170 lines
5.4 KiB
Python
Executable File
170 lines
5.4 KiB
Python
Executable File
import numpy as np
|
|
|
|
np.seterr(divide="ignore", invalid="ignore")
|
|
|
|
import cvxpy as opt
|
|
|
|
|
|
class MPC:
|
|
def __init__(
|
|
self, vehicle, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
vehicle ():
|
|
T ():
|
|
DT ():
|
|
state_cost ():
|
|
final_state_cost ():
|
|
input_cost ():
|
|
input_rate_cost ():
|
|
"""
|
|
self.nx = 4 # number of state vars
|
|
self.nu = 2 # umber of input/control vars
|
|
|
|
if len(state_cost) != self.nx:
|
|
raise ValueError(f"State Error cost matrix shuld be of size {self.nx}")
|
|
if len(final_state_cost) != self.nx:
|
|
raise ValueError(f"End State Error cost matrix shuld be of size {self.nx}")
|
|
if len(input_cost) != self.nu:
|
|
raise ValueError(f"Control Effort cost matrix shuld be of size {self.nu}")
|
|
if len(input_rate_cost) != self.nu:
|
|
raise ValueError(
|
|
f"Control Effort Difference cost matrix shuld be of size {self.nu}"
|
|
)
|
|
|
|
self.vehicle = vehicle
|
|
self.dt = DT
|
|
self.control_horizon = int(T / DT)
|
|
self.Q = np.diag(state_cost)
|
|
self.Qf = np.diag(final_state_cost)
|
|
self.R = np.diag(input_cost)
|
|
self.P = np.diag(input_rate_cost)
|
|
|
|
def get_linear_model_matrices(self, x_bar, u_bar):
|
|
"""
|
|
Computes the approximated LTI state space model x' = Ax + Bu + C
|
|
|
|
Args:
|
|
x_bar (array-like):
|
|
u_bar (array-like):
|
|
|
|
Returns:
|
|
|
|
"""
|
|
|
|
x = x_bar[0]
|
|
y = x_bar[1]
|
|
v = x_bar[2]
|
|
theta = x_bar[3]
|
|
|
|
a = u_bar[0]
|
|
delta = u_bar[1]
|
|
|
|
ct = np.cos(theta)
|
|
st = np.sin(theta)
|
|
cd = np.cos(delta)
|
|
td = np.tan(delta)
|
|
|
|
A = np.zeros((self.nx, self.nx))
|
|
A[0, 2] = ct
|
|
A[0, 3] = -v * st
|
|
A[1, 2] = st
|
|
A[1, 3] = v * ct
|
|
A[3, 2] = v * td / self.vehicle.wheelbase
|
|
A_lin = np.eye(self.nx) + self.dt * A
|
|
|
|
B = np.zeros((self.nx, self.nu))
|
|
B[2, 0] = 1
|
|
B[3, 1] = v / (self.vehicle.wheelbase * cd**2)
|
|
B_lin = self.dt * B
|
|
|
|
f_xu = np.array([v * ct, v * st, a, v * td / self.vehicle.wheelbase]).reshape(
|
|
self.nx, 1
|
|
)
|
|
C_lin = (
|
|
self.dt
|
|
* (
|
|
f_xu
|
|
- np.dot(A, x_bar.reshape(self.nx, 1))
|
|
- np.dot(B, u_bar.reshape(self.nu, 1))
|
|
).flatten()
|
|
)
|
|
return A_lin, B_lin, C_lin
|
|
|
|
def step(
|
|
self,
|
|
initial_state,
|
|
target,
|
|
prev_cmd,
|
|
verbose=False,
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
initial_state (array-like): current estimate of [x, y, v, heading]
|
|
target (ndarray): state space reference, in the same frame as the provided current state
|
|
prev_cmd (array-like): previous [acceleration, steer]. note this is used in bounds and has to be realistic.
|
|
verbose (bool):
|
|
|
|
Returns:
|
|
|
|
"""
|
|
assert len(initial_state) == self.nx
|
|
assert len(prev_cmd) == self.nu
|
|
assert target.shape == (self.nx, self.control_horizon)
|
|
|
|
# Create variables needed for setting up cvxpy problem
|
|
x = opt.Variable((self.nx, self.control_horizon + 1), name="states")
|
|
u = opt.Variable((self.nu, self.control_horizon), name="actions")
|
|
cost = 0
|
|
constr = []
|
|
|
|
# NOTE: here the state linearization is performed around the starting condition to simplify the controller.
|
|
# This approximation gets more inaccurate as the controller looks at the future.
|
|
# To improve performance we can keep track of previous optimized x, u and compute these matrices for each timestep k
|
|
# Ak, Bk, Ck = self.get_linear_model_matrices(x_prev[:,k], u_prev[:,k])
|
|
A, B, C = self.get_linear_model_matrices(initial_state, prev_cmd)
|
|
|
|
# Tracking error cost
|
|
for k in range(self.control_horizon):
|
|
cost += opt.quad_form(x[:, k + 1] - target[:, k], self.Q)
|
|
|
|
# Final point tracking cost
|
|
cost += opt.quad_form(x[:, -1] - target[:, -1], self.Qf)
|
|
|
|
# Actuation magnitude cost
|
|
for k in range(self.control_horizon):
|
|
cost += opt.quad_form(u[:, k], self.R)
|
|
|
|
# Actuation rate of change cost
|
|
for k in range(1, self.control_horizon):
|
|
cost += opt.quad_form(u[:, k] - u[:, k - 1], self.P)
|
|
|
|
# Kinematics Constrains
|
|
for k in range(self.control_horizon):
|
|
constr += [x[:, k + 1] == A @ x[:, k] + B @ u[:, k] + C]
|
|
|
|
# initial state
|
|
constr += [x[:, 0] == initial_state]
|
|
|
|
# actuation bounds
|
|
constr += [opt.abs(u[:, 0]) <= self.vehicle.max_acc]
|
|
constr += [opt.abs(u[:, 1]) <= self.vehicle.max_steer]
|
|
|
|
# Actuation rate of change bounds
|
|
constr += [opt.abs(u[0, 0] - prev_cmd[0]) / self.dt <= self.vehicle.max_d_acc]
|
|
constr += [opt.abs(u[1, 0] - prev_cmd[1]) / self.dt <= self.vehicle.max_d_steer]
|
|
for k in range(1, self.control_horizon):
|
|
constr += [
|
|
opt.abs(u[0, k] - u[0, k - 1]) / self.dt <= self.vehicle.max_d_acc
|
|
]
|
|
constr += [
|
|
opt.abs(u[1, k] - u[1, k - 1]) / self.dt <= self.vehicle.max_d_steer
|
|
]
|
|
|
|
prob = opt.Problem(opt.Minimize(cost), constr)
|
|
solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False)
|
|
return x, u
|