Compare commits
No commits in common. "27db548ea51d8faa498c9a2492b172219d6a56fb" and "959f7244906d37d80c19fa7ea8fed1c62b2678b1" have entirely different histories.
27db548ea5
...
959f724490
|
@ -2,30 +2,6 @@
|
|||
Changelog for package multi_object_tracking_lidar
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
1.0.4 (2021-08-29)
|
||||
------------------
|
||||
* Merge pull request `#46 <https://github.com/praveen-palanisamy/multiple-object-tracking-lidar/issues/46>`_ from praveen-palanisamy/rm-topic-slash-prefix
|
||||
Remove topic slash prefix
|
||||
* Apply clang-format-10
|
||||
* Rm slash prefix (deprecated in TF2)
|
||||
* Add note to filter NaNs in input point clouds
|
||||
* Contributors: Praveen Palanisamy
|
||||
|
||||
1.0.3 (2020-06-27)
|
||||
------------------
|
||||
* Merge pull request #26 from artursg/noetic-devel
|
||||
C++11 --> C++14 to allow compiling with later versions of PCL, ROS Neotic
|
||||
* Compiles under ROS Noetic
|
||||
* Merge pull request #25 from praveen-palanisamy/add-license-1
|
||||
Add MIT LICENSE
|
||||
* Add LICENSE
|
||||
* Merge pull request #24 from mzahran001/patch-1
|
||||
Fix broken hyperlink to wiki page in README
|
||||
* Fixing link error
|
||||
* Updated README to make clustering approach for 3D vs 2D clear #21
|
||||
* Added DOI and citing info
|
||||
* Contributors: Artur Sagitov, Mohamed Zahran, Praveen Palanisamy
|
||||
|
||||
1.0.2 (2019-12-01)
|
||||
------------------
|
||||
* Added link to wiki pages
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
cmake_minimum_required(VERSION 2.8.3)
|
||||
project(multi_object_tracking_lidar)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
set(CMAKE_CXX_FLAGS "-std=c++0x ${CMAKE_CXX_FLAGS}")
|
||||
## Find catkin macros and libraries
|
||||
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
|
||||
## is used, also find other catkin packages
|
||||
|
|
|
@ -34,9 +34,6 @@ The input point-clouds can be from:
|
|||
3. A point cloud dataset or
|
||||
4. Any other data source that produces point clouds
|
||||
|
||||
**Note:** This package expects valid point cloud data as input. The point clouds you publish to the "`filtered_cloud`" is **not** expected to contain NaNs. The point cloud filtering is somewhat task and application dependent and therefore it is not done by this module.
|
||||
PCL library provides `pcl::removeNaNFromPointCloud (...)` method to filter out NaN points. You can refer to [this example code snippet](https://github.com/praveen-palanisamy/multiple-object-tracking-lidar/issues/29#issuecomment-672098760) to easily filter out NaN points in your point cloud.
|
||||
|
||||
## Citing
|
||||
|
||||
If you use the code or snippets from this repository in your work, please cite:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
<?xml version="1.0"?>
|
||||
<package>
|
||||
<name>multi_object_tracking_lidar</name>
|
||||
<version>1.0.4</version>
|
||||
<version>1.0.2</version>
|
||||
<description>ROS package for Multiple objects detection, tracking and classification from LIDAR scans/point-clouds</description>
|
||||
|
||||
<!-- One maintainer tag required, multiple allowed, one person per tag -->
|
||||
|
|
358
src/main.cpp
358
src/main.cpp
|
@ -1,46 +1,47 @@
|
|||
#include "kf_tracker/CKalmanFilter.h"
|
||||
#include "kf_tracker/featureDetection.h"
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "pcl_ros/point_cloud.h"
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <geometry_msgs/Point.h>
|
||||
#include <iostream>
|
||||
#include <string.h>
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include "kf_tracker/featureDetection.h"
|
||||
#include "kf_tracker/CKalmanFilter.h"
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/video/video.hpp>
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include <ros/ros.h>
|
||||
#include <pcl/io/pcd_io.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <ros/ros.h>
|
||||
#include "pcl_ros/point_cloud.h"
|
||||
#include <geometry_msgs/Point.h>
|
||||
#include <std_msgs/Float32MultiArray.h>
|
||||
#include <std_msgs/Int32MultiArray.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <pcl/common/centroid.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
#include <pcl/common/centroid.h>
|
||||
|
||||
#include <visualization_msgs/MarkerArray.h>
|
||||
#include <visualization_msgs/Marker.h>
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
#include <visualization_msgs/Marker.h>
|
||||
#include <visualization_msgs/MarkerArray.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
ros::Publisher objID_pub;
|
||||
|
||||
// KF init
|
||||
|
@ -65,6 +66,7 @@ ros::Publisher markerPub;
|
|||
|
||||
std::vector<geometry_msgs::Point> prevClusterCenters;
|
||||
|
||||
|
||||
cv::Mat state(stateDim,1,CV_32F);
|
||||
cv::Mat_<float> measurement(2,1);
|
||||
|
||||
|
@ -74,147 +76,156 @@ std::vector<int> objID; // Output of the data association using KF
|
|||
bool firstFrame=true;
|
||||
|
||||
// calculate euclidean distance of two points
|
||||
double euclidean_distance(geometry_msgs::Point &p1, geometry_msgs::Point &p2) {
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) +
|
||||
(p1.z - p2.z) * (p1.z - p2.z));
|
||||
double euclidean_distance(geometry_msgs::Point& p1, geometry_msgs::Point& p2)
|
||||
{
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z));
|
||||
}
|
||||
/*
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to
|
||||
two KF_Trackers. int countIDs(vector<int> v)
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to two KF_Trackers.
|
||||
int countIDs(vector<int> v)
|
||||
{
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n =
|
||||
distance(v.end(), v.begin()) sort(v.begin(), v.end()); // Average case O(n log
|
||||
n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then
|
||||
sort_heap.
