feat:给特征提取添加中文注释

main
邱棚 2025-02-02 01:42:55 +08:00
parent d696fe4871
commit 42e60fba95
2 changed files with 278 additions and 13 deletions

View File

@ -6,87 +6,162 @@
namespace oh_my_loam { namespace oh_my_loam {
// 定义一些局部常量
namespace { namespace {
// 2π用于角度补偿
const double kTwoPi = 2 * M_PI; const double kTwoPi = 2 * M_PI;
// 极小值阈值,防止数值误差
const double kEps = 1e-6; const double kEps = 1e-6;
} // namespace } // namespace
/**
* @brief
*
* YAML
*
*
* @return true
*/
bool Extractor::Init() { bool Extractor::Init() {
// 从单例配置管理器中获取 YAML 配置
const auto &config = common::YAMLConfig::Instance()->config(); const auto &config = common::YAMLConfig::Instance()->config();
// 提取出与特征提取相关的配置部分
config_ = config["extractor_config"]; config_ = config["extractor_config"];
// 从配置中获取是否启用可视化
is_vis_ = config_["vis"].as<bool>(); is_vis_ = config_["vis"].as<bool>();
// 是否输出详细日志信息
verbose_ = config_["verbose"].as<bool>(); verbose_ = config_["verbose"].as<bool>();
AINFO << "Extraction visualizer: " << (is_vis_ ? "ON" : "OFF"); AINFO << "Extraction visualizer: " << (is_vis_ ? "ON" : "OFF");
// 如果启用了可视化,则实例化视觉化器
if (is_vis_) visualizer_.reset(new ExtractorVisualizer); if (is_vis_) visualizer_.reset(new ExtractorVisualizer);
return true; return true;
} }
/**
* @brief
*
*
* 1.
* 2. 线
* 3. 线
* 4.
* 5.
* 6.
*
* @param timestamp
* @param cloud
* @param features
*/
void Extractor::Process(double timestamp, void Extractor::Process(double timestamp,
const common::PointCloudConstPtr &cloud, const common::PointCloudConstPtr &cloud,
std::vector<Feature> *const features) { std::vector<Feature> *const features) {
// 开始计时(宏定义,便于性能调试)
BLOCK_TIMER_START; BLOCK_TIMER_START;
// 若输入点云的点数小于配置要求,则发出警告并返回
if (cloud->size() < config_["min_point_num"].as<size_t>()) { if (cloud->size() < config_["min_point_num"].as<size_t>()) {
AWARN << "Too few input points: num = " << cloud->size() << " (< " AWARN << "Too few input points: num = " << cloud->size() << " (< "
<< config_["min_point_num"].as<int>() << ")"; << config_["min_point_num"].as<int>() << ")";
return; return;
} }
// split point cloud int scans
// 1. 划分扫描线:将整体点云按照激光束数或扫描行数划分为多个扫描线
std::vector<TCTPointCloud> scans; std::vector<TCTPointCloud> scans;
SplitScan(*cloud, &scans); SplitScan(*cloud, &scans);
AINFO_IF(verbose_) << "Extractor::SplitScan: " << BLOCK_TIMER_STOP_FMT; AINFO_IF(verbose_) << "Extractor::SplitScan: " << BLOCK_TIMER_STOP_FMT;
// compute curvature to each point
// 2. 对每个扫描线中的点计算曲率(局部平滑性指标)
for (auto &scan : scans) { for (auto &scan : scans) {
ComputeCurvature(&scan); ComputeCurvature(&scan);
} }
AINFO_IF(verbose_) << "Extractor::ComputeCurvature: " << BLOCK_TIMER_STOP_FMT; AINFO_IF(verbose_) << "Extractor::ComputeCurvature: " << BLOCK_TIMER_STOP_FMT;
// assign type to each point: FLAT, LESS_FLAT, NORMAL, LESS_SHARP or SHARP
// 3. 根据计算的曲率值,为每个扫描线内的点分配类别(角点、平面点等)
for (auto &scan : scans) { for (auto &scan : scans) {
AssignType(&scan); AssignType(&scan);
} }
AINFO_IF(verbose_) << "Extractor::AssignType: " << BLOCK_TIMER_STOP_FMT; AINFO_IF(verbose_) << "Extractor::AssignType: " << BLOCK_TIMER_STOP_FMT;
// store points into feature point clouds based on their type
// 4. 根据不同的点类型,将点整理到特征集合中
for (size_t i = 0; i < scans.size(); ++i) { for (size_t i = 0; i < scans.size(); ++i) {
