tidy up comments, remove useless vars
parent
1e62c0cbe7
commit
7369fedcb3
|
@ -27,33 +27,32 @@ L = 0.3 # vehicle wheelbase [m]
|
|||
# Classes
|
||||
class MPCSim:
|
||||
def __init__(self):
|
||||
# State for the robot mathematical model [x,y,heading]
|
||||
# State of the robot [x,y,v, heading]
|
||||
self.state = np.array([SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H])
|
||||
|
||||
# starting guess
|
||||
# helper variable to keep track of mpc output
|
||||
self.action = np.zeros(2)
|
||||
|
||||
# starting guess
|
||||
self.action[0] = 1.0 # a
|
||||
self.action[1] = 0.0 # delta
|
||||
|
||||
self.K = int(T / DT)
|
||||
self.opt_u = np.zeros((2, self.K))
|
||||
|
||||
# Weights for Cost Matrices
|
||||
Q = [20, 20, 10, 20] # state error cost
|
||||
Qf = [30, 30, 30, 30] # state final error cost
|
||||
R = [10, 10] # input cost
|
||||
P = [10, 10] # input rate of change cost
|
||||
|
||||
self.mpc = MPC(VehicleModel(), T, DT, Q, Qf, R, P)
|
||||
|
||||
# Interpolated Path to follow given waypoints
|
||||
# Path from waypoint interpolation
|
||||
self.path = compute_path_from_wp(
|
||||
[0, 3, 4, 6, 10, 12, 13, 13, 6, 1, 0],
|
||||
[0, 0, 2, 4, 3, 3, -1, -2, -6, -2, -2],
|
||||
0.05,
|
||||
)
|
||||
|
||||
# Sim help vars
|
||||
# Helper variables to keep track of the sim
|
||||
self.sim_time = 0
|
||||
self.x_history = []
|
||||
self.y_history = []
|
||||
|
@ -75,7 +74,7 @@ class MPCSim:
|
|||
|
||||
[TODO:description]
|
||||
"""
|
||||
predicted = np.zeros(self.opt_u.shape)
|
||||
predicted = np.zeros((2, self.K))
|
||||
predicted[:, :] = mpc_out[0:2, 1:]
|
||||
Rotm = np.array(
|
||||
[
|
||||
|
@ -109,27 +108,25 @@ class MPCSim:
|
|||
return
|
||||
# optimization loop
|
||||
# start=time.time()
|
||||
# dynamycs w.r.t robot frame
|
||||
curr_state = np.array([0, 0, self.state[2], 0])
|
||||
|
||||
# Get Reference_traj -> inputs are in worldframe
|
||||
target = get_ref_trajectory(self.state, self.path, TARGET_VEL, T, DT)
|
||||
|
||||
# dynamycs w.r.t robot frame
|
||||
curr_state = np.array([0, 0, self.state[2], 0])
|
||||
x_mpc, u_mpc = self.mpc.step(
|
||||
curr_state,
|
||||
target,
|
||||
self.action,
|
||||
verbose=False,
|
||||
)
|
||||
# NOTE: used only for preview purposes
|
||||
self.opt_u = np.vstack(
|
||||
(
|
||||
np.array(u_mpc.value[0, :]).flatten(),
|
||||
np.array(u_mpc.value[1, :]).flatten(),
|
||||
)
|
||||
)
|
||||
self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
|
||||
# print("CVXPY Optimization Time: {:.4f}s".format(time.time()-start))
|
||||
|
||||
# only the first one is used to advance the simulation
|
||||
self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
|
||||
self.predict([self.action[0], self.action[1]], DT)
|
||||
|
||||
# use the state trajectory to preview the optimizer output
|
||||
self.preview(x_mpc.value)
|
||||
self.plot_sim()
|
||||
|
||||
|
@ -157,8 +154,8 @@ class MPCSim:
|
|||
self.y_history.append(self.state[1])
|
||||
self.v_history.append(self.state[2])
|
||||
self.h_history.append(self.state[3])
|
||||
self.a_history.append(self.opt_u[0, 1])
|
||||
self.d_history.append(self.opt_u[1, 1])
|
||||
self.a_history.append(self.action[0])
|
||||
self.d_history.append(self.action[1])
|
||||
|
||||
plt.clf()
|
||||
|
||||
|
|
Loading…
Reference in New Issue