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n = distance(v.end(), v.begin())
|
||||
sort(v.begin(), v.end()); // Average case O(n log n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then sort_heap.
|
||||
|
||||
// Unique will take a sorted range, and move things around to get duplicated
|
||||
// items to the back and returns an iterator to the end of the unique
|
||||
section of the range auto unique_end = unique(v.begin(), v.end()); // Again n
|
||||
comparisons return distance(unique_end, v.begin()); // Constant time for random
|
||||
access iterators (like vector's)
|
||||
// items to the back and returns an iterator to the end of the unique section of the range
|
||||
auto unique_end = unique(v.begin(), v.end()); // Again n comparisons
|
||||
return distance(unique_end, v.begin()); // Constant time for random access iterators (like vector's)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
objID: vector containing the IDs of the clusters that should be associated with
|
||||
each KF_Tracker objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker
|
||||
objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
|
||||
std::pair<int, int> findIndexOfMin(std::vector<std::vector<float>> distMat) {
|
||||
std::pair<int,int> findIndexOfMin(std::vector<std::vector<float> > distMat)
|
||||
{
|
||||
cout<<"findIndexOfMin cALLED\n";
|
||||
std::pair<int,int>minIndex;
|
||||
float minEl=std::numeric_limits<float>::max();
|
||||
cout<<"minEl="<<minEl<<"\n";
|
||||
for (int i=0; i<distMat.size();i++)
|
||||
for (int j = 0; j < distMat.at(0).size(); j++) {
|
||||
if (distMat[i][j] < minEl) {
|
||||
for(int j=0;j<distMat.at(0).size();j++)
|
||||
{
|
||||
if( distMat[i][j]<minEl)
|
||||
{
|
||||
minEl=distMat[i][j];
|
||||
minIndex=std::make_pair(i,j);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
cout<<"minIndex="<<minIndex.first<<","<<minIndex.second<<"\n";
|
||||
return minIndex;
|
||||
}
|
||||
void KFT(const std_msgs::Float32MultiArray ccs) {
|
||||
void KFT(const std_msgs::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
|
||||
std::vector<cv::Mat> pred{KF0.predict(), KF1.predict(), KF2.predict(),
|
||||
KF3.predict(), KF4.predict(), KF5.predict()};
|
||||
std::vector<cv::Mat> pred{KF0.predict(),KF1.predict(),KF2.predict(),KF3.predict(),KF4.predict(),KF5.predict()};
|
||||
//cout<<"Pred successfull\n";
|
||||
|
||||
//cv::Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
|
||||
// cout<<"Prediction 1
|
||||
// ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
// cout<<"Prediction 1 ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
|
||||
// Get measurements
|
||||
// Extract the position of the clusters forom the multiArray. To check if the
|
||||
// data coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
// Extract the position of the clusters forom the multiArray. To check if the data
|
||||
// coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
std::vector<geometry_msgs::Point> clusterCenters;//clusterCenters
|
||||
|
||||
int i=0;
|
||||
for (std::vector<float>::const_iterator it = ccs.data.begin();
|
||||
it != ccs.data.end(); it += 3) {
|
||||
for (std::vector<float>::const_iterator it=ccs.data.begin();it!=ccs.data.end();it+=3)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=*it;
|
||||
pt.y=*(it+1);
|
||||
pt.z=*(it+2);
|
||||
|
||||
clusterCenters.push_back(pt);
|
||||
|
||||
}
|
||||
|
||||
// cout<<"CLusterCenters Obtained"<<"\n";
|
||||
std::vector<geometry_msgs::Point> KFpredictions;
|
||||
i=0;
|
||||
for (auto it = pred.begin(); it != pred.end(); it++) {
|
||||
for (auto it=pred.begin();it!=pred.end();it++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=(*it).at<float>(0);
|
||||
pt.y=(*it).at<float>(1);
|
||||
pt.z=(*it).at<float>(2);
|
||||
|
||||
KFpredictions.push_back(pt);
|
||||
|
||||
}
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
|
||||
|
||||
|
||||
// Find the cluster that is more probable to be belonging to a given KF.
|
||||
objID.clear();//Clear the objID vector
|
||||
objID.resize(6); // Allocate default elements so that [i] doesnt segfault.