Feature feature; Feature feature;
GenerateFeature(scans[i], &feature); GenerateFeature(scans[i], &feature);
features->push_back(std::move(feature)); features->push_back(std::move(feature));
} }
AINFO << "Extractor::Process: " << BLOCK_TIMER_STOP_FMT; AINFO << "Extractor::Process: " << BLOCK_TIMER_STOP_FMT;
// 5. 如果启用了可视化,调用可视化函数展示当前帧点云和提取的特征
if (is_vis_) Visualize(cloud, *features, timestamp); if (is_vis_) Visualize(cloud, *features, timestamp);
} }
/**
* @brief 线
*
*
* 线便
*
* @param cloud
* @param scans 线线
*/
void Extractor::SplitScan(const common::PointCloud &cloud, void Extractor::SplitScan(const common::PointCloud &cloud,
std::vector<TCTPointCloud> *const scans) const { std::vector<TCTPointCloud> *const scans) const {
// 根据激光束数量num_scans_调整输出容器大小
scans->resize(num_scans_); scans->resize(num_scans_);
// 在点云前 num_scans_ 个点中,找到一个极角最小(或最大,视具体传感器安装角度而定)的点,
// 用于确定扫描起始的角度
auto it = std::min_element(cloud.begin(), cloud.begin() + num_scans(), auto it = std::min_element(cloud.begin(), cloud.begin() + num_scans(),
[](const auto &p1, const auto &p2) { [](const auto &p1, const auto &p2) {
return -std::atan2(p1.y, p1.x) < return -std::atan2(p1.y, p1.x) <
-std::atan2(p2.y, p2.x); -std::atan2(p2.y, p2.x);
}); });
// 记录扫描起始角度(负号可能是为了调整坐标系的方向)
double yaw_start = -std::atan2(it->y, it->x); double yaw_start = -std::atan2(it->y, it->x);
// 标记是否已经跨过半圈(用于处理角度环绕问题)
bool half_passed = false; bool half_passed = false;
// 遍历整个点云为每个点计算其所属扫描线ID
for (const auto &pt : cloud) { for (const auto &pt : cloud) {
int scan_id = GetScanID(pt); int scan_id = GetScanID(pt);
if (scan_id >= num_scans_ || scan_id < 0) continue; if (scan_id >= num_scans_ || scan_id < 0) continue; // 跳过无效扫描线
// 计算该点的横向角度(这里也取负号,和 yaw_start 保持一致)
double yaw = -std::atan2(pt.y, pt.x); double yaw = -std::atan2(pt.y, pt.x);
// 计算该点与扫描起始点之间的角度差,并归一化到 [-π, π) 或 [0, 2π)
double yaw_diff = common::NormalizeAngle(yaw - yaw_start); double yaw_diff = common::NormalizeAngle(yaw - yaw_start);
if (yaw_diff >= -kEps) { if (yaw_diff >= -kEps) {
// 如果已经跨过半圈,则需要加上 2π 补偿
if (half_passed) yaw_diff += kTwoPi; if (half_passed) yaw_diff += kTwoPi;
} else { } else {
// 如果角度差为负,说明刚好跨过 0 度,此时设置 half_passed 标记
half_passed = true; half_passed = true;
yaw_diff += kTwoPi; yaw_diff += kTwoPi;
} }
// 原来的时间戳计算方式被注释掉了,改为直接用固定值加上扫描线编号(可能用于区分扫描线)
// double time = std::min(yaw_diff / kTwoPi, 1 - kEps) + scan_id; // double time = std::min(yaw_diff / kTwoPi, 1 - kEps) + scan_id;
double time = 0.999999 + scan_id; double time = 0.999999 + scan_id;
// 将点封装为 TCTPoint并将曲率初始化为 NaN后续会计算
scans->at(scan_id).push_back( scans->at(scan_id).push_back(
{pt.x, pt.y, pt.z, static_cast<float>(time), std::nanf("")}); {pt.x, pt.y, pt.z, static_cast<float>(time), std::nanf("")});
} }
} }
/**
* @brief
*
* 线使 5 10
*
*
* @param scan 线 curvature
*/
void Extractor::ComputeCurvature(TCTPointCloud *const scan) const { void Extractor::ComputeCurvature(TCTPointCloud *const scan) const {
// 从配置中获取扫描线段的分段数(用于后续点分配可能有影响)
size_t seg_num = config_["scan_seg_num"].as<int>(); size_t seg_num = config_["scan_seg_num"].as<int>();
// 如果点数不足(边界点不能计算曲率),则直接返回
if (scan->size() <= 10 + seg_num) return; if (scan->size() <= 10 + seg_num) return;
auto &pts = scan->points; auto &pts = scan->points;
// 对每个中间点(避开前 5 个和后 5 个边界点)计算曲率
