115 lines
3.0 KiB
Python
Executable File
115 lines
3.0 KiB
Python
Executable File
import numpy as np
|
|
np.seterr(divide='ignore', invalid='ignore')
|
|
|
|
from scipy.integrate import odeint
|
|
from scipy.interpolate import interp1d
|
|
import cvxpy as cp
|
|
|
|
from utils import road_curve, f, df
|
|
|
|
from mpc_config import Params
|
|
P=Params()
|
|
|
|
def get_linear_model(x_bar,u_bar):
|
|
"""
|
|
"""
|
|
L=0.3
|
|
|
|
x = x_bar[0]
|
|
y = x_bar[1]
|
|
v = x_bar[2]
|
|
theta = x_bar[3]
|
|
|
|
a = u_bar[0]
|
|
delta = u_bar[1]
|
|
|
|
A = np.zeros((P.N,P.N))
|
|
A[0,2]=np.cos(theta)
|
|
A[0,3]=-v*np.sin(theta)
|
|
A[1,2]=np.sin(theta)
|
|
A[1,3]=v*np.cos(theta)
|
|
A[3,2]=v*np.tan(delta)/L
|
|
A_lin=np.eye(P.N)+P.dt*A
|
|
|
|
B = np.zeros((P.N,P.M))
|
|
B[2,0]=1
|
|
B[3,1]=v/(L*np.cos(delta)**2)
|
|
B_lin=P.dt*B
|
|
|
|
f_xu=np.array([v*np.cos(theta), v*np.sin(theta), a,v*np.tan(delta)/L]).reshape(P.N,1)
|
|
C_lin = P.dt*(f_xu - np.dot(A,x_bar.reshape(P.N,1)) - np.dot(B,u_bar.reshape(P.M,1)))
|
|
|
|
return np.round(A_lin,4), np.round(B_lin,4), np.round(C_lin,4)
|
|
|
|
|
|
def optimize(state,u_bar,track,ref_vel=1.):
|
|
'''
|
|
:param state:
|
|
:param u_bar:
|
|
:param track:
|
|
:returns:
|
|
'''
|
|
|
|
MAX_SPEED = ref_vel*1.5
|
|
MAX_STEER = np.pi/4
|
|
MAX_ACC = 1.0
|
|
|
|
# compute polynomial coefficients of the track
|
|
K=road_curve(state,track)
|
|
|
|
# dynamics starting state w.r.t vehicle frame
|
|
x_bar=np.zeros((P.N,P.T+1))
|
|
x_bar[2,0]=state[2]
|
|
|
|
#prediction for linearization of costrains
|
|
for t in range (1,P.T+1):
|
|
xt=x_bar[:,t-1].reshape(P.N,1)
|
|
ut=u_bar[:,t-1].reshape(P.M,1)
|
|
A,B,C=get_linear_model(xt,ut)
|
|
xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)
|
|
x_bar[:,t]= xt_plus_one
|
|
|
|
#CVXPY Linear MPC problem statement
|
|
cost = 0
|
|
constr = []
|
|
x = cp.Variable((P.N, P.T+1))
|
|
u = cp.Variable((P.M, P.T))
|
|
|
|
for t in range(P.T):
|
|
|
|
cost += 20*cp.sum_squares(x[3,t]-np.clip(np.arctan(df(x_bar[0,t],K)),-np.pi,np.pi) ) # psi
|
|
cost += 40*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
|
|
cost += 20*cp.sum_squares(ref_vel-x[2,t]) # desired v
|
|
|
|
# Actuation rate of change
|
|
if t < (P.T - 1):
|
|
cost += cp.quad_form(u[:, t + 1] - u[:, t], 10*np.eye(P.M))
|
|
|
|
# Actuation effort
|
|
cost += cp.quad_form( u[:, t],10*np.eye(P.M))
|
|
|
|
# Kinrmatics Constrains (Linearized model)
|
|
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
|
|
constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]
|
|
|
|
# sums problem objectives and concatenates constraints.
|
|
constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition
|
|
constr += [x[2, :] <= MAX_SPEED]
|
|
constr += [x[2, :] >= 0.0]
|
|
constr += [cp.abs(u[0, :]) <= MAX_ACC]
|
|
constr += [cp.abs(u[1, :]) <= MAX_STEER]
|
|
|
|
# Solve
|
|
prob = cp.Problem(cp.Minimize(cost), constr)
|
|
prob.solve(solver=cp.OSQP, verbose=False)
|
|
|
|
if "optimal" not in prob.status:
|
|
print("WARN: No optimal solution")
|
|
return u_bar
|
|
|
|
#retrieved optimized U and assign to u_bar to linearize in next step
|
|
u_opt=np.vstack((np.array(u.value[0, :]).flatten(),
|
|
(np.array(u.value[1, :]).flatten())))
|
|
|
|
return u_opt
|