Compare commits

..

No commits in common. "6f4e6647abd269b9d76e2b5b33d19dca1b73b912" and "1e62c0cbe72de1f9d9478a4c825b76070d85693f" have entirely different histories.

15 changed files with 149 additions and 289 deletions

8
.idea/.gitignore vendored
View File

@ -1,8 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@ -1,15 +0,0 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyCompatibilityInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ourVersions">
<value>
<list size="2">
<item index="0" class="java.lang.String" itemvalue="3.9" />
<item index="1" class="java.lang.String" itemvalue="3.11" />
</list>
</value>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -1,10 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.12 (mpc_python12)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12 (mpc_python12)" project-jdk-type="Python SDK" />
<component name="PythonCompatibilityInspectionAdvertiser">
<option name="version" value="3" />
</component>
</project>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/mpc_python.iml" filepath="$PROJECT_DIR$/.idea/mpc_python.iml" />
</modules>
</component>
</project>

View File

@ -1,14 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.12 (mpc_python12)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
</component>
</project>

View File

@ -9,12 +9,12 @@ This mainly uses **[CVXPY](https://www.cvxpy.org/)** as a framework. This repo c
* To run the pybullet demo: * To run the pybullet demo:
```bash ```bash
python3 ./mpc_pybullet_demo/mpc_demo_pybullet.py python3 mpc_demo_pybullet.py
``` ```
* To run the simulation-less demo (simpler demo that does not use pybullet, useful for debugging): * To run the simulation-less demo (simpler demo that does not use pybullet, useful for debugging):
```bash ```bash
python3 ./mpc_pybullet_demo/mpc_demo_nosim.py python3 mpc_demo_pybullet.py
``` ```
In both cases the script will promt the user for `enter` before starting the demo. In both cases the script will promt the user for `enter` before starting the demo.