for (size_t i = 5; i < pts.size() - 5; ++i) { for (size_t i = 5; i < pts.size() - 5; ++i) {
// 分别计算 x, y, z 方向上的局部差值
float dx = pts[i - 5].x + pts[i - 4].x + pts[i - 3].x + pts[i - 2].x + float dx = pts[i - 5].x + pts[i - 4].x + pts[i - 3].x + pts[i - 2].x +
pts[i - 1].x + pts[i + 1].x + pts[i + 2].x + pts[i + 3].x + pts[i - 1].x + pts[i + 1].x + pts[i + 2].x + pts[i + 3].x +
pts[i + 4].x + pts[i + 5].x - 10 * pts[i].x; pts[i + 4].x + pts[i + 5].x - 10 * pts[i].x;
@ -96,20 +171,35 @@ void Extractor::ComputeCurvature(TCTPointCloud *const scan) const {
float dz = pts[i - 5].z + pts[i - 4].z + pts[i - 3].z + pts[i - 2].z + float dz = pts[i - 5].z + pts[i - 4].z + pts[i - 3].z + pts[i - 2].z +
pts[i - 1].z + pts[i + 1].z + pts[i + 2].z + pts[i + 3].z + pts[i - 1].z + pts[i + 1].z + pts[i + 2].z + pts[i + 3].z +
pts[i + 4].z + pts[i + 5].z - 10 * pts[i].z; pts[i + 4].z + pts[i + 5].z - 10 * pts[i].z;
// 使用欧氏范数计算曲率(局部变化量大小)
pts[i].curvature = std::hypot(dx, dy, dz); pts[i].curvature = std::hypot(dx, dy, dz);
} }
// 移除曲率值非有限inf 或 NaN的点保证后续处理数据合法
common::RemovePoints<TCTPoint>(*scan, scan, [](const TCTPoint &pt) { common::RemovePoints<TCTPoint>(*scan, scan, [](const TCTPoint &pt) {
return !std::isfinite(pt.curvature); return !std::isfinite(pt.curvature);
}); });
} }
/**
* @brief 线
*
* 线
* FLAT_SURF
*
* @param scan 线 type
*/
void Extractor::AssignType(TCTPointCloud *const scan) const { void Extractor::AssignType(TCTPointCloud *const scan) const {
int pt_num = scan->size(); int pt_num = scan->size();
// 从配置中获取扫描分段数量
int seg_num = config_["scan_seg_num"].as<int>(); int seg_num = config_["scan_seg_num"].as<int>();
if (pt_num < seg_num) return; if (pt_num < seg_num) return;
// 计算每个分段的点数,确保每段覆盖整个扫描线
int seg_pt_num = (pt_num - 1) / seg_num + 1; int seg_pt_num = (pt_num - 1) / seg_num + 1;
// 用于记录某个点是否已经被选为特征,避免同一区域内多个点重复被选
std::vector<bool> picked(pt_num, false); std::vector<bool> picked(pt_num, false);
// 构造一个从 0 到 pt_num-1 的索引数组,便于排序和遍历
std::vector<int> indices = common::Range(pt_num); std::vector<int> indices = common::Range(pt_num);
// 从配置中读取各类特征点的数量限制和曲率阈值
int sharp_corner_point_num = config_["sharp_corner_point_num"].as<int>(); int sharp_corner_point_num = config_["sharp_corner_point_num"].as<int>();
int corner_point_num = config_["corner_point_num"].as<int>(); int corner_point_num = config_["corner_point_num"].as<int>();
int flat_surf_point_num = config_["flat_surf_point_num"].as<int>(); int flat_surf_point_num = config_["flat_surf_point_num"].as<int>();
@ -117,36 +207,47 @@ void Extractor::AssignType(TCTPointCloud *const scan) const {
config_["corner_point_curvature_th"].as<float>(); config_["corner_point_curvature_th"].as<float>();
float surf_point_curvature_th = float surf_point_curvature_th =
config_["surf_point_curvature_th"].as<float>(); config_["surf_point_curvature_th"].as<float>();
// 对扫描线按段进行处理,分段的目的是防止不同区域特征密度不均
for (int seg = 0; seg < seg_num; ++seg) { for (int seg = 0; seg < seg_num; ++seg) {
// 定义当前分段的起始和结束索引
int b = seg * seg_pt_num; int b = seg * seg_pt_num;
int e = std::min((seg + 1) * seg_pt_num, pt_num); int e = std::min((seg + 1) * seg_pt_num, pt_num);
if (b >= e) break; if (b >= e) break;
// sort by curvature for each segment: large -> small // 在当前分段内,根据曲率从大到小排序(高曲率的点更可能是角点)
std::sort(indices.begin() + b, indices.begin() + e, [&](int i, int j) { std::sort(indices.begin() + b, indices.begin() + e, [&](int i, int j) {
return scan->at(i).curvature > scan->at(j).curvature; return scan->at(i).curvature > scan->at(j).curvature;
}); });
// pick corner points // 从排序后的数组中选取角点(包括尖锐角点和普通角点)
int corner_point_picked_num = 0; int corner_point_picked_num = 0;
for (int i = b; i < e; ++i) { for (int i = b; i < e; ++i) {
int ix = indices[i]; int ix = indices[i];
// 如果该点还未被选取且曲率超过角点阈值,则选取之
if (!picked.at(ix) && if (!picked.at(ix) &&
scan->at(ix).curvature > corner_point_curvature_th) { scan->at(ix).curvature > corner_point_curvature_th) {
++corner_point_picked_num; ++corner_point_picked_num;
if (corner_point_picked_num <= sharp_corner_point_num) { if (corner_point_picked_num <= sharp_corner_point_num) {
// 前几个高曲率点作为尖锐角点
scan->at(ix).type = PointType::SHARP_CORNER; scan->at(ix).type = PointType::SHARP_CORNER;
} else if (corner_point_picked_num <= corner_point_num) { } else if (corner_point_picked_num <= corner_point_num) {
// 后续点作为一般角点
scan->at(ix).type = PointType::CORNER; scan->at(ix).type = PointType::CORNER;
} else { } else {
// 如果已达到角点数目上限,则退出
break; break;
} }
// 标记该点已被选取
picked.at(ix) = true; picked.at(ix) = true;
// 更新该点邻域内的点,避免相邻点重复被选为特征
UpdateNeighborsPicked(*scan, ix, &picked); UpdateNeighborsPicked(*scan, ix, &picked);
} }
} }
// pick surface points // 选取平面特征点(平面点一般曲率较小)
int surf_point_picked_num = 0; int surf_point_picked_num = 0;
// 反向遍历,即从曲率较小的点开始选取
for (int i = e - 1; i >= b; --i) { for (int i = e - 1; i >= b; --i) {
int ix = indices[i]; int ix = indices[i];
// 如果该点未被选且曲率低于平面点阈值,则选取之
if (!picked.at(ix) && scan->at(ix).curvature < surf_point_curvature_th) { if (!picked.at(ix) && scan->at(ix).curvature < surf_point_curvature_th) {
++surf_point_picked_num; ++surf_point_picked_num;
if (surf_point_picked_num <= flat_surf_point_num) { if (surf_point_picked_num <= flat_surf_point_num) {
@ -154,65 +255,113 @@ void Extractor::AssignType(TCTPointCloud *const scan) const {
} else { } else {
break; break;
} }
// 标记该点已被选取
picked.at(ix) = true; picked.at(ix) = true;
// 同样更新邻域内的点状态
UpdateNeighborsPicked(*scan, ix, &picked); UpdateNeighborsPicked(*scan, ix, &picked);
} }
} }
} }
} }
/**
* @brief 线
*
* 线
*
*
* @param scan 线
* @param feature
*/
void Extractor::GenerateFeature(const TCTPointCloud &scan, void Extractor::GenerateFeature(const TCTPointCloud &scan,
Feature *const feature) const { Feature *const feature) const {
// 遍历扫描线内的每个点,根据点的类型进行分发
for (const auto &pt : scan) { for (const auto &pt : scan) {
// 将 TCTPoint 转换为 TPoint一般只保留位置信息和时间戳
TPoint point(pt.x, pt.y, pt.z, pt.time); TPoint point(pt.x, pt.y, pt.z, pt.time);
switch (pt.type) { switch (pt.type) {
case PointType::FLAT_SURF: case PointType::FLAT_SURF:
// 对于平面点,先存入专用的平面点云集合
feature->cloud_flat_surf->push_back(point); feature->cloud_flat_surf->push_back(point);
// no break: FLAT_SURF points are also SURF points // 注意:这里没有 break意味着 FLAT_SURF 点同时也算作 SURF 点
case PointType::SURF: case PointType::SURF:
// 将平面点(以及标记为 SURF 的点)加入 SURF 点集合
feature->cloud_surf->push_back(point); feature->cloud_surf->push_back(point);
break; break;
case PointType::SHARP_CORNER: case PointType::SHARP_CORNER:
// 对于尖锐角点,先存入尖锐角点集合
