update usage in visualization only demo

master
mcarfagno 2023-10-12 20:17:55 +01:00
parent 279625b4c1
commit c3d92cc4bd
4 changed files with 41 additions and 42 deletions

View File

@ -18,7 +18,7 @@ SIM_START_V = 0.0
SIM_START_H = 0.0 SIM_START_H = 0.0
L = 0.3 L = 0.3
P = mpcpy.Params() params = mpcpy.Params()
# Params # Params
VEL = 1.0 # m/s VEL = 1.0 # m/s
@ -31,25 +31,26 @@ class MPCSim:
self.state = np.array([SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H]) self.state = np.array([SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H])
# starting guess # starting guess
self.action = np.zeros(P.M) self.action = np.zeros(params.M)
self.action[0] = P.MAX_ACC / 2 # a self.action[0] = params.MAX_ACC / 2 # a
self.action[1] = 0.0 # delta self.action[1] = 0.0 # delta
self.opt_u = np.zeros((P.M, P.T)) self.K = int(params.T / params.DT)
self.opt_u = np.zeros((params.M, self.K))
# Cost Matrices # Cost Matrices
Q = np.diag([20, 20, 10, 20]) # state error cost Q = [20, 20, 10, 20] # state error cost
Qf = np.diag([30, 30, 30, 30]) # state final error cost Qf = [30, 30, 30, 30] # state final error cost
R = np.diag([10, 10]) # input cost R = [10, 10] # input cost
R_ = np.diag([10, 10]) # input rate of change cost P = [10, 10] # input rate of change cost
self.mpc = mpcpy.MPC(P.N, P.M, Q, R) self.mpc = mpcpy.MPC(Q, Qf, R, P)
# Interpolated Path to follow given waypoints # Interpolated Path to follow given waypoints
self.path = compute_path_from_wp( self.path = compute_path_from_wp(
[0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0], [0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0],
[0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2], [0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2],
P.path_tick, 0.05,
) )
# Sim help vars # Sim help vars
@ -113,9 +114,7 @@ class MPCSim:
# State Matrices # State Matrices
A, B, C = mpcpy.get_linear_model_matrices(curr_state, self.action) A, B, C = mpcpy.get_linear_model_matrices(curr_state, self.action)
# Get Reference_traj -> inputs are in worldframe # Get Reference_traj -> inputs are in worldframe
target, _ = mpcpy.get_ref_trajectory( target, _ = mpcpy.get_ref_trajectory(self.state, self.path, VEL)
self.state, self.path, VEL, dl=P.path_tick
)
x_mpc, u_mpc = self.mpc.optimize_linearized_model( x_mpc, u_mpc = self.mpc.optimize_linearized_model(
A, A,
@ -123,13 +122,13 @@ class MPCSim:
C, C,
curr_state, curr_state,
target, target,
time_horizon=P.T,
verbose=False, verbose=False,
) )
# NOTE: used only for preview purposes
self.opt_u = np.vstack( self.opt_u = np.vstack(
( (
np.array(u_mpc.value[0, :]).flatten(), np.array(u_mpc.value[0, :]).flatten(),
(np.array(u_mpc.value[1, :]).flatten()), np.array(u_mpc.value[1, :]).flatten(),
) )
) )
self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]] self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
@ -143,12 +142,12 @@ class MPCSim:
dxdt = x[2] * np.cos(x[3]) dxdt = x[2] * np.cos(x[3])
dydt = x[2] * np.sin(x[3]) dydt = x[2] * np.sin(x[3])
dvdt = u[0] dvdt = u[0]
dtheta0dt = x[2] * np.tan(u[1]) / P.L dtheta0dt = x[2] * np.tan(u[1]) / params.L
dqdt = [dxdt, dydt, dvdt, dtheta0dt] dqdt = [dxdt, dydt, dvdt, dtheta0dt]
return dqdt return dqdt
# solve ODE # solve ODE
tspan = [0, P.DT] tspan = [0, params.DT]
self.state = odeint(kinematics_model, self.state, tspan, args=(u[:],))[1] self.state = odeint(kinematics_model, self.state, tspan, args=(u[:],))[1]
def plot_sim(self): def plot_sim(self):
@ -157,7 +156,7 @@ class MPCSim:
[TODO:description] [TODO:description]
""" """
self.sim_time = self.sim_time + P.DT self.sim_time = self.sim_time + params.DT
self.x_history.append(self.state[0]) self.x_history.append(self.state[0])
self.y_history.append(self.state[1]) self.y_history.append(self.state[1])
self.v_history.append(self.state[2]) self.v_history.append(self.state[2])
@ -231,7 +230,7 @@ class MPCSim:
# plt.title("Linear Velocity {} m/s".format(self.v_history[-1])) # plt.title("Linear Velocity {} m/s".format(self.v_history[-1]))
plt.plot(self.a_history, c="tab:orange") plt.plot(self.a_history, c="tab:orange")
locs, _ = plt.xticks() locs, _ = plt.xticks()
plt.xticks(locs[1:], locs[1:] * P.DT) plt.xticks(locs[1:], locs[1:] * params.DT)
plt.ylabel("a(t) [m/ss]") plt.ylabel("a(t) [m/ss]")
plt.xlabel("t [s]") plt.xlabel("t [s]")
@ -240,7 +239,7 @@ class MPCSim:
plt.plot(np.degrees(self.d_history), c="tab:orange") plt.plot(np.degrees(self.d_history), c="tab:orange")
plt.ylabel("gamma(t) [deg]") plt.ylabel("gamma(t) [deg]")
locs, _ = plt.xticks() locs, _ = plt.xticks()
plt.xticks(locs[1:], locs[1:] * P.DT) plt.xticks(locs[1:], locs[1:] * params.DT)
plt.xlabel("t [s]") plt.xlabel("t [s]")
plt.tight_layout() plt.tight_layout()

View File

@ -60,22 +60,22 @@ class MPC:
def __init__(self, state_cost, final_state_cost, input_cost, input_rate_cost): def __init__(self, state_cost, final_state_cost, input_cost, input_rate_cost):
""" """ """ """
nx = P.N # number of state vars self.nx = P.N # number of state vars
nu = P.M # umber of input/control vars self.nu = P.M # umber of input/control vars
if len(state_cost) != nx: if len(state_cost) != self.nx:
raise ValueError(f"State Error cost matrix shuld be of size {nx}") raise ValueError(f"State Error cost matrix shuld be of size {self.nx}")
if len(final_state_cost) != nx: if len(final_state_cost) != self.nx:
raise ValueError(f"End State Error cost matrix shuld be of size {nx}") raise ValueError(f"End State Error cost matrix shuld be of size {self.nx}")
if len(input_cost) != nu: if len(input_cost) != self.nu:
raise ValueError(f"Control Effort cost matrix shuld be of size {nu}") raise ValueError(f"Control Effort cost matrix shuld be of size {self.nu}")
if len(input_rate_cost) != nu: if len(input_rate_cost) != self.nu:
raise ValueError( raise ValueError(
f"Control Effort Difference cost matrix shuld be of size {nu}" f"Control Effort Difference cost matrix shuld be of size {self.nu}"
) )
self.dt = P.DT self.dt = P.DT
self.control_horizon = P.T / P.DT self.control_horizon = int(P.T / P.DT)
self.Q = np.diag(state_cost) self.Q = np.diag(state_cost)
self.Qf = np.diag(final_state_cost) self.Qf = np.diag(final_state_cost)
self.R = np.diag(input_cost) self.R = np.diag(input_cost)
@ -103,11 +103,11 @@ class MPC:
:return: :return:
""" """
assert len(initial_state) == self.state_len assert len(initial_state) == self.nx
# Create variables # Create variables
x = opt.Variable((self.state_len, control_horizon + 1), name="states") x = opt.Variable((self.nx, self.control_horizon + 1), name="states")
u = opt.Variable((self.action_len, control_horizon), name="actions") u = opt.Variable((self.nu, self.control_horizon), name="actions")
cost = 0 cost = 0
constr = [] constr = []
@ -143,4 +143,4 @@ class MPC:
prob = opt.Problem(opt.Minimize(cost), constr) prob = opt.Problem(opt.Minimize(cost), constr)
solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False) solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False)
return u[:, 0].value return x, u

View File

@ -5,9 +5,8 @@ class Params:
def __init__(self): def __init__(self):
self.N = 4 # number of state variables self.N = 4 # number of state variables
self.M = 2 # number of control variables self.M = 2 # number of control variables
self.T = 10 # Prediction Horizon [s] self.T = 5 # Prediction Horizon [s]
self.DT = 0.2 # discretization step [s] self.DT = 0.2 # discretization step [s]
self.path_tick = 0.05 # [m]
self.L = 0.3 # vehicle wheelbase [m] self.L = 0.3 # vehicle wheelbase [m]
self.TARGET_SPEED = 1.0 # [m/s self.TARGET_SPEED = 1.0 # [m/s
self.MAX_SPEED = 1.5 # [m/s self.MAX_SPEED = 1.5 # [m/s

View File

@ -66,14 +66,14 @@ def normalize_angle(angle):
return angle return angle
def get_ref_trajectory(state, path, target_v, dl=0.1): def get_ref_trajectory(state, path, target_v):
""" """
For each step in the time horizon For each step in the time horizon
modified reference in robot frame modified reference in robot frame
""" """
xref = np.zeros((P.N, P.T + 1)) K = int(P.T / P.DT)
dref = np.zeros((1, P.T + 1)) xref = np.zeros((P.N, K + 1))
# sp = np.ones((1,T +1))*target_v #speed profile dref = np.zeros((1, K + 1))
ncourse = path.shape[1] ncourse = path.shape[1]
ind = get_nn_idx(state, path) ind = get_nn_idx(state, path)
dx = path[0, ind] - state[0] dx = path[0, ind] - state[0]
@ -84,7 +84,8 @@ def get_ref_trajectory(state, path, target_v, dl=0.1):
xref[3, 0] = normalize_angle(path[2, ind] - state[3]) # Theta xref[3, 0] = normalize_angle(path[2, ind] - state[3]) # Theta
dref[0, 0] = 0.0 # Steer operational point should be 0 dref[0, 0] = 0.0 # Steer operational point should be 0
travel = 0.0 travel = 0.0
for i in range(1, P.T + 1): dl = np.hypot(path[0, 1] - path[0, 0], path[1, 1] - path[1, 0])
for i in range(1, K + 1):
travel += abs(target_v) * P.DT travel += abs(target_v) * P.DT
dind = int(round(travel / dl)) dind = int(round(travel / dl))
if (ind + dind) < ncourse: if (ind + dind) < ncourse: