orb_slam3_details/Examples/Monocular-Inertial/mono_inertial_tum_vi.cc

352 lines
13 KiB
C++
Raw Normal View History

2020-12-01 11:58:17 +08:00
/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>
#include <ctime>
#include <sstream>
#include<opencv2/core/core.hpp>
#include<System.h>
#include "ImuTypes.h"
using namespace std;
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps);
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro);
double ttrack_tot = 0;
int main(int argc, char **argv)
{
2020-12-05 22:50:31 +08:00
// 输出运行的序列数目
2020-12-01 11:58:17 +08:00
const int num_seq = (argc-3)/3;
cout << "num_seq = " << num_seq << endl;
bool bFileName= ((argc % 3) == 1);
string file_name;
if (bFileName)
file_name = string(argv[argc-1]);
cout << "file name: " << file_name << endl;
2020-12-05 22:50:31 +08:00
// 按照下面提示至少输入6个参数
2020-12-01 11:58:17 +08:00
if(argc < 6)
{
cerr << endl << "Usage: ./mono_inertial_tum_vi path_to_vocabulary path_to_settings path_to_image_folder_1 path_to_times_file_1 path_to_imu_data_1 (path_to_image_folder_2 path_to_times_file_2 path_to_imu_data_2 ... path_to_image_folder_N path_to_times_file_N path_to_imu_data_N) (trajectory_file_name)" << endl;
return 1;
}
// Load all sequences:
2020-12-05 22:50:31 +08:00
// 准备加载所有序列的数据
2020-12-01 11:58:17 +08:00
int seq;
2020-12-05 22:50:31 +08:00
vector< vector<string> > vstrImageFilenames; //图像文件名
vector< vector<double> > vTimestampsCam; //图像时间戳
vector< vector<cv::Point3f> > vAcc, vGyro; //加速度计,陀螺仪
vector< vector<double> > vTimestampsImu; //IMU时间戳
vector<int> nImages;
2020-12-01 11:58:17 +08:00
vector<int> nImu;
vector<int> first_imu(num_seq,0);
vstrImageFilenames.resize(num_seq);
vTimestampsCam.resize(num_seq);
vAcc.resize(num_seq);
vGyro.resize(num_seq);
vTimestampsImu.resize(num_seq);
nImages.resize(num_seq);
nImu.resize(num_seq);
int tot_images = 0;
2020-12-05 22:50:31 +08:00
// 遍历每个序列
2020-12-01 11:58:17 +08:00
for (seq = 0; seq<num_seq; seq++)
{
2020-12-05 22:50:31 +08:00
// Step 1 加载图像名和对应的图像时间戳
2020-12-01 11:58:17 +08:00
cout << "Loading images for sequence " << seq << "...";
LoadImages(string(argv[3*(seq+1)]), string(argv[3*(seq+1)+1]), vstrImageFilenames[seq], vTimestampsCam[seq]);
cout << "LOADED!" << endl;
2020-12-05 22:50:31 +08:00
// Step 2 加载IMU数据
2020-12-01 11:58:17 +08:00
cout << "Loading IMU for sequence " << seq << "...";
LoadIMU(string(argv[3*(seq+1)+2]), vTimestampsImu[seq], vAcc[seq], vGyro[seq]);
cout << "LOADED!" << endl;
nImages[seq] = vstrImageFilenames[seq].size();
tot_images += nImages[seq];
nImu[seq] = vTimestampsImu[seq].size();
2020-12-05 22:50:31 +08:00
//检查是否存在有效数目的图像和imu数据
2020-12-01 11:58:17 +08:00
if((nImages[seq]<=0)||(nImu[seq]<=0))
{
cerr << "ERROR: Failed to load images or IMU for sequence" << seq << endl;
return 1;
}
// Find first imu to be considered, supposing imu measurements start first
2020-12-05 22:50:31 +08:00
// Step 3 默认IMU数据早于图像数据记录找到和第一帧图像时间戳最接近的imu时间戳索引记录在first_imu[seq]中
2020-12-29 11:03:58 +08:00
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][0]){
2020-12-01 11:58:17 +08:00
first_imu[seq]++;
2020-12-29 11:03:58 +08:00
cout << "first_imu[seq] = " << first_imu[seq] << endl;
}
2020-12-05 22:50:31 +08:00
// 因为上面退出while循环时IMU时间戳刚刚超过图像时间戳所以这里需要再减一个索引
2020-12-01 11:58:17 +08:00
first_imu[seq]--; // first imu measurement to be considered
}
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(tot_images);
cout << endl << "-------" << endl;
cout.precision(17);
/*cout << "Start processing sequence ..." << endl;
cout << "Images in the sequence: " << nImages << endl;
cout << "IMU data in the sequence: " << nImu << endl << endl;*/
// Create SLAM system. It initializes all system threads and gets ready to process frames.
2020-12-05 22:50:31 +08:00
// Step 4 SLAM系统的初始化包括读取配置文件、字典创建跟踪、局部建图、闭环、显示线程
2020-12-01 11:58:17 +08:00
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
2020-12-29 11:03:58 +08:00
//遍历所有数据
2020-12-01 11:58:17 +08:00
int proccIm = 0;
for (seq = 0; seq<num_seq; seq++)
{
// Main loop
cv::Mat im;
2020-12-29 11:03:58 +08:00
//存放imu数据容器,包含该加速度,角速度,时间戳
2020-12-01 11:58:17 +08:00
vector<ORB_SLAM3::IMU::Point> vImuMeas;
proccIm = 0;
2020-12-29 11:03:58 +08:00
//直方图均衡化,直方图均衡化的思想就是这样的:
//假设我有灰度级255的图像但是都是属于100110的灰度图像对比度就很低我应该尽可能拉到整个0255
2020-12-01 11:58:17 +08:00
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
{
// Read image from file
2020-12-29 11:03:58 +08:00
// Step 5 读取每一帧图像并转换为灰度图存储在im,seq表示第几个数据集,ni表示这个数据集的第几个数据
2020-12-01 11:58:17 +08:00
im = cv::imread(vstrImageFilenames[seq][ni],cv::IMREAD_GRAYSCALE);
// clahe
2020-12-29 11:03:58 +08:00
//直方图均衡化
2020-12-01 11:58:17 +08:00
clahe->apply(im,im);
2020-12-05 22:50:31 +08:00
// 取出对应的图像时间戳
2020-12-01 11:58:17 +08:00
double tframe = vTimestampsCam[seq][ni];
if(im.empty())
{
cerr << endl << "Failed to load image at: "
<< vstrImageFilenames[seq][ni] << endl;
return 1;
}
// Load imu measurements from previous frame
2020-12-05 22:50:31 +08:00
//清空imu测量
2020-12-01 11:58:17 +08:00
vImuMeas.clear();
if(ni>0)
{
// cout << "t_cam " << tframe << endl;
2020-12-05 22:50:31 +08:00
// Step 6 把上一图像帧和当前图像帧之间的imu信息存储在vImuMeas里
2020-12-29 11:03:58 +08:00
// 注意第一个图像帧没有对应的imu数据 //?是否存在一帧,因为之前是从最接近图像第一帧的imu算起,可能无效
2020-12-01 11:58:17 +08:00
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][ni])
{
vImuMeas.push_back(ORB_SLAM3::IMU::Point(vAcc[seq][first_imu[seq]].x,vAcc[seq][first_imu[seq]].y,vAcc[seq][first_imu[seq]].z,
vGyro[seq][first_imu[seq]].x,vGyro[seq][first_imu[seq]].y,vGyro[seq][first_imu[seq]].z,
vTimestampsImu[seq][first_imu[seq]]));
// cout << "t_imu = " << fixed << vImuMeas.back().t << endl;
first_imu[seq]++;
}
}
// cout << "first imu: " << first_imu[seq] << endl;
/*cout << "first imu time: " << fixed << vTimestampsImu[first_imu] << endl;
cout << "size vImu: " << vImuMeas.size() << endl;*/
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
// cout << "tframe = " << tframe << endl;
2020-12-05 22:50:31 +08:00
// Step 7 跟踪线程作为主线程运行
2020-12-01 11:58:17 +08:00
SLAM.TrackMonocular(im,tframe,vImuMeas); // TODO change to monocular_inertial
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
ttrack_tot += ttrack;
// std::cout << "ttrack: " << ttrack << std::endl;
vTimesTrack[ni]=ttrack;
// Wait to load the next frame
2020-12-05 22:50:31 +08:00
// 等待读取下一帧
2020-12-01 11:58:17 +08:00
double T=0;
if(ni<nImages[seq]-1)
T = vTimestampsCam[seq][ni+1]-tframe;
else if(ni>0)
T = tframe-vTimestampsCam[seq][ni-1];
if(ttrack<T)
usleep((T-ttrack)*1e6); // 1e6
}
if(seq < num_seq - 1)
{
cout << "Changing the dataset" << endl;
2020-12-05 22:50:31 +08:00
// Step 8 更换数据集
2020-12-01 11:58:17 +08:00
SLAM.ChangeDataset();
}
}
// cout << "ttrack_tot = " << ttrack_tot << std::endl;
// Stop all threads
2020-12-05 22:50:31 +08:00
// Step 9 关闭SLAM中所有线程
2020-12-01 11:58:17 +08:00
SLAM.Shutdown();
// Tracking time statistics
// Save camera trajectory
2020-12-05 22:50:31 +08:00
// Step 10 保存相机位姿(轨迹)
2020-12-01 11:58:17 +08:00
if (bFileName)
{
const string kf_file = "kf_" + string(argv[argc-1]) + ".txt";
const string f_file = "f_" + string(argv[argc-1]) + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);
}
else
{
SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt");
SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt");
}
sort(vTimesTrack.begin(),vTimesTrack.end());
float totaltime = 0;
for(int ni=0; ni<nImages[0]; ni++)
{
totaltime+=vTimesTrack[ni];
}
cout << "-------" << endl << endl;
cout << "median tracking time: " << vTimesTrack[nImages[0]/2] << endl;
cout << "mean tracking time: " << totaltime/proccIm << endl;
/*const string kf_file = "kf_" + ss.str() + ".txt";
const string f_file = "f_" + ss.str() + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);*/
return 0;
}
2020-12-05 22:50:31 +08:00
/**
* @brief
*
* @param[in] strImagePath
* @param[in] strPathTimes
* @param[in] vstrImages
* @param[in] vTimeStamps vstrImages
*/
2020-12-01 11:58:17 +08:00
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps)
{
ifstream fTimes;
cout << strImagePath << endl;
cout << strPathTimes << endl;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve(5000);
vstrImages.reserve(5000);
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
stringstream ss;
ss << s;
vstrImages.push_back(strImagePath + "/" + ss.str() + ".png");
double t;
ss >> t;
vTimeStamps.push_back(t/1e9);
}
}
}
2020-12-05 22:50:31 +08:00
/**
* @brief IMU
*
* @param[in] strImuPath IMU
* @param[in] vTimeStamps IMU
* @param[in] vAcc
* @param[in] vGyro
*/
2020-12-01 11:58:17 +08:00
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro)
{
ifstream fImu;
fImu.open(strImuPath.c_str());
2020-12-05 22:50:31 +08:00
// 预申请大小为5000的vector不够可以再扩展
2020-12-01 11:58:17 +08:00
vTimeStamps.reserve(5000);
vAcc.reserve(5000);
vGyro.reserve(5000);
while(!fImu.eof())
{
string s;
getline(fImu,s);
2020-12-05 22:50:31 +08:00
// 跳过注释或无效数据
2020-12-01 11:58:17 +08:00
if (s[0] == '#')
continue;
if(!s.empty())
{
string item;
size_t pos = 0;
double data[7];
int count = 0;
while ((pos = s.find(',')) != string::npos) {
item = s.substr(0, pos);
data[count++] = stod(item);
s.erase(0, pos + 1);
}
item = s.substr(0, pos);
data[6] = stod(item);
2020-12-05 22:50:31 +08:00
// 注意这里的时间戳除以10的9次方转化为秒单位
2020-12-01 11:58:17 +08:00
vTimeStamps.push_back(data[0]/1e9);
vAcc.push_back(cv::Point3f(data[4],data[5],data[6]));
vGyro.push_back(cv::Point3f(data[1],data[2],data[3]));
}
}
}