orb_slam3_details/Thirdparty/Sophus/sophus/so3.hpp

851 lines
28 KiB
C++
Raw Permalink Normal View History

2022-03-28 21:20:28 +08:00
/// @file
/// Special orthogonal group SO(3) - rotation in 3d.
#ifndef SOPHUS_SO3_HPP
#define SOPHUS_SO3_HPP
#include "rotation_matrix.hpp"
#include "so2.hpp"
#include "types.hpp"
// Include only the selective set of Eigen headers that we need.
// This helps when using Sophus with unusual compilers, like nvcc.
#include <Eigen/src/Geometry/OrthoMethods.h>
#include <Eigen/src/Geometry/Quaternion.h>
#include <Eigen/src/Geometry/RotationBase.h>
namespace Sophus {
template <class Scalar_, int Options = 0>
class SO3;
using SO3d = SO3<double>;
using SO3f = SO3<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options_>
struct traits<Sophus::SO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Eigen::Quaternion<Scalar, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO3<Scalar_>, Options_>>
: traits<Sophus::SO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO3<Scalar_> const, Options_>>
: traits<Sophus::SO3<Scalar_, Options_> const> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
/// SO3 base type - implements SO3 class but is storage agnostic.
///
/// SO(3) is the group of rotations in 3d. As a matrix group, it is the set of
/// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being
/// the transpose of ``R``) and have a positive determinant. In particular, the
/// determinant is 1. Internally, the group is represented as a unit quaternion.
/// Unit quaternion can be seen as members of the special unitary group SU(2).
/// SU(2) is a double cover of SO(3). Hence, for every rotation matrix ``R``,
/// there exist two unit quaternions: ``(r, v)`` and ``(-r, -v)``, with ``r``
/// the real part and ``v`` being the imaginary 3-vector part of the quaternion.
///
/// SO(3) is a compact, but non-commutative group. First it is compact since the
/// set of rotation matrices is a closed and bounded set. Second it is
/// non-commutative since the equation ``R_1 * R_2 = R_2 * R_1`` does not hold
/// in general. For example rotating an object by some degrees about its
/// ``x``-axis and then by some degrees about its y axis, does not lead to the
/// same orientation when rotation first about ``y`` and then about ``x``.
///
/// Class invariant: The 2-norm of ``unit_quaternion`` must be close to 1.
/// Technically speaking, it must hold that:
///
/// ``|unit_quaternion().squaredNorm() - 1| <= Constants::epsilon()``.
template <class Derived>
class SO3Base {
public:
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using QuaternionType =
typename Eigen::internal::traits<Derived>::QuaternionType;
using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
/// Degrees of freedom of group, number of dimensions in tangent space.
static int constexpr DoF = 3;
/// Number of internal parameters used (quaternion is a 4-tuple).
static int constexpr num_parameters = 4;
/// Group transformations are 3x3 matrices.
static int constexpr N = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector3<Scalar>;
using HomogeneousPoint = Vector4<Scalar>;
using Line = ParametrizedLine3<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
struct TangentAndTheta {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Tangent tangent;
Scalar theta;
};
/// For binary operations the return type is determined with the
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
/// types, as well as other compatible scalar types such as Ceres::Jet and
/// double scalars with SO3 operations.
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using SO3Product = SO3<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector3<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
/// Adjoint transformation
//
/// This function return the adjoint transformation ``Ad`` of the group
/// element ``A`` such that for all ``x`` it holds that
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
//
/// For SO(3), it simply returns the rotation matrix corresponding to ``A``.
///
SOPHUS_FUNC Adjoint Adj() const { return matrix(); }
/// Extract rotation angle about canonical X-axis
///
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleX() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Rx = R.template block<2, 2>(1, 1);
return SO2<Scalar>(makeRotationMatrix(Rx)).log();
}
/// Extract rotation angle about canonical Y-axis
///
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleY() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Ry;
// clang-format off
Ry <<
R(0, 0), R(2, 0),
R(0, 2), R(2, 2);
// clang-format on
return SO2<Scalar>(makeRotationMatrix(Ry)).log();
}
/// Extract rotation angle about canonical Z-axis
///
template <class S = Scalar>
SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleZ() const {
Sophus::Matrix3<Scalar> R = matrix();
Sophus::Matrix2<Scalar> Rz = R.template block<2, 2>(0, 0);
return SO2<Scalar>(makeRotationMatrix(Rz)).log();
}
/// Returns copy of instance casted to NewScalarType.