|
||||
// Should be done better
|
||||
// Copy clusterCentres for modifying it and preventing multiple assignments of
|
||||
// the same ID
|
||||
objID.resize(6);//Allocate default elements so that [i] doesnt segfault. Should be done better
|
||||
// Copy clusterCentres for modifying it and preventing multiple assignments of the same ID
|
||||
std::vector<geometry_msgs::Point> copyOfClusterCenters(clusterCenters);
|
||||
std::vector<std::vector<float> > distMat;
|
||||
|
||||
for (int filterN = 0; filterN < 6; filterN++) {
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for (int n = 0; n < 6; n++) {
|
||||
distVec.push_back(
|
||||
euclidean_distance(KFpredictions[filterN], copyOfClusterCenters[n]));
|
||||
for(int n=0;n<6;n++)
|
||||
{
|
||||
distVec.push_back(euclidean_distance(KFpredictions[filterN],copyOfClusterCenters[n]));
|
||||
}
|
||||
|
||||
distMat.push_back(distVec);
|
||||
/*// Based on distVec instead of distMat (global min). Has problems with the
|
||||
person's leg going out of scope int
|
||||
ID=std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end()));
|
||||
/*// Based on distVec instead of distMat (global min). Has problems with the person's leg going out of scope
|
||||
int ID=std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end()));
|
||||
//cout<<"finterlN="<<filterN<<" minID="<<ID
|
||||
objID.push_back(ID);
|
||||
// Prevent assignment of the same object ID to multiple clusters
|
||||
copyOfClusterCenters[ID].x=100000;// A large value so that this center is
|
||||
not assigned to another cluster copyOfClusterCenters[ID].y=10000;
|
||||
copyOfClusterCenters[ID].x=100000;// A large value so that this center is not assigned to another cluster
|
||||
copyOfClusterCenters[ID].y=10000;
|
||||
copyOfClusterCenters[ID].z=10000;
|
||||
*/
|
||||
cout<<"filterN="<<filterN<<"\n";
|
||||
|
||||
|
||||
}
|
||||
|
||||
cout<<"distMat.size()"<<distMat.size()<<"\n";
|
||||
cout<<"distMat[0].size()"<<distMat.at(0).size()<<"\n";
|
||||
// DEBUG: print the distMat
|
||||
for (const auto &row : distMat) {
|
||||
for (const auto &s : row)
|
||||
std::cout << s << ' ';
|
||||
for ( const auto &row : distMat )
|
||||
{
|
||||
for ( const auto &s : row ) std::cout << s << ' ';
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
for (int clusterCount = 0; clusterCount < 6; clusterCount++) {
|
||||
|
||||
|
||||
for(int clusterCount=0;clusterCount<6;clusterCount++)
|
||||
{
|
||||
// 1. Find min(distMax)==> (i,j);
|
||||
std::pair<int,int> minIndex(findIndexOfMin(distMat));
|
||||
cout << "Received minIndex=" << minIndex.first << "," << minIndex.second
|
||||
<< "\n";
|
||||
cout<<"Received minIndex="<<minIndex.first<<","<<minIndex.second<<"\n";
|
||||
// 2. objID[i]=clusterCenters[j]; counter++
|
||||
objID[minIndex.first]=minIndex.second;
|
||||
|
||||
// 3. distMat[i,:]=10000; distMat[:,j]=10000
|
||||
distMat[minIndex.first] =
|
||||
std::vector<float>(6, 10000.0); // Set the row to a high number.
|
||||
for (int row = 0; row < distMat.size();
|
||||
row++) // set the column to a high number
|
||||
distMat[minIndex.first]=std::vector<float>(6,10000.0);// Set the row to a high number.
|
||||
for(int row=0;row<distMat.size();row++)//set the column to a high number
|
||||
{
|
||||
distMat[row][minIndex.second]=10000.0;
|
||||
}
|
||||
// 4. if(counter<6) got to 1.
|
||||
cout<<"clusterCount="<<clusterCount<<"\n";
|
||||
|
||||
}
|
||||
|
||||
// cout<<"Got object IDs"<<"\n";
|
||||
|
@ -230,15 +241,14 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
|
||||
visualization_msgs::MarkerArray clusterMarkers;
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
visualization_msgs::Marker m;
|
||||
|
||||
m.id=i;
|
||||
m.type=visualization_msgs::Marker::CUBE;
|
||||
m.header.frame_id = "map";
|
||||
m.scale.x = 0.3;
|
||||
m.scale.y = 0.3;
|
||||
m.scale.z = 0.3;
|
||||
m.header.frame_id="/map";
|
||||
m.scale.x=0.3; m.scale.y=0.3; m.scale.z=0.3;
|
||||
m.action=visualization_msgs::Marker::ADD;
|
||||
m.color.a=1.0;
|
||||
m.color.r=i%2?1:0;
|
||||
|
@ -258,6 +268,9 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
|
||||
markerPub.publish(clusterMarkers);
|
||||
|
||||
|
||||
|
||||
|
||||
std_msgs::Int32MultiArray obj_id;
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
obj_id.data.push_back(*it);
|
||||
|
@ -265,7 +278,8 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
objID_pub.publish(obj_id);
|
||||
// convert clusterCenters from geometry_msgs::Point to floats
|
||||
std::vector<std::vector<float> > cc;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
vector<float> pt;
|
||||
pt.push_back(clusterCenters[objID[i]].x);
|
||||
pt.push_back(clusterCenters[objID[i]].y);
|
||||
|
@ -281,6 +295,8 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
float meas4[2]={cc[4].at(0),cc[4].at(1)};
|
||||
float meas5[2]={cc[5].at(0),cc[5].at(1)};
|
||||
|
||||
|
||||
|
||||
// The update phase
|
||||
cv::Mat meas0Mat=cv::Mat(2,1,CV_32F,meas0);
|
||||
cv::Mat meas1Mat=cv::Mat(2,1,CV_32F,meas1);
|
||||
|
@ -303,48 +319,45 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
if (!(meas5[0]==0.0f || meas5[1]==0.0f))
|
||||
Mat estimated5 = KF5.correct(meas5Mat);
|
||||
|