View File

@ -10,16 +10,15 @@ class MPC:
self, vehicle, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost self, vehicle, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost
): ):
""" """
:param vehicle:
Args: :param T:
vehicle (): :param DT:
T (): :param state_cost:
DT (): :param final_state_cost:
state_cost (): :param input_cost:
final_state_cost (): :param input_rate_cost:
input_cost ():
input_rate_cost ():
""" """
self.nx = 4 # number of state vars self.nx = 4 # number of state vars
self.nu = 2 # umber of input/control vars self.nu = 2 # umber of input/control vars
@ -44,14 +43,10 @@ class MPC:
def get_linear_model_matrices(self, x_bar, u_bar): def get_linear_model_matrices(self, x_bar, u_bar):
""" """
Computes the approximated LTI state space model x' = Ax + Bu + C Computes the LTI approximated state space model x' = Ax + Bu + C
:param x_bar:
Args: :param u_bar:
x_bar (array-like): :return:
u_bar (array-like):
Returns:
""" """
x = x_bar[0] x = x_bar[0]
@ -101,51 +96,46 @@ class MPC:
verbose=False, verbose=False,
): ):
""" """
Optimisation problem defined for the linearised model,
Args: :param initial_state:
initial_state (array-like): current estimate of [x, y, v, heading] :param target:
target (ndarray): state space reference, in the same frame as the provided current state :param verbose:
prev_cmd (array-like): previous [acceleration, steer]. note this is used in bounds and has to be realistic. :return:
verbose (bool):
Returns:
""" """
assert len(initial_state) == self.nx
assert len(prev_cmd) == self.nu
assert target.shape == (self.nx, self.control_horizon)
# Create variables needed for setting up cvxpy problem assert len(initial_state) == self.nx
# Create variables
x = opt.Variable((self.nx, self.control_horizon + 1), name="states") x = opt.Variable((self.nx, self.control_horizon + 1), name="states")
u = opt.Variable((self.nu, self.control_horizon), name="actions") u = opt.Variable((self.nu, self.control_horizon), name="actions")
cost = 0 cost = 0
constr = [] constr = []
# NOTE: here the state linearization is performed around the starting condition to simplify the controller.
# This approximation gets more inaccurate as the controller looks at the future.
# To improve performance we can keep track of previous optimized x, u and compute these matrices for each timestep k
# Ak, Bk, Ck = self.get_linear_model_matrices(x_prev[:,k], u_prev[:,k])
A, B, C = self.get_linear_model_matrices(initial_state, prev_cmd) A, B, C = self.get_linear_model_matrices(initial_state, prev_cmd)
# Tracking error cost
for k in range(self.control_horizon):
cost += opt.quad_form(x[:, k + 1] - target[:, k], self.Q)
# Final point tracking cost
cost += opt.quad_form(x[:, -1] - target[:, -1], self.Qf)
# Actuation magnitude cost
for k in range(self.control_horizon): for k in range(self.control_horizon):
cost += opt.quad_form(target[:, k] - x[:, k + 1], self.Q)
cost += opt.quad_form(u[:, k], self.R) cost += opt.quad_form(u[:, k], self.R)
# Actuation rate of change cost # Actuation rate of change
for k in range(1, self.control_horizon): if k < (self.control_horizon - 1):
cost += opt.quad_form(u[:, k] - u[:, k - 1], self.P) cost += opt.quad_form(u[:, k + 1] - u[:, k], self.P)
# Kinematics Constrains # Kinematics Constrains
for k in range(self.control_horizon):
constr += [x[:, k + 1] == A @ x[:, k] + B @ u[:, k] + C] constr += [x[:, k + 1] == A @ x[:, k] + B @ u[:, k] + C]
# Actuation rate of change bounds
if k < (self.control_horizon - 1):
constr += [
opt.abs(u[0, k + 1] - u[0, k]) / self.dt <= self.vehicle.max_d_acc
]
constr += [
opt.abs(u[1, k + 1] - u[1, k]) / self.dt <= self.vehicle.max_d_steer
]
# Final Point tracking
cost += opt.quad_form(x[:, -1] - target[:, -1], self.Qf)
# initial state # initial state
constr += [x[:, 0] == initial_state] constr += [x[:, 0] == initial_state]
@ -153,17 +143,6 @@ class MPC:
constr += [opt.abs(u[:, 0]) <= self.vehicle.max_acc] constr += [opt.abs(u[:, 0]) <= self.vehicle.max_acc]
constr += [opt.abs(u[:, 1]) <= self.vehicle.max_steer] constr += [opt.abs(u[:, 1]) <= self.vehicle.max_steer]
# Actuation rate of change bounds
constr += [opt.abs(u[0, 0] - prev_cmd[0]) / self.dt <= self.vehicle.max_d_acc]
constr += [opt.abs(u[1, 0] - prev_cmd[1]) / self.dt <= self.vehicle.max_d_steer]
for k in range(1, self.control_horizon):
constr += [
opt.abs(u[0, k] - u[0, k - 1]) / self.dt <= self.vehicle.max_d_acc
]
constr += [
opt.abs(u[1, k] - u[1, k - 1]) / self.dt <= self.vehicle.max_d_steer
]
prob = opt.Problem(opt.Minimize(cost), constr) prob = opt.Problem(opt.Minimize(cost), constr)
solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False) solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False)
return x, u return x, u

View File

@ -4,14 +4,11 @@ from scipy.interpolate import interp1d
def compute_path_from_wp(start_xp, start_yp, step=0.1): def compute_path_from_wp(start_xp, start_yp, step=0.1):
""" """
Computes a reference path given a set of waypoints
Args: :param start_xp:
start_xp (array-like): 1D array of x-positions :param start_yp:
start_yp (array-like): 1D array of y-positions :param step:
step (float): intepolation step :return:
Returns:
ndarray of shape (3,N) representing the path as x,y,heading
""" """
final_xp = [] final_xp = []
final_yp = [] final_yp = []
@ -37,14 +34,10 @@ def compute_path_from_wp(start_xp, start_yp, step=0.1):
def get_nn_idx(state, path): def get_nn_idx(state, path):
""" """
Finds the index of the closest element Computes the index of the waypoint closest to vehicle
:param state:
Args: :param path:
state (array-like): 1D array whose first two elements are x-pos and y-pos :return:
path (ndarray): 2D array of shape (2,N) of x,y points
Returns:
int: the index of the closest element
""" """
dx = state[0] - path[0, :] dx = state[0] - path[0, :]
dy = state[1] - path[1, :] dy = state[1] - path[1, :]
@ -68,17 +61,11 @@ def get_nn_idx(state, path):
def get_ref_trajectory(state, path, target_v, T, DT): def get_ref_trajectory(state, path, target_v, T, DT):
""" """
Reinterpolate the trajectory to get a set N desired target states
Args: :param state:
state (array-like): state of the vehicle in global frame :param path:
path (ndarray): 2D array representing the path as x,y,heading points in global frame :param target_v:
target_v (float): desired speed :return:
T (float): control horizon duration
DT (float): control horizon time-step
Returns:
ndarray: 2D array representing state space trajectory [x_k, y_k, v_k, theta_k] w.r.t ego frame.
Interpolated according to the time-step and the desired velocity
""" """
K = int(T / DT) K = int(T / DT)
@ -102,7 +89,7 @@ def get_ref_trajectory(state, path, target_v, T, DT):
stop_idx = np.where(xref_cdist == cdist[-1]) stop_idx = np.where(xref_cdist == cdist[-1])
xref[2, stop_idx] = 0.0 xref[2, stop_idx] = 0.0
# transform in ego frame # transform in car ego frame
dx = xref[0, :] - state[0] dx = xref[0, :] - state[0]
dy = xref[1, :] - state[1] dy = xref[1, :] - state[1]
xref[0, :] = dx * np.cos(-state[3]) - dy * np.sin(-state[3]) # X xref[0, :] = dx * np.cos(-state[3]) - dy * np.sin(-state[3]) # X
@ -111,14 +98,7 @@ def get_ref_trajectory(state, path, target_v, T, DT):
def fix_angle_reference(angle_ref, angle_init): def fix_angle_reference(angle_ref, angle_init):
""" """
Removes jumps greater than 2PI to smooth the heading This function returns a "smoothened" angle_ref wrt angle_init so there are no jumps.
Args:
angle_ref (array-like):
angle_init (float):
Returns:
array-like:
""" """
diff_angle = angle_ref - angle_init diff_angle = angle_ref - angle_init
diff_angle = np.unwrap(diff_angle) diff_angle = np.unwrap(diff_angle)

View File

@ -3,21 +3,13 @@ import numpy as np
class VehicleModel: class VehicleModel:
""" """
Helper class that contains the parameters of the vehicle to be controlled Helper class to hold vehicle info
Attributes:
wheelbase: [m]
max_speed: [m/s]
max_acc: [m/ss]
max_d_acc: [m/sss]
max_steer: [rad]
max_d_steer: [rad/s]
""" """
def __init__(self): def __init__(self):
self.wheelbase = 0.3 self.wheelbase = 0.3 # vehicle wheelbase [m]
self.max_speed = 1.5 self.max_speed = 1.5 # [m/s]
self.max_acc = 1.0 self.max_acc = 1.0 # [m/ss]
self.max_d_acc = 1.0 self.max_d_acc = 1.0 # [m/sss]
self.max_steer = np.radians(30) self.max_steer = np.radians(30) # [rad]
self.max_d_steer = np.radians(30) self.max_d_steer = np.radians(30) # [rad/s]

View File

@ -27,29 +27,33 @@ L = 0.3 # vehicle wheelbase [m]
# Classes # Classes
class MPCSim: class MPCSim:
def __init__(self): def __init__(self):
# State of the robot [x,y,v, heading] # State for the robot mathematical model [x,y,heading]
self.state = np.array([SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H]) self.state = np.array([SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H])
# helper variable to keep track of mpc output # starting guess
# starting condition is 0,0 self.action = np.zeros(2)
self.control = np.zeros(2) self.action[0] = 1.0 # a
self.action[1] = 0.0 # delta
self.K = int(T / DT) self.K = int(T / DT)
self.opt_u = np.zeros((2, self.K))
# Weights for Cost Matrices
Q = [20, 20, 10, 20] # state error cost Q = [20, 20, 10, 20] # state error cost
Qf = [30, 30, 30, 30] # state final error cost Qf = [30, 30, 30, 30] # state final error cost
R = [10, 10] # input cost R = [10, 10] # input cost
P = [10, 10] # input rate of change cost P = [10, 10] # input rate of change cost
self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P) self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P)
# Path from waypoint interpolation # Interpolated Path to follow given waypoints
self.path = compute_path_from_wp( self.path = compute_path_from_wp(
[0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0], [0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0],
[0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2], [0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2],
0.05, 0.05,
) )
# Helper variables to keep track of the sim # Sim help vars
self.sim_time = 0 self.sim_time = 0
self.x_history = [] self.x_history = []
self.y_history = [] self.y_history = []
@ -57,7 +61,7 @@ class MPCSim:
self.h_history = [] self.h_history = []
self.a_history = [] self.a_history = []
self.d_history = [] self.d_history = []
self.optimized_trajectory = None self.predicted = None
# Initialise plot # Initialise plot
plt.style.use("ggplot") plt.style.use("ggplot")
@ -65,26 +69,24 @@ class MPCSim:
plt.ion() plt.ion()
plt.show() plt.show()
def ego_to_global(self, mpc_out): def preview(self, mpc_out):
""" """
transforms optimized trajectory XY points from ego(car) reference [TODO:summary]
into global(map) frame
Args: [TODO:description]
mpc_out ():
""" """
trajectory = np.zeros((2, self.K)) predicted = np.zeros(self.opt_u.shape)
trajectory[:, :] = mpc_out[0:2, 1:] predicted[:, :] = mpc_out[0:2, 1:]
Rotm = np.array( Rotm = np.array(
[ [
[np.cos(self.state[3]), np.sin(self.state[3])], [np.cos(self.state[3]), np.sin(self.state[3])],
[-np.sin(self.state[3]), np.cos(self.state[3])], [-np.sin(self.state[3]), np.cos(self.state[3])],
] ]
) )
trajectory = (trajectory.T.dot(Rotm)).T predicted = (predicted.T.dot(Rotm)).T
trajectory[0, :] += self.state[0] predicted[0, :] += self.state[0]
trajectory[1, :] += self.state[1] predicted[1, :] += self.state[1]
return trajectory self.predicted = predicted
def run(self): def run(self):
""" """
@ -107,31 +109,31 @@ class MPCSim:
return return
# optimization loop # optimization loop
# start=time.time() # start=time.time()
# dynamycs w.r.t robot frame
curr_state = np.array([0, 0, self.state[2], 0])
# Get Reference_traj -> inputs are in worldframe # Get Reference_traj -> inputs are in worldframe
target = get_ref_trajectory(self.state, self.path, TARGET_VEL, T, DT) target = get_ref_trajectory(self.state, self.path, TARGET_VEL, T, DT)
# dynamycs w.r.t robot frame
curr_state = np.array([0, 0, self.state[2], 0])
x_mpc, u_mpc = self.mpc.step( x_mpc, u_mpc = self.mpc.step(
curr_state, curr_state,
target, target,
self.control, self.action,
verbose=False, verbose=False,
) )
# print("CVXPY Optimization Time: {:.4f}s".format(time.time()-start)) # NOTE: used only for preview purposes
# only the first one is used to advance the simulation self.opt_u = np.vstack(
(
self.control[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]] np.array(u_mpc.value[0, :]).flatten(),
self.state = self.predict_next_state( np.array(u_mpc.value[1, :]).flatten(),
self.state, [self.control[0], self.control[1]], DT )
) )
self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
# use the optimizer output to preview the predicted state trajectory # print("CVXPY Optimization Time: {:.4f}s".format(time.time()-start))
self.optimized_trajectory = self.ego_to_global(x_mpc.value) self.predict([self.action[0], self.action[1]], DT)
self.preview(x_mpc.value)
self.plot_sim() self.plot_sim()
def predict_next_state(self, state, u, dt): def predict(self, u, dt):
def kinematics_model(x, t, u): def kinematics_model(x, t, u):
dxdt = x[2] * np.cos(x[3]) dxdt = x[2] * np.cos(x[3])
dydt = x[2] * np.sin(x[3]) dydt = x[2] * np.sin(x[3])
@ -142,17 +144,21 @@ class MPCSim:
# solve ODE # solve ODE
tspan = [0, dt] tspan = [0, dt]
new_state = odeint(kinematics_model, state, tspan, args=(u[:],))[1] self.state = odeint(kinematics_model, self.state, tspan, args=(u[:],))[1]
return new_state
def plot_sim(self): def plot_sim(self):
"""
[TODO:summary]
[TODO:description]
"""
self.sim_time = self.sim_time + DT self.sim_time = self.sim_time + DT
self.x_history.append(self.state[0]) self.x_history.append(self.state[0])
self.y_history.append(self.state[1]) self.y_history.append(self.state[1])
self.v_history.append(self.state[2]) self.v_history.append(self.state[2])
self.h_history.append(self.state[3]) self.h_history.append(self.state[3])
self.a_history.append(self.control[0]) self.a_history.append(self.opt_u[0, 1])
self.d_history.append(self.control[1]) self.d_history.append(self.opt_u[1, 1])
plt.clf() plt.clf()
@ -180,10 +186,10 @@ class MPCSim:
label="vehicle trajectory", label="vehicle trajectory",
) )
if self.optimized_trajectory is not None: if self.predicted is not None:
plt.plot( plt.plot(
self.optimized_trajectory[0, :], self.predicted[0, :],
self.optimized_trajectory[1, :], self.predicted[1, :],
c="tab:green", c="tab:green",
marker="+", marker="+",
alpha=0.5, alpha=0.5,
@ -240,11 +246,18 @@ class MPCSim:
def plot_car(x, y, yaw): def plot_car(x, y, yaw):
""" """
[TODO:summary]
Args: [TODO:description]
x ():
y (): Parameters
yaw (): ----------
x : [TODO:type]
[TODO:description]
y : [TODO:type]
[TODO:description]
yaw : [TODO:type]
[TODO:description]
""" """
LENGTH = 0.5 # [m] LENGTH = 0.5 # [m]
WIDTH = 0.25 # [m] WIDTH = 0.25 # [m]