///
template <class NewScalarType>
SOPHUS_FUNC SO3<NewScalarType> cast() const {
return SO3<NewScalarType>(unit_quaternion().template cast<NewScalarType>());
}
/// This provides unsafe read/write access to internal data. SO(3) is
/// represented by an Eigen::Quaternion (four parameters). When using direct
/// write access, the user needs to take care of that the quaternion stays
/// normalized.
///
/// Note: The first three Scalars represent the imaginary parts, while the
/// forth Scalar represent the real part.
///
SOPHUS_FUNC Scalar* data() {
return unit_quaternion_nonconst().coeffs().data();
}
/// Const version of data() above.
///
SOPHUS_FUNC Scalar const* data() const {
return unit_quaternion().coeffs().data();
}
/// Returns derivative of this * SO3::exp(x) wrt. x at x=0.
///
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
const {
Matrix<Scalar, num_parameters, DoF> J;
Eigen::Quaternion<Scalar> const q = unit_quaternion();
Scalar const c0 = Scalar(0.5) * q.w();
Scalar const c1 = Scalar(0.5) * q.z();
Scalar const c2 = -c1;
Scalar const c3 = Scalar(0.5) * q.y();
Scalar const c4 = Scalar(0.5) * q.x();
Scalar const c5 = -c4;
Scalar const c6 = -c3;
J(0, 0) = c0;
J(0, 1) = c2;
J(0, 2) = c3;
J(1, 0) = c1;
J(1, 1) = c0;
J(1, 2) = c5;
J(2, 0) = c6;
J(2, 1) = c4;
J(2, 2) = c0;
J(3, 0) = c5;
J(3, 1) = c6;
J(3, 2) = c2;
return J;
}
/// Returns internal parameters of SO(3).
///
/// It returns (q.imag[0], q.imag[1], q.imag[2], q.real), with q being the
/// unit quaternion.
///
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
return unit_quaternion().coeffs();
}
/// Returns group inverse.
///
SOPHUS_FUNC SO3<Scalar> inverse() const {
return SO3<Scalar>(unit_quaternion().conjugate());
}
/// Logarithmic map
///
/// Computes the logarithm, the inverse of the group exponential which maps
/// element of the group (rotation matrices) to elements of the tangent space
/// (rotation-vector).
///
/// To be specific, this function computes ``vee(logmat(.))`` with
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
/// of SO(3).
///
SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
/// As above, but also returns ``theta = |omega|``.
///
SOPHUS_FUNC TangentAndTheta logAndTheta() const {
TangentAndTheta J;
using std::abs;
using std::atan;
using std::sqrt;
Scalar squared_n = unit_quaternion().vec().squaredNorm();
Scalar w = unit_quaternion().w();
Scalar two_atan_nbyw_by_n;
/// Atan-based log thanks to
///
/// C. Hertzberg et al.:
/// "Integrating Generic Sensor Fusion Algorithms with Sound State
/// Representation through Encapsulation of Manifolds"
/// Information Fusion, 2011
if (squared_n < Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
// If quaternion is normalized and n=0, then w should be 1;
// w=0 should never happen here!
SOPHUS_ENSURE(abs(w) >= Constants<Scalar>::epsilon(),
"Quaternion (%) should be normalized!",
unit_quaternion().coeffs().transpose());
Scalar squared_w = w * w;
two_atan_nbyw_by_n =
Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * squared_w);
J.theta = Scalar(2) * squared_n / w;
} else {
Scalar n = sqrt(squared_n);
if (abs(w) < Constants<Scalar>::epsilon()) {
if (w > Scalar(0)) {
two_atan_nbyw_by_n = Constants<Scalar>::pi() / n;
} else {
two_atan_nbyw_by_n = -Constants<Scalar>::pi() / n;
}
} else {
two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n;
}
J.theta = two_atan_nbyw_by_n * n;
}
J.tangent = two_atan_nbyw_by_n * unit_quaternion().vec();
return J;
}
/// It re-normalizes ``unit_quaternion`` to unit length.