||||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
|
||||
// cout<<"estimate="<<estimated.at<float>(0)<<","<<estimated.at<float>(1)<<"\n";
|
||||
// Point statePt(estimated.at<float>(0),estimated.at<float>(1));
|
||||
//cout<<"DONE KF_TRACKER\n";
|
||||
|
||||
}
|
||||
void publish_cloud(ros::Publisher &pub,
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cluster) {
|
||||
void publish_cloud(ros::Publisher& pub, pcl::PointCloud<pcl::PointXYZ>::Ptr cluster){
|
||||
sensor_msgs::PointCloud2::Ptr clustermsg (new sensor_msgs::PointCloud2);
|
||||
pcl::toROSMsg (*cluster , *clustermsg);
|
||||
clustermsg->header.frame_id = "map";
|
||||
clustermsg->header.frame_id = "/map";
|
||||
clustermsg->header.stamp = ros::Time::now();
|
||||
pub.publish (*clustermsg);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
|
||||
|
||||
{
|
||||
// cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// If this is the first frame, initialize kalman filters for the clustered
|
||||
// objects
|
||||
if (firstFrame) {
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
if (firstFrame)
|
||||
{
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object
|
||||
// is detected
|
||||
// Could be made generic by creating a Kalman Filter only when a new object is detected
|
||||
|
||||
float dvx=0.01f; //1.0
|
||||
float dvy=0.01f;//1.0
|
||||
float dx=1.0f;
|
||||
float dy=1.0f;
|
||||
KF0.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF1.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF2.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF3.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF4.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF5.transitionMatrix = (Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF0.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF1.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF2.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF3.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF4.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF5.transitionMatrix = (Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
|
||||
cv::setIdentity(KF0.measurementMatrix);
|
||||
cv::setIdentity(KF1.measurementMatrix);
|
||||
|
@ -376,18 +389,16 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
|
||||
// Process the point cloud
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(
|
||||
new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
|
@ -398,6 +409,7 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
|
@ -407,24 +419,24 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
float x = 0.0;
|
||||
float y = 0.0;
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
float x=0.0; float y=0.0;
|
||||
int numPts=0;
|
||||
for (pit = it->indices.begin(); pit != it->indices.end(); pit++) {
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
x+=input_cloud->points[*pit].x;
|
||||
y+=input_cloud->points[*pit].y;
|
||||
numPts++;
|
||||
|
||||
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
// mindist_this_cluster = std::min(dist_this_point,
|
||||
// mindist_this_cluster);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=x/numPts;
|
||||
centroid.y=y/numPts;
|
||||
|
@ -434,17 +446,19 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
|
||||
//Get the centroid of the cluster
|
||||
clusterCentroids.push_back(centroid);
|
||||
|
||||
|
||||
}
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
while (clusterCentroids.size() < 6) {
|
||||
while (clusterCentroids.size()<6)
|
||||
{
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=0.0;
|
||||
centroid.y=0.0;
|
||||
|
@ -453,6 +467,7 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0)=clusterCentroids.at(0).x;
|
||||
KF0.statePre.at<float>(1)=clusterCentroids.at(0).y;
|
||||
|
@ -471,6 +486,7 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
KF2.statePre.at<float>(2)=0;// initial v_x
|
||||
KF2.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0)=clusterCentroids.at(3).x;
|
||||
KF3.statePre.at<float>(1)=clusterCentroids.at(3).y;
|
||||
|
@ -491,7 +507,8 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
|
||||
firstFrame=false;
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=clusterCentroids.at(i).x;
|
||||
pt.y=clusterCentroids.at(i).y;
|
||||
|
@ -505,30 +522,27 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
cout<<"KF4.satePre="<<KF4.statePre.at<float>(0)<<","<<KF4.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF5.satePre="<<KF5.statePre.at<float>(0)<<","<<KF5.statePre.at<float>(1)<<"\n";
|
||||
|
||||
//cin.ignore();// To be able to see the printed initial state of the
|
||||
KalmanFilter
|
||||
//cin.ignore();// To be able to see the printed initial state of the KalmanFilter
|
||||
*/
|
||||
}
|
||||
|
||||
else {
|
||||
|
||||
else
|
||||
{
|
||||
//cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(
|
||||
new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual
|
||||
* index information in a vector<int>. The indices of each detected cluster
|
||||
* are saved here. Cluster_indices is a vector containing one instance of
|
||||
* PointIndices for each detected cluster. Cluster_indices[0] contain all
|
||||
* indices of the first cluster in input point cloud.
