3));
// 外参值mImuCalib.Tcb与Tbw求mTcw
mTcw = mImuCalib.Tcb*Tbw; mTcw = mImuCalib.Tcb*Tbw;
UpdatePoseMatrices(); UpdatePoseMatrices();
} }

View File

@ -343,6 +343,7 @@ void Preintegrated::IntegrateNewMeasurement(const cv::Point3f &acceleration, con
// Update rotation jacobian wrt bias correction // Update rotation jacobian wrt bias correction
// 计算偏置的雅克比矩阵r对bg的导数∂ΔRij/∂bg = (ΔRjj-1) * ∂ΔRij-1/∂bg - Jr(j-1)*t // 计算偏置的雅克比矩阵r对bg的导数∂ΔRij/∂bg = (ΔRjj-1) * ∂ΔRij-1/∂bg - Jr(j-1)*t
// 论文作者对forster论文公式的基础上做了变形然后递归更新参见 https://github.com/UZ-SLAMLab/ORB_SLAM3/issues/212 // 论文作者对forster论文公式的基础上做了变形然后递归更新参见 https://github.com/UZ-SLAMLab/ORB_SLAM3/issues/212
// ? 为什么先更新JPa、JPg、JVa、JVg最后更新JRg? 答这里必须先更新dRi才能更新到这个值但是为什么JPg和JVg依赖的上一个JRg值进行更新的
JRg = dRi.deltaR.t()*JRg - dRi.rightJ*dt; JRg = dRi.deltaR.t()*JRg - dRi.rightJ*dt;
// Total integrated time // Total integrated time
@ -398,7 +399,10 @@ IMU::Bias Preintegrated::GetDeltaBias(const Bias &b_)
cv::Mat Preintegrated::GetDeltaRotation(const Bias &b_) cv::Mat Preintegrated::GetDeltaRotation(const Bias &b_)
{ {
std::unique_lock<std::mutex> lock(mMutex); std::unique_lock<std::mutex> lock(mMutex);
// ? 计算偏置的变化量
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz); cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
// ? 考虑偏置后dR对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13P14
// ? Forster论文公式44yP17也有结果但没有推导后面两个函数GetDeltaPosition和GetDeltaPosition也是基于此推导的
return NormalizeRotation(dR*ExpSO3(JRg*dbg)); return NormalizeRotation(dR*ExpSO3(JRg*dbg));
} }
@ -407,6 +411,7 @@ cv::Mat Preintegrated::GetDeltaVelocity(const Bias &b_)
std::unique_lock<std::mutex> lock(mMutex); std::unique_lock<std::mutex> lock(mMutex);
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz); cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz); cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz);
// ? 考虑偏置后dV对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13JPg和JPa在预积分处理中更新
return dV + JVg*dbg + JVa*dba; return dV + JVg*dbg + JVa*dba;
} }
@ -415,6 +420,7 @@ cv::Mat Preintegrated::GetDeltaPosition(const Bias &b_)
std::unique_lock<std::mutex> lock(mMutex); std::unique_lock<std::mutex> lock(mMutex);
cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz); cv::Mat dbg = (cv::Mat_<float>(3,1) << b_.bwx-b.bwx,b_.bwy-b.bwy,b_.bwz-b.bwz);
cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz); cv::Mat dba = (cv::Mat_<float>(3,1) << b_.bax-b.bax,b_.bay-b.bay,b_.baz-b.baz);
// ? 考虑偏置后dP对偏置线性化的近似求解,邱笑晨《预积分总结与公式推导》P13JPg和JPa在预积分处理中更新
return dP + JPg*dbg + JPa*dba; return dP + JPg*dbg + JPa*dba;
} }

