#include #include "CKalmanFilter.h" using namespace cv; using namespace std; // Constructor CKalmanFilter::CKalmanFilter(vector p){ kalman = new KalmanFilter( 4, 4, 0 ); // 4 measurement and state parameters kalman->transitionMatrix = (Mat_(4, 4) << 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1); // Initialization prevResult = p; kalman->statePre.at(0) = p[0][0]; // r1 kalman->statePre.at(1) = p[0][1]; // theta1 kalman->statePre.at(2) = p[1][0]; // r2 kalman->statePre.at(3) = p[1][1]; // theta2 kalman->statePost.at(0)=p[0][0]; kalman->statePost.at(1)=p[0][1]; kalman->statePost.at(2)=p[1][0]; kalman->statePost.at(3)=p[1][1]; setIdentity(kalman->measurementMatrix); setIdentity(kalman->processNoiseCov, Scalar::all(1e-4)); setIdentity(kalman->measurementNoiseCov, Scalar::all(1e-1)); setIdentity(kalman->errorCovPost, Scalar::all(5)); } // Destructor CKalmanFilter::~CKalmanFilter(){ delete kalman; } // Prediction vector CKalmanFilter::predict(){ Mat prediction = kalman->predict(); // predict the state of the next frame prevResult[0][0] = prediction.at(0);prevResult[0][1] = prediction.at(1); prevResult[1][0] = prediction.at(2);prevResult[1][1] = prediction.at(3); return prevResult; } // Correct the prediction based on the measurement vector CKalmanFilter::update(vector measure){ Mat_ measurement(4,1); measurement.setTo(Scalar(0)); measurement.at(0) = measure[0][0];measurement.at(1) = measure[0][1]; measurement.at(2) = measure[1][0];measurement.at(3) = measure[1][1]; Mat estimated = kalman->correct(measurement); // Correct the state of the next frame after obtaining the measurements // Update the measurement if(estimated.at(0) < estimated.at(2)){ measure[0][0] = estimated.at(0);measure[0][1] = estimated.at(1); measure[1][0] = estimated.at(2);measure[1][1] = estimated.at(3); } else{ measure[0][0] = estimated.at(2);measure[0][1] = estimated.at(3); measure[1][0] = estimated.at(0);measure[1][1] = estimated.at(1); } waitKey(1); return measure; // return the measurement }