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
|
@ -557,24 +571,26 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
// Cluster centroids
|
||||
std::vector<pcl::PointXYZ> clusterCentroids;
|
||||
|
||||
for (it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
float x = 0.0;
|
||||
float y = 0.0;
|
||||
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
|
||||
{
|
||||
float x=0.0; float y=0.0;
|
||||
int numPts=0;
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for (pit = it->indices.begin(); pit != it->indices.end(); pit++) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
|
||||
|
||||
x+=input_cloud->points[*pit].x;
|
||||
y+=input_cloud->points[*pit].y;
|
||||
numPts++;
|
||||
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
// mindist_this_cluster = std::min(dist_this_point,
|
||||
// mindist_this_cluster);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
pcl::PointXYZ centroid;
|
||||
|
@ -586,18 +602,19 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
|
||||
//Get the centroid of the cluster
|
||||
clusterCentroids.push_back(centroid);
|
||||
|
||||
}
|
||||
// cout<<"cluster_vec got some clusters\n";
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
while (clusterCentroids.size() < 6) {
|
||||
while (clusterCentroids.size()<6)
|
||||
{
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=0.0;
|
||||
centroid.y=0.0;
|
||||
|
@ -606,11 +623,14 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
|
||||
|
||||
std_msgs::Float32MultiArray cc;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for(int i=0;i<6;i++)
|
||||
{
|
||||
cc.data.push_back(clusterCentroids.at(i).x);
|
||||
cc.data.push_back(clusterCentroids.at(i).y);
|
||||
cc.data.push_back(clusterCentroids.at(i).z);
|
||||
|
||||
}
|
||||
// cout<<"6 clusters initialized\n";
|
||||
|
||||
|
@ -618,69 +638,80 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
KFT(cc);
|
||||
int i=0;
|
||||
bool publishedCluster[6];
|
||||
for (auto it = objID.begin(); it != objID.end();
|
||||
it++) { // cout<<"Inside the for loop\n";
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
{ //cout<<"Inside the for loop\n";
|
||||
|
||||
switch (i) {
|
||||
|
||||
switch(i)
|
||||
{
|
||||
cout<<"Inside the switch case\n";
|
||||
case 0: {
|
||||
publish_cloud(pub_cluster0,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 1: {
|
||||
publish_cloud(pub_cluster1,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 2: {
|
||||
publish_cloud(pub_cluster2,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 3: {
|
||||
publish_cloud(pub_cluster3,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 4: {
|
||||
publish_cloud(pub_cluster4,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
case 5: {
|
||||
publish_cloud(pub_cluster5,cluster_vec[*it]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
default: break;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// ROS init
|
||||
ros::init (argc,argv,"kf_tracker");
|
||||
ros::NodeHandle nh;
|
||||
|
||||
|
||||
// Publishers to publish the state of the objects (pos and vel)
|
||||
//objState1=nh.advertise<geometry_msgs::Twist> ("obj_1",1);
|
||||
|
||||
|
||||
|
||||
cout<<"About to setup callback\n";
|
||||
|
||||
// Create a ROS subscriber for the input point cloud
|
||||
|
@ -704,5 +735,8 @@ int main(int argc, char **argv) {
|
|||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
|
||||
ros::spin();
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -1,40 +1,41 @@
|
|||
#include "kf_tracker/CKalmanFilter.h"
|
||||
#include "kf_tracker/featureDetection.h"
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "pcl_ros/point_cloud.h"
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <geometry_msgs/Point.h>
|
||||
#include <iostream>
|
||||
#include <string.h>
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include "kf_tracker/featureDetection.h"
|
||||
#include "kf_tracker/CKalmanFilter.h"
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/video/video.hpp>
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include <ros/ros.h>
|
||||
#include <pcl/io/pcd_io.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <ros/ros.h>
|
||||
#include "pcl_ros/point_cloud.h"
|
||||
#include <geometry_msgs/Point.h>
|
||||
#include <std_msgs/Float32MultiArray.h>
|
||||
#include <std_msgs/Int32MultiArray.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
ros::Publisher objID_pub;
|
||||
|
||||
// KF init
|
||||
|
@ -57,6 +58,7 @@ ros::Publisher pub_cluster5;
|
|||
|
||||
std::vector<geometry_msgs::Point> prevClusterCenters;
|
||||
|
||||
|
||||
cv::Mat state(stateDim,1,CV_32F);
|
||||
cv::Mat_<float> measurement(2,1);
|
||||
|
||||
|
@ -66,71 +68,72 @@ std::vector<int> objID; // Output of the data association using KF
|
|||
bool firstFrame=true;
|
||||
|
||||
// calculate euclidean distance of two points
|
||||
double euclidean_distance(geometry_msgs::Point &p1, geometry_msgs::Point &p2) {
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) +
|
||||
(p1.z - p2.z) * (p1.z - p2.z));
|
||||
double euclidean_distance(geometry_msgs::Point& p1, geometry_msgs::Point& p2)
|
||||
{
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z));
|
||||
}
|
||||
/*
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to
|
||||
two KF_Trackers. int countIDs(vector<int> v)
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to two KF_Trackers.
|
||||
int countIDs(vector<int> v)
|
||||
{
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n =
|
||||
distance(v.end(), v.begin()) sort(v.begin(), v.end()); // Average case O(n log
|
||||
n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then
|
||||
sort_heap.