View File

@ -1276,7 +1276,12 @@ void Tracking::PreintegrateIMU()
Verbose::PrintMess("Preintegration is finished!! ", Verbose::VERBOSITY_DEBUG); Verbose::PrintMess("Preintegration is finished!! ", Verbose::VERBOSITY_DEBUG);
} }
/**
* @brief imu
*
* @return true
* @return false
*/
bool Tracking::PredictStateIMU() bool Tracking::PredictStateIMU()
{ {
if(!mCurrentFrame.mpPrevFrame) if(!mCurrentFrame.mpPrevFrame)
@ -1284,7 +1289,7 @@ bool Tracking::PredictStateIMU()
Verbose::PrintMess("No last frame", Verbose::VERBOSITY_NORMAL); Verbose::PrintMess("No last frame", Verbose::VERBOSITY_NORMAL);
return false; return false;
} }
// 地图更新时,并且上一个图像关键帧存在
if(mbMapUpdated && mpLastKeyFrame) if(mbMapUpdated && mpLastKeyFrame)
{ {
const cv::Mat twb1 = mpLastKeyFrame->GetImuPosition(); const cv::Mat twb1 = mpLastKeyFrame->GetImuPosition();
@ -1292,12 +1297,18 @@ bool Tracking::PredictStateIMU()
const cv::Mat Vwb1 = mpLastKeyFrame->GetVelocity(); const cv::Mat Vwb1 = mpLastKeyFrame->GetVelocity();
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE); const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
// ? mpImuPreintegratedFromLastKF是将图像帧转成imu格式的
const float t12 = mpImuPreintegratedFromLastKF->dT; const float t12 = mpImuPreintegratedFromLastKF->dT;
// 计算当前帧在世界坐标系的位姿,原理都是用预积分的位姿(预积分的值不会变化)与上一帧的位姿(会迭代变化)进行更新
// 旋转 R_wb2 = R_wb1 * R_b1b2
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mpImuPreintegratedFromLastKF->GetDeltaRotation(mpLastKeyFrame->GetImuBias())); cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mpImuPreintegratedFromLastKF->GetDeltaRotation(mpLastKeyFrame->GetImuBias()));
// 位移
cv::Mat twb2 = twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mpImuPreintegratedFromLastKF->GetDeltaPosition(mpLastKeyFrame->GetImuBias()); cv::Mat twb2 = twb1 + Vwb1*t12 + 0.5f*t12*t12*Gz+ Rwb1*mpImuPreintegratedFromLastKF->GetDeltaPosition(mpLastKeyFrame->GetImuBias());
// 速度
cv::Mat Vwb2 = Vwb1 + t12*Gz + Rwb1*mpImuPreintegratedFromLastKF->GetDeltaVelocity(mpLastKeyFrame->GetImuBias()); cv::Mat Vwb2 = Vwb1 + t12*Gz + Rwb1*mpImuPreintegratedFromLastKF->GetDeltaVelocity(mpLastKeyFrame->GetImuBias());
// 设置当前帧的世界坐标系的相机位姿
mCurrentFrame.SetImuPoseVelocity(Rwb2,twb2,Vwb2); mCurrentFrame.SetImuPoseVelocity(Rwb2,twb2,Vwb2);
// ? 预测当前帧imu在世界坐标系的位姿以及记录偏置bias和bias更新
mCurrentFrame.mPredRwb = Rwb2.clone(); mCurrentFrame.mPredRwb = Rwb2.clone();
mCurrentFrame.mPredtwb = twb2.clone(); mCurrentFrame.mPredtwb = twb2.clone();
mCurrentFrame.mPredVwb = Vwb2.clone(); mCurrentFrame.mPredVwb = Vwb2.clone();
@ -1305,12 +1316,14 @@ bool Tracking::PredictStateIMU()
mCurrentFrame.mPredBias = mCurrentFrame.mImuBias; mCurrentFrame.mPredBias = mCurrentFrame.mImuBias;
return true; return true;
} }
// 地图未更新时
else if(!mbMapUpdated) else if(!mbMapUpdated)
{ {
const cv::Mat twb1 = mLastFrame.GetImuPosition(); const cv::Mat twb1 = mLastFrame.GetImuPosition();
const cv::Mat Rwb1 = mLastFrame.GetImuRotation(); const cv::Mat Rwb1 = mLastFrame.GetImuRotation();
const cv::Mat Vwb1 = mLastFrame.mVw; const cv::Mat Vwb1 = mLastFrame.mVw;
const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE); const cv::Mat Gz = (cv::Mat_<float>(3,1) << 0,0,-IMU::GRAVITY_VALUE);
// ? mpImuPreintegratedFrame是当前帧上一帧未必是关键帧的图像帧
const float t12 = mCurrentFrame.mpImuPreintegratedFrame->dT; const float t12 = mCurrentFrame.mpImuPreintegratedFrame->dT;
cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaRotation(mLastFrame.mImuBias)); cv::Mat Rwb2 = IMU::NormalizeRotation(Rwb1*mCurrentFrame.mpImuPreintegratedFrame->GetDeltaRotation(mLastFrame.mImuBias));