feature->cloud_sharp_corner->push_back(point); feature->cloud_sharp_corner->push_back(point);
// no break: SHARP_CORNER points are also CORNER points // 同样,继续下落至角点集合
case PointType::CORNER: case PointType::CORNER:
// 将角点加入角点集合
feature->cloud_corner->push_back(point); feature->cloud_corner->push_back(point);
break; break;
default: default:
// 对于未标记的点,默认归入 SURF 点集合
feature->cloud_surf->push_back(point); feature->cloud_surf->push_back(point);
break; break;
} }
} }
// 对平面点云进行体素滤波降采样,降低点密度
TPointCloudPtr dowm_sampled(new TPointCloud); TPointCloudPtr dowm_sampled(new TPointCloud);
common::VoxelDownSample<TPoint>( common::VoxelDownSample<TPoint>(
feature->cloud_surf, dowm_sampled.get(), feature->cloud_surf, dowm_sampled.get(),
config_["downsample_voxel_size"].as<double>()); config_["downsample_voxel_size"].as<double>());
// 更新平面点云为降采样后的结果
feature->cloud_surf = dowm_sampled; feature->cloud_surf = dowm_sampled;
} }
/**
* @brief
*
*
* 便
*
* @param cloud
* @param features
* @param timestamp
*/
void Extractor::Visualize(const common::PointCloudConstPtr &cloud, void Extractor::Visualize(const common::PointCloudConstPtr &cloud,
const std::vector<Feature> &features, const std::vector<Feature> &features,
double timestamp) const { double timestamp) const {
// 构造视觉化帧数据
std::shared_ptr<ExtractorVisFrame> frame(new ExtractorVisFrame); std::shared_ptr<ExtractorVisFrame> frame(new ExtractorVisFrame);
frame->timestamp = timestamp; frame->timestamp = timestamp;
frame->cloud = cloud; frame->cloud = cloud;
frame->features = features; frame->features = features;
// 调用视觉化器进行渲染
visualizer_->Render(frame); visualizer_->Render(frame);
} }
/**
* @brief
*
*
* 5
*
* @param scan 线
* @param ix
* @param picked
*/
void Extractor::UpdateNeighborsPicked(const TCTPointCloud &scan, int ix, void Extractor::UpdateNeighborsPicked(const TCTPointCloud &scan, int ix,
std::vector<bool> *const picked) const { std::vector<bool> *const picked) const {
// 定义 lambda 函数,用于计算两个点之间的欧氏距离平方
auto dist_sq = [&](size_t i, size_t j) -> double { auto dist_sq = [&](size_t i, size_t j) -> double {
return common::DistanceSquare<TCTPoint>(scan[i], scan[j]); return common::DistanceSquare<TCTPoint>(scan[i], scan[j]);
}; };
// 从配置中获取邻域点距离平方的阈值
double neighbor_point_dist_sq_th = double neighbor_point_dist_sq_th =
config_["neighbor_point_dist_sq_th"].as<float>(); config_["neighbor_point_dist_sq_th"].as<float>();
// 向前遍历最多 5 个邻近点
for (int i = 1; i <= 5; ++i) { for (int i = 1; i <= 5; ++i) {
if (ix - i < 0) break; if (ix - i < 0) break; // 超出数组边界
if (picked->at(ix - i)) continue; if (picked->at(ix - i)) continue; // 如果该点已经被选,则跳过
// 如果相邻两个点的距离超过阈值,则认为该处变化较大,不再继续标记
if (dist_sq(ix - i, ix - i + 1) > neighbor_point_dist_sq_th) break; if (dist_sq(ix - i, ix - i + 1) > neighbor_point_dist_sq_th) break;
// 标记该邻域点为已选,避免重复选取
picked->at(ix - i) = true; picked->at(ix - i) = true;
} }
// 向后遍历最多 5 个邻近点
for (int i = 1; i <= 5; ++i) { for (int i = 1; i <= 5; ++i) {
if (static_cast<size_t>(ix + i) >= scan.size()) break; if (static_cast<size_t>(ix + i) >= scan.size()) break;
if (picked->at(ix + i)) continue; if (picked->at(ix + i)) continue;

View File

@ -1,5 +1,6 @@
#pragma once #pragma once
// 包含必要的公共头文件和依赖模块
#include "common/common.h" #include "common/common.h"
#include "oh_my_loam/base/feature.h" #include "oh_my_loam/base/feature.h"
#include "oh_my_loam/base/utils.h" #include "oh_my_loam/base/utils.h"
@ -8,54 +9,169 @@
namespace oh_my_loam { namespace oh_my_loam {
/**
* @brief
*
*
* - Init
* - Process
* - 线
*
* 线GetScanID
*/
class Extractor { class Extractor {
public: public:
// 默认构造函数
Extractor() = default; Extractor() = default;
// 默认虚析构函数,确保派生类析构时正确释放资源
virtual ~Extractor() = default; virtual ~Extractor() = default;
/**
* @brief
*
*
*
*
* @return true
*/
bool Init(); bool Init();
/**
* @brief
*
*
* - 线
* - 线
* -
* -
* -
*
* @param timestamp
* @param cloud
* @param features
*/
void Process(double timestamp, const common::PointCloudConstPtr &cloud, void Process(double timestamp, const common::PointCloudConstPtr &cloud,
std::vector<Feature> *const features); std::vector<Feature> *const features);
/**
* @brief 线
*
* 线
*
* @return int 线
*/
int num_scans() const { int num_scans() const {
return num_scans_; return num_scans_;
} }
/**
* @brief
*
*
*/
virtual void Reset() {} virtual void Reset() {}
protected: protected:
/**
* @brief 线ID
*
* 线
*
*
* @param pt
* @return int 线ID
*/
virtual int GetScanID(const common::Point &pt) const = 0; virtual int GetScanID(const common::Point &pt) const = 0;
/**
* @brief 线
*
* 线
* 线
*
* @param cloud
* @param scans 线线 TCTPointCloud
*/
virtual void SplitScan(const common::PointCloud &cloud, virtual void SplitScan(const common::PointCloud &cloud,
std::vector<TCTPointCloud> *const scans) const; std::vector<TCTPointCloud> *const scans) const;
/**
* @brief 线
*
* 线
*
*
* @param scan 线
*/
virtual void ComputeCurvature(TCTPointCloud *const scan) const; virtual void ComputeCurvature(TCTPointCloud *const scan) const;
/**
* @brief 线
*
* 线
*
*
* @param scan 线
*/
virtual void AssignType(TCTPointCloud *const scan) const; virtual void AssignType(TCTPointCloud *const scan) const;
/**
* @brief 线
*
* 线
*
*
* @param scan 线
* @param feature
*/
virtual void GenerateFeature(const TCTPointCloud &scan, virtual void GenerateFeature(const TCTPointCloud &scan,
Feature *const feature) const; Feature *const feature) const;
/**
* @brief
*
*
* 便
*
* @param cloud
* @param features
* @param timestamp 0.0
*/
virtual void Visualize(const common::PointCloudConstPtr &cloud, virtual void Visualize(const common::PointCloudConstPtr &cloud,
const std::vector<Feature> &features, const std::vector<Feature> &features,
double timestamp = 0.0) const; double timestamp = 0.0) const;
// 激光雷达扫描线的数量,通常由配置文件中设置
int num_scans_ = 0; int num_scans_ = 0;
// 存储特征提取相关的配置参数YAML 格式)
YAML::Node config_; YAML::Node config_;
// 指向特征提取结果可视化工具的智能指针
std::unique_ptr<ExtractorVisualizer> visualizer_{nullptr}; std::unique_ptr<ExtractorVisualizer> visualizer_{nullptr};
// 是否打印详细日志信息的标志
bool verbose_ = false; bool verbose_ = false;
private: private:
/**
* @brief
*
*
*
*
* @param scan 线
* @param ix 线
* @param picked
*/
void UpdateNeighborsPicked(const TCTPointCloud &scan, int ix, void UpdateNeighborsPicked(const TCTPointCloud &scan, int ix,
std::vector<bool> *const picked) const; std::vector<bool> *const picked) const;
// 标志是否开启可视化true 表示开启
bool is_vis_ = false; bool is_vis_ = false;
// 禁止拷贝和赋值操作的宏定义,确保对象不可拷贝
DISALLOW_COPY_AND_ASSIGN(Extractor); DISALLOW_COPY_AND_ASSIGN(Extractor);
}; };
} // namespace oh_my_loam } // namespace oh_my_loam