import numpy as np np.seterr(divide='ignore', invalid='ignore') from scipy.integrate import odeint from scipy.interpolate import interp1d import cvxpy as cp def get_linear_model(x_bar,u_bar): """ """ # Control problem statement. N = 5 #number of state variables M = 2 #number of control variables T = 20 #Prediction Horizon dt = 0.25 #discretization step x = x_bar[0] y = x_bar[1] theta = x_bar[2] psi = x_bar[3] cte = x_bar[4] v = u_bar[0] w = u_bar[1] A = np.zeros((N,N)) A[0,2]=-v*np.sin(theta) A[1,2]=v*np.cos(theta) A[4,3]=v*np.cos(-psi) A_lin=np.eye(N)+dt*A B = np.zeros((N,M)) B[0,0]=np.cos(theta) B[1,0]=np.sin(theta) B[2,1]=1 B[3,1]=-1 B[4,0]=np.sin(-psi) B_lin=dt*B f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w,-w,v*np.sin(-psi)]).reshape(N,1) C_lin = dt*(f_xu - np.dot(A,x_bar.reshape(N,1)) - np.dot(B,u_bar.reshape(M,1))) return A_lin,B_lin,C_lin def calc_err(state,path): """ Finds psi and cte w.r.t. the closest waypoint. :param state: array_like, state of the vehicle [x_pos, y_pos, theta] :param path: array_like, reference path ((x1, x2, ...), (y1, y2, ...), (th1 ,th2, ...)] :returns: (float,float) """ dx = state[0]-path[0,:] dy = state[1]-path[1,:] dist = np.sqrt(dx**2 + dy**2) nn_idx = np.argmin(dist) try: v = [path[0,nn_idx+1] - path[0,nn_idx], path[1,nn_idx+1] - path[1,nn_idx]] v /= np.linalg.norm(v) d = [path[0,nn_idx] - state[0], path[1,nn_idx] - state[1]] if np.dot(d,v) > 0: target_idx = nn_idx else: target_idx = nn_idx+1 except IndexError as e: target_idx = nn_idx path_ref_vect = [np.cos(path[2,target_idx] + np.pi / 2), np.sin(path[2,target_idx] + np.pi / 2)] #heading error w.r.t path frame psi = path[2,target_idx] - state[2] # the cross-track error is given by the scalar projection of the car->wp vector onto the faxle versor #cte = np.dot([dx[target_idx], dy[target_idx]],front_axle_vect) cte = np.dot([dx[target_idx], dy[target_idx]],path_ref_vect) return target_idx,psi,cte def optimize(starting_state,u_bar,track): ''' :param starting_state: :param u_bar: :param track: :returns: ''' MAX_SPEED = 1.25 MIN_SPEED = 0.75 MAX_STEER_SPEED = 1.57/2 N = 5 #number of state variables M = 2 #number of control variables T = 20 #Prediction Horizon dt = 0.25 #discretization step #Starting Condition x0 = np.zeros(N) x0[0] = starting_state[0] x0[1] = starting_state[1] x0[2] = starting_state[2] _,psi,cte = calc_err(x0,track) x0[3]=psi x0[4]=cte # Prediction x_bar=np.zeros((N,T+1)) x_bar[:,0]=x0 for t in range (1,T+1): xt=x_bar[:,t-1].reshape(5,1) ut=u_bar[:,t-1].reshape(2,1) A,B,C=get_linear_model(xt,ut) xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C) _,psi,cte = calc_err(xt_plus_one,track) xt_plus_one[3]=psi xt_plus_one[4]=cte x_bar[:,t]= xt_plus_one #CVXPY Linear MPC problem statement cost = 0 constr = [] x = cp.Variable((N, T+1)) u = cp.Variable((M, T)) for t in range(T): # Tracking if t > 0: idx,_,_ = calc_err(x_bar[:,t],track) delta_x = track[:,idx]-x[0:3,t] cost+= cp.quad_form(delta_x,10*np.eye(3)) # Tracking last time step if t == T: idx,_,_ = calc_err(x_bar[:,t],track) delta_x = track[:,idx]-x[0:3,t] cost+= cp.quad_form(delta_x,100*np.eye(3)) # Actuation rate of change if t < (T - 1): cost += cp.quad_form(u[:, t + 1] - u[:, t], 25*np.eye(M)) # Actuation effort cost += cp.quad_form( u[:, t],1*np.eye(M)) # Constrains A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t]) constr += [x[:,t+1] == A*x[:,t] + B*u[:,t] + C.flatten()] # sums problem objectives and concatenates constraints. constr += [x[:,0] == x0] # starting condition constr += [u[0, :] <= MAX_SPEED] constr += [u[0, :] >= MIN_SPEED] constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED] # Solve prob = cp.Problem(cp.Minimize(cost), constr) solution = prob.solve(solver=cp.ECOS, verbose=False) #retrieved optimized U and assign to u_bar to linearize in next step u_bar=np.vstack((np.array(u.value[0, :]).flatten(), (np.array(u.value[1, :]).flatten()))) return u_bar