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n = distance(v.end(), v.begin())
|
||||
sort(v.begin(), v.end()); // Average case O(n log n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then sort_heap.
|
||||
|
||||
// Unique will take a sorted range, and move things around to get duplicated
|
||||
// items to the back and returns an iterator to the end of the unique
|
||||
section of the range auto unique_end = unique(v.begin(), v.end()); // Again n
|
||||
comparisons return distance(unique_end, v.begin()); // Constant time for random
|
||||
access iterators (like vector's)
|
||||
// items to the back and returns an iterator to the end of the unique section of the range
|
||||
auto unique_end = unique(v.begin(), v.end()); // Again n comparisons
|
||||
return distance(unique_end, v.begin()); // Constant time for random access iterators (like vector's)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
objID: vector containing the IDs of the clusters that should be associated with
|
||||
each KF_Tracker objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker
|
||||
objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
void KFT(const std_msgs::Float32MultiArray ccs) {
|
||||
void KFT(const std_msgs::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
|
||||
std::vector<cv::Mat> pred{KF0.predict(), KF1.predict(), KF2.predict(),
|
||||
KF3.predict(), KF4.predict(), KF5.predict()};
|
||||
std::vector<cv::Mat> pred{KF0.predict(),KF1.predict(),KF2.predict(),KF3.predict(),KF4.predict(),KF5.predict()};
|
||||
//cout<<"Pred successfull\n";
|
||||
|
||||
//cv::Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
|
||||
// cout<<"Prediction 1
|
||||
// ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
// cout<<"Prediction 1 ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
|
||||
// Get measurements
|
||||
// Extract the position of the clusters forom the multiArray. To check if the
|
||||
// data coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
// Extract the position of the clusters forom the multiArray. To check if the data
|
||||
// coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
std::vector<geometry_msgs::Point> clusterCenters;//clusterCenters
|
||||
|
||||
int i=0;
|
||||
for (std::vector<float>::const_iterator it = ccs.data.begin();
|
||||
it != ccs.data.end(); it += 3) {
|
||||
for (std::vector<float>::const_iterator it=ccs.data.begin();it!=ccs.data.end();it+=3)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=*it;
|
||||
pt.y=*(it+1);
|
||||
pt.z=*(it+2);
|
||||
|
||||
clusterCenters.push_back(pt);
|
||||
|
||||
}
|
||||
|
||||
// cout<<"CLusterCenters Obtained"<<"\n";
|
||||
std::vector<geometry_msgs::Point> KFpredictions;
|
||||
i=0;
|
||||
for (auto it = pred.begin(); it != pred.end(); it++) {
|
||||
for (auto it=pred.begin();it!=pred.end();it++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=(*it).at<float>(0);
|
||||
pt.y=(*it).at<float>(1);
|
||||
pt.z=(*it).at<float>(2);
|
||||
|
||||
KFpredictions.push_back(pt);
|
||||
|
||||
}
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
|
||||
|
@ -144,11 +147,9 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
for(int n=0;n<6;n++)
|
||||
distVec.push_back(euclidean_distance(KFpredictions[filterN],clusterCenters[n]));
|
||||
|
||||
//
|
||||
cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
// cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end())));
|
||||
// cout<<"MinD for
|
||||
filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
// cout<<"MinD for filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
|
||||
}
|
||||
|
||||
|
@ -166,36 +167,39 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
|
||||
/* Naive version without using kalman filter */
|
||||
objID.clear();//Clear the objID vector
|
||||
for (int filterN = 0; filterN < 6; filterN++) {
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for(int n=0;n<6;n++)
|
||||
distVec.push_back(
|
||||
euclidean_distance(prevClusterCenters[n], clusterCenters[n]));
|
||||
distVec.push_back(euclidean_distance(prevClusterCenters[n],clusterCenters[n]));
|
||||
|
||||
// cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),
|
||||
min_element(distVec.begin(), distVec.end())));
|
||||
// cout<<"MinD for
|
||||
// filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end())));
|
||||
// cout<<"MinD for filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
|
||||
}
|
||||
/* Naive version without kalman filter */
|
||||
//prevClusterCenters.clear();
|
||||
// Set the current associated clusters to the prevClusterCenters
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
prevClusterCenters[objID.at(i)]=clusterCenters.at(i);
|
||||
|
||||
}
|
||||
|
||||
/* Naive version without kalman filter */
|
||||
|
||||
/* Naive version without using kalman filter */
|
||||
|
||||
|
||||
std_msgs::Int32MultiArray obj_id;
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
obj_id.data.push_back(*it);
|
||||
objID_pub.publish(obj_id);
|
||||
// convert clusterCenters from geometry_msgs::Point to floats
|
||||
std::vector<std::vector<float> > cc;
|
||||
for (int i = 0; i < clusterCenters.size(); i++) {
|
||||
for (int i=0;i<clusterCenters.size();i++)
|
||||
{
|
||||
vector<float> pt;
|
||||
pt.push_back(clusterCenters[i].x);
|
||||
pt.push_back(clusterCenters[i].y);
|
||||
|
@ -211,6 +215,8 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
float meas4[3]={cc[4].at(0),cc[4].at(1)};
|
||||
float meas5[3]={cc[5].at(0),cc[5].at(1)};
|
||||
|
||||
|
||||
|
||||
// The update phase
|
||||
cv::Mat meas0Mat=cv::Mat(2,1,CV_32F,meas0);
|
||||