View File

@ -18,14 +18,7 @@ DT = 0.2 # discretization step [s]
def get_state(robotId): def get_state(robotId):
""" """ """
Args:
robotId ():
Returns:
"""
robPos, robOrn = p.getBasePositionAndOrientation(robotId) robPos, robOrn = p.getBasePositionAndOrientation(robotId)
linVel, angVel = p.getBaseVelocity(robotId) linVel, angVel = p.getBaseVelocity(robotId)
@ -40,14 +33,6 @@ def get_state(robotId):
def set_ctrl(robotId, currVel, acceleration, steeringAngle): def set_ctrl(robotId, currVel, acceleration, steeringAngle):
"""
Args:
robotId ():
currVel ():
acceleration ():
steeringAngle ():
"""
gearRatio = 1.0 / 21 gearRatio = 1.0 / 21
steering = [0, 2] steering = [0, 2]
wheels = [8, 15] wheels = [8, 15]
@ -71,6 +56,7 @@ def set_ctrl(robotId, currVel, acceleration, steeringAngle):
def plot_results(path, x_history, y_history): def plot_results(path, x_history, y_history):
""" """
plt.style.use("ggplot") plt.style.use("ggplot")
plt.figure() plt.figure()
plt.title("MPC Tracking Results") plt.title("MPC Tracking Results")
@ -92,6 +78,7 @@ def plot_results(path, x_history, y_history):
def run_sim(): def run_sim():
""" """
p.connect(p.GUI) p.connect(p.GUI)
p.resetDebugVisualizerCamera( p.resetDebugVisualizerCamera(
cameraDistance=1.0, cameraDistance=1.0,
@ -226,8 +213,10 @@ def run_sim():
for x_, y_ in zip(path[0, :], path[1, :]): for x_, y_ in zip(path[0, :], path[1, :]):
p.addUserDebugLine([x_, y_, 0], [x_, y_, 0.33], [0, 0, 1]) p.addUserDebugLine([x_, y_, 0], [x_, y_, 0.33], [0, 0, 1])
# starting conditions # starting guess
control = np.zeros(2) action = np.zeros(2)
action[0] = 1.0 # a
action[1] = 0.0 # delta
# Cost Matrices # Cost Matrices
Q = [20, 20, 10, 20] # state error cost [x,y,v,yaw] Q = [20, 20, 10, 20] # state error cost [x,y,v,yaw]
@ -271,21 +260,21 @@ def run_sim():
# simulate one timestep actuation delay # simulate one timestep actuation delay
ego_state[0] = ego_state[0] + ego_state[2] * np.cos(ego_state[3]) * DT ego_state[0] = ego_state[0] + ego_state[2] * np.cos(ego_state[3]) * DT
ego_state[1] = ego_state[1] + ego_state[2] * np.sin(ego_state[3]) * DT ego_state[1] = ego_state[1] + ego_state[2] * np.sin(ego_state[3]) * DT
ego_state[2] = ego_state[2] + control[0] * DT ego_state[2] = ego_state[2] + action[0] * DT
ego_state[3] = ego_state[3] + control[0] * np.tan(control[1]) / L * DT ego_state[3] = ego_state[3] + action[0] * np.tan(action[1]) / L * DT
# optimization loop # optimization loop
start = time.time() start = time.time()
# MPC step # MPC step
_, u_mpc = mpc.step(ego_state, target, control, verbose=False) _, u_mpc = mpc.step(ego_state, target, action, verbose=False)
control[0] = u_mpc.value[0, 0] action[0] = u_mpc.value[0, 0]
control[1] = u_mpc.value[1, 0] action[1] = u_mpc.value[1, 0]
elapsed = time.time() - start elapsed = time.time() - start
print("CVXPY Optimization Time: {:.4f}s".format(elapsed)) print("CVXPY Optimization Time: {:.4f}s".format(elapsed))
set_ctrl(car, state[2], control[0], control[1]) set_ctrl(car, state[2], action[0], action[1])
if DT - elapsed > 0: if DT - elapsed > 0:
time.sleep(DT - elapsed) time.sleep(DT - elapsed)

View File

@ -11,22 +11,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 1,
"metadata": { "metadata": {},
"ExecuteTime": { "outputs": [],
"end_time": "2024-10-22T08:05:56.118290Z",
"start_time": "2024-10-22T08:05:46.550696Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Matplotlib is building the font cache; this may take a moment.\n"
]
}
],
"source": [ "source": [
"import numpy as np\n", "import numpy as np\n",
"from scipy.integrate import odeint\n", "from scipy.integrate import odeint\n",
@ -190,13 +177,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 4,
"metadata": { "metadata": {},
"ExecuteTime": {
"end_time": "2024-10-22T08:06:14.547915Z",
"start_time": "2024-10-22T08:06:14.544585Z"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"# Define process model\n", "# Define process model\n",
@ -238,23 +220,15 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 5,
"metadata": { "metadata": {},
"ExecuteTime": {
"end_time": "2024-10-22T08:06:17.956990Z",
"start_time": "2024-10-22T08:06:17.847071Z"
}
},
"outputs": [ "outputs": [
{ {
"ename": "NameError", "name": "stdout",
"evalue": "name 'M' is not defined", "output_type": "stream",
"output_type": "error", "text": [
"traceback": [ "CPU times: user 3.39 ms, sys: 0 ns, total: 3.39 ms\n",
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", "Wall time: 2.79 ms\n"
"\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)",
"File \u001B[0;32m<timed exec>:1\u001B[0m\n",
"\u001B[0;31mNameError\u001B[0m: name 'M' is not defined"
] ]
} }
], ],
@ -469,9 +443,9 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"name": "python3", "display_name": "Python [conda env:.conda-jupyter] *",
"language": "python", "language": "python",
"display_name": "Python 3 (ipykernel)" "name": "conda-env-.conda-jupyter-py"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@ -1,6 +1,6 @@
pybullet>=2.7.2 pybullet==2.7.2
cvxpy>=1.0.28 cvxpy==1.0.28
dccp dccp
numpy>=1.22 numpy>=1.22
osqp>=0.6.1 osqp==0.6.1
scipy>=1.10.0 scipy==1.10.0