v2. Unsupervised clustering is incorporated into the same node (tracker).
parent
5d4e3c8d08
commit
4c569c598e
340
src/main.cpp
340
src/main.cpp
|
@ -18,9 +18,24 @@
|
|||
#include <std_msgs/Float32MultiArray.h>
|
||||
#include <std_msgs/Int32MultiArray.h>
|
||||
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
ros::Publisher objID_pub;
|
||||
|
||||
// KF init
|
||||
|
@ -34,11 +49,21 @@ ros::Publisher objID_pub;
|
|||
cv::KalmanFilter KF4(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF5(stateDim,measDim,ctrlDim,CV_32F);
|
||||
|
||||
ros::Publisher pub_cluster0;
|
||||
ros::Publisher pub_cluster1;
|
||||
ros::Publisher pub_cluster2;
|
||||
ros::Publisher pub_cluster3;
|
||||
ros::Publisher pub_cluster4;
|
||||
ros::Publisher pub_cluster5;
|
||||
|
||||
|
||||
cv::Mat state(stateDim,1,CV_32F);
|
||||
cv::Mat_<float> measurement(2,1);
|
||||
|
||||
std::vector<int> objID;// Output of the data association using KF
|
||||
// measurement.setTo(Scalar(0));
|
||||
|
||||
bool firstFrame=true;
|
||||
|
||||
// calculate euclidean distance of two points
|
||||
double euclidean_distance(geometry_msgs::Point& p1, geometry_msgs::Point& p2)
|
||||
|
@ -65,19 +90,12 @@ int countIDs(vector<int> v)
|
|||
objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker
|
||||
objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
void KFT(const std_msgs::Float32MultiArray::ConstPtr& ccs)
|
||||
void KFT(const std_msgs::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
/* Mat prediction0 = KF0.predict();
|
||||
Mat prediction1 = KF1.predict();
|
||||
Mat prediction2 = KF2.predict();
|
||||
Mat prediction3 = KF3.predict();
|
||||
Mat prediction4 = KF4.predict();
|
||||
Mat prediction5 = KF5.predict();
|
||||
*/
|
||||
|
||||
std::vector<cv::Mat> pred{KF0.predict(),KF1.predict(),KF2.predict(),KF3.predict(),KF4.predict(),KF5.predict()};
|
||||
//cout<<"Pred successfull\n";
|
||||
|
@ -91,7 +109,7 @@ void KFT(const std_msgs::Float32MultiArray::ConstPtr& ccs)
|
|||
std::vector<geometry_msgs::Point> clusterCenters;//clusterCenters
|
||||
|
||||
int i=0;
|
||||
for (std::vector<float>::const_iterator it=ccs->data.begin();it!=ccs->data.end();it+=3)
|
||||
for (std::vector<float>::const_iterator it=ccs.data.begin();it!=ccs.data.end();it+=3)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=*it;
|
||||
|
@ -117,10 +135,10 @@ void KFT(const std_msgs::Float32MultiArray::ConstPtr& ccs)
|
|||
}
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
|
||||
std::vector<int> objID;
|
||||
|
||||
|
||||
// Find the cluster that is more probable to be belonging to a given KF.
|
||||
|
||||
objID.clear();//Clear the objID vector
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
|
@ -184,6 +202,7 @@ void KFT(const std_msgs::Float32MultiArray::ConstPtr& ccs)
|
|||
Mat estimated4 = KF0.correct(meas4Mat);
|
||||
Mat estimated5 = KF0.correct(meas5Mat);
|
||||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
|
||||
// cout<<"estimate="<<estimated.at<float>(0)<<","<<estimated.at<float>(1)<<"\n";
|
||||
|
@ -191,18 +210,25 @@ void KFT(const std_msgs::Float32MultiArray::ConstPtr& ccs)
|
|||
//cout<<"DONE KF_TRACKER\n";
|
||||
|
||||
}
|
||||
void publish_cloud(ros::Publisher& pub, pcl::PointCloud<pcl::PointXYZ>::Ptr cluster){
|
||||
sensor_msgs::PointCloud2::Ptr clustermsg (new sensor_msgs::PointCloud2);
|
||||
pcl::toROSMsg (*cluster , *clustermsg);
|
||||
clustermsg->header.frame_id = "/map";
|
||||
clustermsg->header.stamp = ros::Time::now();
|
||||
pub.publish (*clustermsg);
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
|
||||
|
||||
{
|
||||
// ROS init
|
||||
ros::init (argc,argv,"KFTracker");
|
||||
ros::NodeHandle nh;
|
||||
|
||||
|
||||
// Publishers to publish the state of the objects (pos and vel)
|
||||
//objState1=nh.advertise<geometry_msgs::Twist> ("obj_1",1);
|
||||
|
||||
cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
if (firstFrame)
|
||||
{
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object is detected
|
||||
KF0.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF1.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF2.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
|
@ -237,47 +263,293 @@ int main(int argc, char** argv)
|
|||
cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
|
||||
// Process the point cloud
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
ec.setMinClusterSize (10);
|
||||
ec.setMaxClusterSize (600);
|
||||
ec.setSearchMethod (tree);
|
||||
ec.setInputCloud (input_cloud);
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
*/
|
||||
//pcl::PointXYZ origin (0,0,0);
|
||||
//float mindist_this_cluster = 1000;
|
||||
//float dist_this_point = 1000;
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF0.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF0.statePre.at<float>(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x;
|
||||
KF0.statePre.at<float>(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y;
|
||||
KF0.statePre.at<float>(2)=0;// initial v_x
|
||||
KF0.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF1.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF1.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF1.statePre.at<float>(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x;
|
||||
KF1.statePre.at<float>(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y;
|
||||
KF1.statePre.at<float>(2)=0;// initial v_x
|
||||
KF1.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF2.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF2.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF2.statePre.at<float>(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x;
|
||||
KF2.statePre.at<float>(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y;
|
||||
KF2.statePre.at<float>(2)=0;// initial v_x
|
||||
KF2.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF3.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF3.statePre.at<float>(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x;
|
||||
KF3.statePre.at<float>(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y;
|
||||
KF3.statePre.at<float>(2)=0;// initial v_x
|
||||
KF3.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF4.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF4.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF4.statePre.at<float>(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x;
|
||||
KF4.statePre.at<float>(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y;
|
||||
KF4.statePre.at<float>(2)=0;// initial v_x
|
||||
KF4.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF5.statePre.at<float>(0)=0.0;//initial x pos of the cluster
|
||||
KF5.statePre.at<float>(1)=0.0;//initial y pos of the cluster
|
||||
KF5.statePre.at<float>(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x;
|
||||
KF5.statePre.at<float>(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y;
|
||||
KF5.statePre.at<float>(2)=0;// initial v_x
|
||||
KF5.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
cout<<"About to setup callback";
|
||||
firstFrame=false;
|
||||
|
||||
// Print the initial state of the kalman filter for debugging
|
||||
cout<<"KF0.satePre="<<KF0.statePre.at<float>(0)<<","<<KF0.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF1.satePre="<<KF1.statePre.at<float>(0)<<","<<KF1.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF2.satePre="<<KF2.statePre.at<float>(0)<<","<<KF2.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF3.satePre="<<KF3.statePre.at<float>(0)<<","<<KF3.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF4.satePre="<<KF4.statePre.at<float>(0)<<","<<KF4.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF5.satePre="<<KF5.statePre.at<float>(0)<<","<<KF5.statePre.at<float>(1)<<"\n";
|
||||
|
||||
//cin.ignore();// To be able to see the printed initial state of the KalmanFilter
|
||||
}
|
||||
|
||||
|
||||
else
|
||||
{
|
||||
cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
ec.setMinClusterSize (10);
|
||||
ec.setMaxClusterSize (600);
|
||||
ec.setSearchMethod (tree);
|
||||
ec.setInputCloud (input_cloud);
|
||||
cout<<"PCL init successfull\n";
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
cout<<"PCL extract successfull\n";
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
*/
|
||||
//pcl::PointXYZ origin (0,0,0);
|
||||
//float mindist_this_cluster = 1000;
|
||||
//float dist_this_point = 1000;
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
cout<<"cluster_vec got some clusters\n";
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
std_msgs::Float32MultiArray cc;
|
||||
for(int i=0;i<6;i++)
|
||||
{
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z);
|
||||
|
||||
}
|
||||
cout<<"6 clusters initialized\n";
|
||||
|
||||
//cc_pos.publish(cc);// Publish cluster mid-points.
|
||||
KFT(cc);
|
||||
int i=0;
|
||||
bool publishedCluster[6];
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
{ cout<<"Inside the for loop\n";
|
||||
|
||||
switch(*it)
|
||||
{
|
||||
cout<<"Inside the switch case\n";
|
||||
case 0: {
|
||||
publish_cloud(pub_cluster0,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 1: {
|
||||
publish_cloud(pub_cluster1,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 2: {
|
||||
publish_cloud(pub_cluster2,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 3: {
|
||||
publish_cloud(pub_cluster3,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 4: {
|
||||
publish_cloud(pub_cluster4,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
case 5: {
|
||||
publish_cloud(pub_cluster5,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
default: break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// ROS init
|
||||
ros::init (argc,argv,"KFTracker");
|
||||
ros::NodeHandle nh;
|
||||
|
||||
|
||||
// Publishers to publish the state of the objects (pos and vel)
|
||||
//objState1=nh.advertise<geometry_msgs::Twist> ("obj_1",1);
|
||||
|
||||
|
||||
|
||||
cout<<"About to setup callback\n";
|
||||
|
||||
// Create a ROS subscriber for the input point cloud
|
||||
ros::Subscriber sub = nh.subscribe ("filtered_cloud", 1, cloud_cb);
|
||||
// Create a ROS publisher for the output point cloud
|
||||
pub_cluster0 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_0", 1);
|
||||
pub_cluster1 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_1", 1);
|
||||
pub_cluster2 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_2", 1);
|
||||
pub_cluster3 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_3", 1);
|
||||
pub_cluster4 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_4", 1);
|
||||
pub_cluster5 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_5", 1);
|
||||
// Subscribe to the clustered pointclouds
|
||||
ros::Subscriber c1=nh.subscribe("ccs",100,KFT);
|
||||
//ros::Subscriber c1=nh.subscribe("ccs",100,KFT);
|
||||
objID_pub = nh.advertise<std_msgs::Int32MultiArray>("obj_id", 1);
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
//cc_pos=nh.advertise<std_msgs::Float32MultiArray>("ccs",100);//clusterCenter1
|
||||
|
||||
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
|
||||
ros::spin();
|
||||
|
||||
|
|
Loading…
Reference in New Issue