///
/// Note: Because of the class invariant, there is typically no need to call
/// this function directly.
///
SOPHUS_FUNC void normalize() {
Scalar length = unit_quaternion_nonconst().norm();
SOPHUS_ENSURE(length >= Constants<Scalar>::epsilon(),
"Quaternion (%) should not be close to zero!",
unit_quaternion_nonconst().coeffs().transpose());
unit_quaternion_nonconst().coeffs() /= length;
}
/// Returns 3x3 matrix representation of the instance.
///
/// For SO(3), the matrix representation is an orthogonal matrix ``R`` with
/// ``det(R)=1``, thus the so-called "rotation matrix".
///
SOPHUS_FUNC Transformation matrix() const {
return unit_quaternion().toRotationMatrix();
}
/// Assignment-like operator from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC SO3Base<Derived>& operator=(SO3Base<OtherDerived> const& other) {
unit_quaternion_nonconst() = other.unit_quaternion();
return *this;
}
/// Group multiplication, which is rotation concatenation.
///
template <typename OtherDerived>
SOPHUS_FUNC SO3Product<OtherDerived> operator*(
SO3Base<OtherDerived> const& other) const {
using QuaternionProductType =
typename SO3Product<OtherDerived>::QuaternionType;
const QuaternionType& a = unit_quaternion();
const typename OtherDerived::QuaternionType& b = other.unit_quaternion();
/// NOTE: We cannot use Eigen's Quaternion multiplication because it always
/// returns a Quaternion of the same Scalar as this object, so it is not
/// able to multiple Jets and doubles correctly.
return SO3Product<OtherDerived>(QuaternionProductType(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()));
}
/// Group action on 3-points.
///
/// This function rotates a 3 dimensional point ``p`` by the SO3 element
/// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
///
/// Since SO3 is internally represented by a unit quaternion ``q``, it is
/// implemented as ``p_bar = q * p_foo * q^{*}``
/// with ``q^{*}`` being the quaternion conjugate of ``q``.
///
/// Geometrically, ``p`` is rotated by angle ``|omega|`` around the
/// axis ``omega/|omega|`` with ``omega := vee(log(bar_R_foo))``.
///
/// For ``vee``-operator, see below.
///
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 3>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
/// NOTE: We cannot use Eigen's Quaternion transformVector because it always
/// returns a Vector3 of the same Scalar as this quaternion, so it is not
/// able to be applied to Jets and doubles correctly.
const QuaternionType& q = unit_quaternion();
PointProduct<PointDerived> uv = q.vec().cross(p);
uv += uv;
return p + q.w() * uv + q.vec().cross(uv);
}
/// Group action on homogeneous 3-points. See above for more details.
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 4>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const auto rp = *this * p.template head<3>();
return HomogeneousPointProduct<HPointDerived>(rp(0), rp(1), rp(2), p(3));
}
/// Group action on lines.
///
/// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO3
/// element:
///
/// Both direction ``d`` and origin ``o`` are rotated as a 3 dimensional point
///
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(), (*this) * l.direction());
}
/// In-place group multiplication. This method is only valid if the return
/// type of the multiplication is compatible with this SO3's Scalar type.
///
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC SO3Base<Derived>& operator*=(SO3Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
/// Takes in quaternion, and normalizes it.
///
/// Precondition: The quaternion must not be close to zero.
///
SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quaternion) {
unit_quaternion_nonconst() = quaternion;
normalize();
}
/// Accessor of unit quaternion.
///
SOPHUS_FUNC QuaternionType const& unit_quaternion() const {
return static_cast<Derived const*>(this)->unit_quaternion();
}
private:
/// Mutator of unit_quaternion is private to ensure class invariant. That is
/// the quaternion must stay close to unit length.
///
SOPHUS_FUNC QuaternionType& unit_quaternion_nonconst() {
return static_cast<Derived*>(this)->unit_quaternion_nonconst();
}
};
/// SO3 using default storage; derived from SO3Base.
template <class Scalar_, int Options>
class SO3 : public SO3Base<SO3<Scalar_, Options>> {
public:
using Base = SO3Base<SO3<Scalar_, Options>>;
static int constexpr DoF = Base::DoF;
static int constexpr num_parameters = Base::num_parameters;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
/// ``Base`` is friend so unit_quaternion_nonconst can be accessed from
/// ``Base``.
friend class SO3Base<SO3<Scalar, Options>>;
using Base::operator=;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Default constructor initializes unit quaternion to identity rotation.
///
SOPHUS_FUNC SO3()
: unit_quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
/// Copy constructor
///
SOPHUS_FUNC SO3(SO3 const& other) = default;
/// Copy-like constructor from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC SO3(SO3Base<OtherDerived> const& other)
: unit_quaternion_(other.unit_quaternion()) {}
/// Constructor from rotation matrix
///
/// Precondition: rotation matrix needs to be orthogonal with determinant
/// of 1.
///
SOPHUS_FUNC SO3(Transformation const& R) : unit_quaternion_(R) {
SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %",
R * R.transpose());
SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
R.determinant());
}
/// Constructor from quaternion
///
/// Precondition: quaternion must not be close to zero.
///
template <class D>
SOPHUS_FUNC explicit SO3(Eigen::QuaternionBase<D> const& quat)
: unit_quaternion_(quat) {
static_assert(
std::is_same<typename Eigen::QuaternionBase<D>::Scalar, Scalar>::value,
"Input must be of same scalar type");
Base::normalize();
}
/// Accessor of unit quaternion.
///
SOPHUS_FUNC QuaternionMember const& unit_quaternion() const {
return unit_quaternion_;
}
/// Returns derivative of exp(x) wrt. x.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
Tangent const& omega) {
using std::cos;
using std::exp;
using std::sin;
using std::sqrt;
Scalar const c0 = omega[0] * omega[0];
Scalar const c1 = omega[1] * omega[1];
Scalar const c2 = omega[2] * omega[2];
Scalar const c3 = c0 + c1 + c2;
if (c3 < Constants<Scalar>::epsilon()) {
return Dx_exp_x_at_0();
}
Scalar const c4 = sqrt(c3);
Scalar const c5 = 1.0 / c4;
Scalar const c6 = 0.5 * c4;
Scalar const c7 = sin(c6);
Scalar const c8 = c5 * c7;
Scalar const c9 = pow(c3, -3.0L / 2.0L);
Scalar const c10 = c7 * c9;
Scalar const c11 = Scalar(1.0) / c3;
Scalar const c12 = cos(c6);
Scalar const c13 = Scalar(0.5) * c11 * c12;
Scalar const c14 = c7 * c9 * omega[0];
Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0];
Scalar const c16 = -c14 * omega[1] + c15 * omega[1];
Scalar const c17 = -c14 * omega[2] + c15 * omega[2];
Scalar const c18 = omega[1] * omega[2];
Scalar const c19 = -c10 * c18 + c13 * c18;
Scalar const c20 = Scalar(0.5) * c5 * c7;
Sophus::Matrix<Scalar, num_parameters, DoF> J;
J(0, 0) = -c0 * c10 + c0 * c13 + c8;
J(0, 1) = c16;
J(0, 2) = c17;
J(1, 0) = c16;
J(1, 1) = -c1 * c10 + c1 * c13 + c8;
J(1, 2) = c19;
J(2, 0) = c17;
J(2, 1) = c19;
J(2, 2) = -c10 * c2 + c13 * c2 + c8;
J(3, 0) = -c20 * omega[0];
J(3, 1) = -c20 * omega[1];
J(3, 2) = -c20 * omega[2];
return J;
}
/// Returns derivative of exp(x) wrt. x_i at x=0.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
Dx_exp_x_at_0() {
Sophus::Matrix<Scalar, num_parameters, DoF> J;
// clang-format off
J << Scalar(0.5), Scalar(0), Scalar(0),
Scalar(0), Scalar(0.5), Scalar(0),
Scalar(0), Scalar(0), Scalar(0.5),
Scalar(0), Scalar(0), Scalar(0);
// clang-format on
return J;
}
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
///
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
/// Group exponential
///
/// This functions takes in an element of tangent space (= rotation vector
/// ``omega``) and returns the corresponding element of the group SO(3).
///
/// To be more specific, this function computes ``expmat(hat(omega))``
/// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
/// hat()-operator of SO(3).
///
SOPHUS_FUNC static SO3<Scalar> exp(Tangent const& omega) {
Scalar theta;
return expAndTheta(omega, &theta);
}
/// As above, but also returns ``theta = |omega|`` as out-parameter.
///
/// Precondition: ``theta`` must not be ``nullptr``.
///
SOPHUS_FUNC static SO3<Scalar> expAndTheta(Tangent const& omega,
Scalar* theta) {
SOPHUS_ENSURE(theta != nullptr, "must not be nullptr.");
using std::abs;
using std::cos;
using std::sin;
using std::sqrt;
Scalar theta_sq = omega.squaredNorm();
Scalar imag_factor;
Scalar real_factor;
if (theta_sq <
Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
*theta = Scalar(0);
Scalar theta_po4 = theta_sq * theta_sq;
imag_factor = Scalar(0.5) - Scalar(1.0 / 48.0) * theta_sq +
Scalar(1.0 / 3840.0) * theta_po4;
real_factor = Scalar(1) - Scalar(1.0 / 8.0) * theta_sq +
Scalar(1.0 / 384.0) * theta_po4;
} else {
*theta = sqrt(theta_sq);
Scalar half_theta = Scalar(0.5) * (*theta);
Scalar sin_half_theta = sin(half_theta);
imag_factor = sin_half_theta / (*theta);
real_factor = cos(half_theta);
}
SO3 q;
q.unit_quaternion_nonconst() =
QuaternionMember(real_factor, imag_factor * omega.x(),
imag_factor * omega.y(), imag_factor * omega.z());
SOPHUS_ENSURE(abs(q.unit_quaternion().squaredNorm() - Scalar(1)) <
Sophus::Constants<Scalar>::epsilon(),
"SO3::exp failed! omega: %, real: %, img: %",
omega.transpose(), real_factor, imag_factor);
return q;
}
/// Returns closest SO3 given arbitrary 3x3 matrix.
///
template <class S = Scalar>
static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO3>
fitToSO3(Transformation const& R) {
return SO3(::Sophus::makeRotationMatrix(R));
}
/// Returns the ith infinitesimal generators of SO(3).
///
/// The infinitesimal generators of SO(3) are:
///
/// ```
/// | 0 0 0 |
/// G_0 = | 0 0 -1 |
/// | 0 1 0 |
///
/// | 0 0 1 |
/// G_1 = | 0 0 0 |
/// | -1 0 0 |
///
/// | 0 -1 0 |
/// G_2 = | 1 0 0 |
/// | 0 0 0 |
/// ```
///
/// Precondition: ``i`` must be 0, 1 or 2.
///
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 && i <= 2, "i should be in range [0,2].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
/// hat-operator
///
/// It takes in the 3-vector representation ``omega`` (= rotation vector) and
/// returns the corresponding matrix representation of Lie algebra element.
///
/// Formally, the hat()-operator of SO(3) is defined as
///
/// ``hat(.): R^3 -> R^{3x3}, hat(omega) = sum_i omega_i * G_i``
/// (for i=0,1,2)
///
/// with ``G_i`` being the ith infinitesimal generator of SO(3).
///
/// The corresponding inverse is the vee()-operator, see below.
///
SOPHUS_FUNC static Transformation hat(Tangent const& omega) {
Transformation Omega;
// clang-format off
Omega <<
Scalar(0), -omega(2), omega(1),
omega(2), Scalar(0), -omega(0),
-omega(1), omega(0), Scalar(0);
// clang-format on
return Omega;
}
/// Lie bracket
///
/// It computes the Lie bracket of SO(3). To be more specific, it computes
///
/// ``[omega_1, omega_2]_so3 := vee([hat(omega_1), hat(omega_2)])``
///
/// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
/// hat()-operator and ``vee(.)`` the vee()-operator of SO3.
///
/// For the Lie algebra so3, the Lie bracket is simply the cross product:
///
/// ``[omega_1, omega_2]_so3 = omega_1 x omega_2.``
///
SOPHUS_FUNC static Tangent lieBracket(Tangent const& omega1,
Tangent const& omega2) {
return omega1.cross(omega2);
}
/// Construct x-axis rotation.
///
static SOPHUS_FUNC SO3 rotX(Scalar const& x) {
return SO3::exp(Sophus::Vector3<Scalar>(x, Scalar(0), Scalar(0)));
}
/// Construct y-axis rotation.
///
static SOPHUS_FUNC SO3 rotY(Scalar const& y) {
return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), y, Scalar(0)));
}
/// Construct z-axis rotation.
///
static SOPHUS_FUNC SO3 rotZ(Scalar const& z) {
return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), Scalar(0), z));
}
/// Draw uniform sample from SO(3) manifold.
/// Based on: http://planning.cs.uiuc.edu/node198.html
///
template <class UniformRandomBitGenerator>
static SO3 sampleUniform(UniformRandomBitGenerator& generator) {
static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
"generator must meet the UniformRandomBitGenerator concept");
std::uniform_real_distribution<Scalar> uniform(Scalar(0), Scalar(1));
std::uniform_real_distribution<Scalar> uniform_twopi(
Scalar(0), 2 * Constants<Scalar>::pi());
const Scalar u1 = uniform(generator);
const Scalar u2 = uniform_twopi(generator);
const Scalar u3 = uniform_twopi(generator);
const Scalar a = sqrt(1 - u1);
const Scalar b = sqrt(u1);
return SO3(
QuaternionMember(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)));
}
/// vee-operator
///
/// It takes the 3x3-matrix representation ``Omega`` and maps it to the
/// corresponding vector representation of Lie algebra.
///
/// This is the inverse of the hat()-operator, see above.
///
/// Precondition: ``Omega`` must have the following structure:
///
/// | 0 -c b |
/// | c 0 -a |
/// | -b a 0 |
///
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0));
}
protected:
/// Mutator of unit_quaternion is protected to ensure class invariant.
///
SOPHUS_FUNC QuaternionMember& unit_quaternion_nonconst() {
return unit_quaternion_;
}
QuaternionMember unit_quaternion_;
};
} // namespace Sophus
namespace Eigen {
/// Specialization of Eigen::Map for ``SO3``; derived from SO3Base.
///
/// Allows us to wrap SO3 objects around POD array (e.g. external c style
/// quaternion).
template <class Scalar_, int Options>
class Map<Sophus::SO3<Scalar_>, Options>
: public Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>> {
public:
using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
/// ``Base`` is friend so unit_quaternion_nonconst can be accessed from
/// ``Base``.
friend class Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar* coeffs) : unit_quaternion_(coeffs) {}
/// Accessor of unit quaternion.
///
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options> const& unit_quaternion()
const {
return unit_quaternion_;
}
protected:
/// Mutator of unit_quaternion is protected to ensure class invariant.
///
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>&
unit_quaternion_nonconst() {
return unit_quaternion_;
}
Map<Eigen::Quaternion<Scalar>, Options> unit_quaternion_;
};
/// Specialization of Eigen::Map for ``SO3 const``; derived from SO3Base.
///
/// Allows us to wrap SO3 objects around POD array (e.g. external c style
/// quaternion).
template <class Scalar_, int Options>
class Map<Sophus::SO3<Scalar_> const, Options>
: public Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>> {
public:
using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar const* coeffs) : unit_quaternion_(coeffs) {}
/// Accessor of unit quaternion.
///
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar> const, Options> const&
unit_quaternion() const {
return unit_quaternion_;
}
protected:
/// Mutator of unit_quaternion is protected to ensure class invariant.
///
Map<Eigen::Quaternion<Scalar> const, Options> const unit_quaternion_;
};
} // namespace Eigen
#endif