191 lines
5.3 KiB
Plaintext
191 lines
5.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Ackermann Kinematics model\n",
|
|
"\n",
|
|
"### Jacobians"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/latex": [
|
|
"$\\displaystyle \\left[\\begin{matrix}0 & 0 & \\cos{\\left(\\theta \\right)} & - v \\sin{\\left(\\theta \\right)}\\\\0 & 0 & \\sin{\\left(\\theta \\right)} & v \\cos{\\left(\\theta \\right)}\\\\0 & 0 & 0 & 0\\\\0 & 0 & \\frac{\\tan{\\left(\\delta \\right)}}{L} & 0\\end{matrix}\\right]$"
|
|
],
|
|
"text/plain": [
|
|
"Matrix([\n",
|
|
"[0, 0, cos(theta), -v*sin(theta)],\n",
|
|
"[0, 0, sin(theta), v*cos(theta)],\n",
|
|
"[0, 0, 0, 0],\n",
|
|
"[0, 0, tan(delta)/L, 0]])"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/latex": [
|
|
"$\\displaystyle \\left[\\begin{matrix}0 & 0\\\\0 & 0\\\\1 & 0\\\\0 & \\frac{v \\left(\\tan^{2}{\\left(\\delta \\right)} + 1\\right)}{L}\\end{matrix}\\right]$"
|
|
],
|
|
"text/plain": [
|
|
"Matrix([\n",
|
|
"[0, 0],\n",
|
|
"[0, 0],\n",
|
|
"[1, 0],\n",
|
|
"[0, v*(tan(delta)**2 + 1)/L]])"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"x, y, theta, v, delta, L, a = sp.symbols(\"x y theta v delta L a\")\n",
|
|
"\n",
|
|
"gs = sp.Matrix([[sp.cos(theta) * v], [sp.sin(theta) * v], [a], [v * sp.tan(delta) / L]])\n",
|
|
"\n",
|
|
"X = sp.Matrix([x, y, v, theta])\n",
|
|
"\n",
|
|
"# A\n",
|
|
"A = gs.jacobian(X)\n",
|
|
"\n",
|
|
"U = sp.Matrix([a, delta])\n",
|
|
"\n",
|
|
"# B\n",
|
|
"B = gs.jacobian(U)\n",
|
|
"display(A)\n",
|
|
"display(B)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Discretized and Linearized model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/latex": [
|
|
"$\\displaystyle \\left[\\begin{matrix}1 & 0 & dt \\cos{\\left(\\theta \\right)} & - dt v \\sin{\\left(\\theta \\right)}\\\\0 & 1 & dt \\sin{\\left(\\theta \\right)} & dt v \\cos{\\left(\\theta \\right)}\\\\0 & 0 & 1 & 0\\\\0 & 0 & \\frac{dt \\tan{\\left(\\delta \\right)}}{L} & 1\\end{matrix}\\right]$"
|
|
],
|
|
"text/plain": [
|
|
"Matrix([\n",
|
|
"[1, 0, dt*cos(theta), -dt*v*sin(theta)],\n",
|
|
"[0, 1, dt*sin(theta), dt*v*cos(theta)],\n",
|
|
"[0, 0, 1, 0],\n",
|
|
"[0, 0, dt*tan(delta)/L, 1]])"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/latex": [
|
|
"$\\displaystyle \\left[\\begin{matrix}0 & 0\\\\0 & 0\\\\dt & 0\\\\0 & \\frac{dt v \\left(\\tan^{2}{\\left(\\delta \\right)} + 1\\right)}{L}\\end{matrix}\\right]$"
|
|
],
|
|
"text/plain": [
|
|
"Matrix([\n",
|
|
"[ 0, 0],\n",
|
|
"[ 0, 0],\n",
|
|
"[dt, 0],\n",
|
|
"[ 0, dt*v*(tan(delta)**2 + 1)/L]])"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/latex": [
|
|
"$\\displaystyle \\left[\\begin{matrix}dt \\theta v \\sin{\\left(\\theta \\right)}\\\\- dt \\theta v \\cos{\\left(\\theta \\right)}\\\\0\\\\- \\frac{\\delta dt v \\left(\\tan^{2}{\\left(\\delta \\right)} + 1\\right)}{L}\\end{matrix}\\right]$"
|
|
],
|
|
"text/plain": [
|
|
"Matrix([\n",
|
|
"[ dt*theta*v*sin(theta)],\n",
|
|
"[ -dt*theta*v*cos(theta)],\n",
|
|
"[ 0],\n",
|
|
"[-delta*dt*v*(tan(delta)**2 + 1)/L]])"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"DT = sp.symbols(\"dt\")\n",
|
|
"\n",
|
|
"display(sp.eye(4) + A * DT)\n",
|
|
"display(B * DT)\n",
|
|
"display(DT * (gs - A * X - B * U))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# ADD DELAY (for real time implementation)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"It is necessary to take *actuation latency* into account: so instead of using the actual state as estimated, the delay factored in using the kinematic model\n",
|
|
"\n",
|
|
"Starting State is :\n",
|
|
"\n",
|
|
"* $x_{delay} = 0.0 + v * dt$\n",
|
|
"* $y_{delay} = 0.0$\n",
|
|
"* $psi_{delay} = 0.0 + w * dt$\n",
|
|
"* $cte_{delay} = cte + v * sin(epsi) * dt$\n",
|
|
"* $epsi_{delay} = epsi - w * dt$\n",
|
|
"\n",
|
|
"Note that the starting position and heading is always 0; this is becouse the path is parametrized to **vehicle reference frame**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|