cv::Mat meas1Mat=cv::Mat(2,1,CV_32F,meas1);
|
||||
|
@ -230,41 +236,37 @@ void KFT(const std_msgs::Float32MultiArray ccs) {
|
|||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
|
||||
// cout<<"estimate="<<estimated.at<float>(0)<<","<<estimated.at<float>(1)<<"\n";
|
||||
// Point statePt(estimated.at<float>(0),estimated.at<float>(1));
|
||||
//cout<<"DONE KF_TRACKER\n";
|
||||
|
||||
}
|
||||
void publish_cloud(ros::Publisher &pub,
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cluster) {
|
||||
void publish_cloud(ros::Publisher& pub, pcl::PointCloud<pcl::PointXYZ>::Ptr cluster){
|
||||
sensor_msgs::PointCloud2::Ptr clustermsg (new sensor_msgs::PointCloud2);
|
||||
pcl::toROSMsg (*cluster , *clustermsg);
|
||||
clustermsg->header.frame_id = "map";
|
||||
clustermsg->header.frame_id = "/map";
|
||||
clustermsg->header.stamp = ros::Time::now();
|
||||
pub.publish (*clustermsg);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
|
||||
|
||||
{
|
||||
cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// If this is the first frame, initialize kalman filters for the clustered
|
||||
// objects
|
||||
if (firstFrame) {
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
if (firstFrame)
|
||||
{
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object
|
||||
// is detected
|
||||
KF0.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
KF1.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
KF2.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
KF3.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
KF4.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
KF5.transitionMatrix =
|
||||
*(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);
|
||||
// Could be made generic by creating a Kalman Filter only when a new object is detected
|
||||
KF0.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF1.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF2.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF3.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF4.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF5.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
|
||||
cv::setIdentity(KF0.measurementMatrix);
|
||||
cv::setIdentity(KF1.measurementMatrix);
|
||||
|
@ -294,23 +296,19 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
|
||||
// Process the point cloud
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(
|
||||
new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual
|
||||
* index information in a vector<int>. The indices of each detected cluster
|
||||
* are saved here. Cluster_indices is a vector containing one instance of
|
||||
* PointIndices for each detected cluster. Cluster_indices[0] contain all
|
||||
* indices of the first cluster in input point cloud.
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
|
@ -336,98 +334,84 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for (pit = it->indices.begin(); pit != it->indices.end(); pit++) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
// mindist_this_cluster = std::min(dist_this_point,
|
||||
// mindist_this_cluster);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0) =
|
||||
cluster_vec[0]->points[cluster_vec[0]->points.size() / 2].x;
|
||||
|
||||
KF0.statePre.at<float>(1) =
|
||||
cluster_vec[0]->points[cluster_vec[0]->points.size() / 2].y;
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x;
|
||||
|
||||
KF0.statePre.at<float>(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y;
|
||||
KF0.statePre.at<float>(2)=0;// initial v_x
|
||||
KF0.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF1.statePre.at<float>(0) =
|
||||
cluster_vec[1]->points[cluster_vec[1]->points.size() / 2].x;
|
||||
KF1.statePre.at<float>(1) =
|
||||
cluster_vec[1]->points[cluster_vec[1]->points.size() / 2].y;
|
||||
KF1.statePre.at<float>(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x;
|
||||
KF1.statePre.at<float>(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y;
|
||||
KF1.statePre.at<float>(2)=0;// initial v_x
|
||||
KF1.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF2.statePre.at<float>(0) =
|
||||
cluster_vec[2]->points[cluster_vec[2]->points.size() / 2].x;
|
||||
KF2.statePre.at<float>(1) =
|
||||
cluster_vec[2]->points[cluster_vec[2]->points.size() / 2].y;
|
||||
KF2.statePre.at<float>(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x;
|
||||
KF2.statePre.at<float>(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y;
|
||||
KF2.statePre.at<float>(2)=0;// initial v_x
|
||||
KF2.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0) =
|
||||
cluster_vec[3]->points[cluster_vec[3]->points.size() / 2].x;
|
||||
KF3.statePre.at<float>(1) =
|
||||
cluster_vec[3]->points[cluster_vec[3]->points.size() / 2].y;
|
||||
KF3.statePre.at<float>(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x;
|
||||
KF3.statePre.at<float>(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y;
|
||||
KF3.statePre.at<float>(2)=0;// initial v_x
|
||||
KF3.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF4.statePre.at<float>(0) =
|
||||
cluster_vec[4]->points[cluster_vec[4]->points.size() / 2].x;
|
||||
KF4.statePre.at<float>(1) =
|
||||
cluster_vec[4]->points[cluster_vec[4]->points.size() / 2].y;
|
||||
KF4.statePre.at<float>(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x;
|
||||
KF4.statePre.at<float>(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y;
|
||||
KF4.statePre.at<float>(2)=0;// initial v_x
|
||||
KF4.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF5.statePre.at<float>(0) =
|
||||
cluster_vec[5]->points[cluster_vec[5]->points.size() / 2].x;
|
||||
KF5.statePre.at<float>(1) =
|
||||
cluster_vec[5]->points[cluster_vec[5]->points.size() / 2].y;
|
||||
KF5.statePre.at<float>(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x;
|
||||
KF5.statePre.at<float>(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y;
|
||||
KF5.statePre.at<float>(2)=0;// initial v_x
|
||||
KF5.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
firstFrame=false;
|
||||
|
||||
// Print the initial state of the kalman filter for debugging
|
||||
cout << "KF0.satePre=" << KF0.statePre.at<float>(0) << ","
|
||||
<< KF0.statePre.at<float>(1) << "\n";
|
||||
cout << "KF1.satePre=" << KF1.statePre.at<float>(0) << ","
|
||||
<< KF1.statePre.at<float>(1) << "\n";
|
||||
cout << "KF2.satePre=" << KF2.statePre.at<float>(0) << ","
|
||||
<< KF2.statePre.at<float>(1) << "\n";
|
||||
cout << "KF3.satePre=" << KF3.statePre.at<float>(0) << ","
|
||||
<< KF3.statePre.at<float>(1) << "\n";
|
||||
cout << "KF4.satePre=" << KF4.statePre.at<float>(0) << ","
|
||||
<< KF4.statePre.at<float>(1) << "\n";
|
||||
cout << "KF5.satePre=" << KF5.statePre.at<float>(0) << ","
|
||||
<< KF5.statePre.at<float>(1) << "\n";
|
||||
cout<<"KF0.satePre="<<KF0.statePre.at<float>(0)<<","<<KF0.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF1.satePre="<<KF1.statePre.at<float>(0)<<","<<KF1.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF2.satePre="<<KF2.statePre.at<float>(0)<<","<<KF2.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF3.satePre="<<KF3.statePre.at<float>(0)<<","<<KF3.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF4.satePre="<<KF4.statePre.at<float>(0)<<","<<KF4.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF5.satePre="<<KF5.statePre.at<float>(0)<<","<<KF5.statePre.at<float>(1)<<"\n";
|
||||
|
||||
//cin.ignore();// To be able to see the printed initial state of the KalmanFilter
|
||||
|
||||
|
||||
// cin.ignore();// To be able to see the printed initial state of the
|
||||
// KalmanFilter
|
||||
|
||||
/* Naive version without kalman filter */
|
||||
for (int i = 0; i < 6; i++) {
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x;
|
||||
pt.y=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y;
|
||||
|
@ -437,25 +421,23 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
/* Naive version without kalman filter */
|
||||
}
|
||||
|
||||
else {
|
||||
|
||||
else
|
||||
{
|
||||
cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(
|
||||
new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual
|
||||
* index information in a vector<int>. The indices of each detected cluster
|
||||
* are saved here. Cluster_indices is a vector containing one instance of
|
||||
* PointIndices for each detected cluster. Cluster_indices[0] contain all
|
||||
* indices of the first cluster in input point cloud.
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
|
@ -482,36 +464,35 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for (pit = it->indices.begin(); pit != it->indices.end(); pit++) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
// mindist_this_cluster = std::min(dist_this_point,
|
||||
// mindist_this_cluster);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
//cout<<"cluster_vec got some clusters\n";
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
std_msgs::Float32MultiArray cc;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
cc.data.push_back(
|
||||
cluster_vec[i]->points[cluster_vec[i]->points.size() / 2].x);
|
||||
cc.data.push_back(
|
||||
cluster_vec[i]->points[cluster_vec[i]->points.size() / 2].y);
|
||||
cc.data.push_back(
|
||||
cluster_vec[i]->points[cluster_vec[i]->points.size() / 2].z);
|
||||
for(int i=0;i<6;i++)
|
||||
{
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z);
|
||||
|
||||
}
|
||||
cout<<"6 clusters initialized\n";
|
||||
|
||||
|
@ -519,69 +500,79 @@ void cloud_cb(const sensor_msgs::PointCloud2ConstPtr &input)
|
|||
KFT(cc);
|
||||
int i=0;
|
||||
bool publishedCluster[6];
|
||||
for (auto it = objID.begin(); it != objID.end(); it++) {
|
||||
cout << "Inside the for loop\n";
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
{ cout<<"Inside the for loop\n";
|
||||
|
||||
switch (*it) {
|
||||
switch(*it)
|
||||
{
|
||||
cout<<"Inside the switch case\n";
|
||||
case 0: {
|
||||
publish_cloud(pub_cluster0,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 1: {
|
||||
publish_cloud(pub_cluster1,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 2: {
|
||||
publish_cloud(pub_cluster2,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 3: {
|
||||
publish_cloud(pub_cluster3,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 4: {
|
||||
publish_cloud(pub_cluster4,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
case 5: {
|
||||
publish_cloud(pub_cluster5,cluster_vec[i]);
|
||||
publishedCluster[i] =
|
||||
true; // Use this flag to publish only once for a given obj ID
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
default: break;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// ROS init
|
||||
ros::init (argc,argv,"KFTracker");
|
||||
ros::NodeHandle nh;
|
||||
|
||||
|
||||
// Publishers to publish the state of the objects (pos and vel)
|
||||
//objState1=nh.advertise<geometry_msgs::Twist> ("obj_1",1);
|
||||
|
||||
|
||||
|
||||
cout<<"About to setup callback\n";
|
||||
|
||||
// Create a ROS subscriber for the input point cloud
|
||||
|
@ -601,8 +592,12 @@ int main(int argc, char **argv) {
|
|||
|
||||
//cc_pos=nh.advertise<std_msgs::Float32MultiArray>("ccs",100);//clusterCenter1
|
||||
|
||||
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
|
||||
ros::spin();
|
||||
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue