plotting sim racecar
|
@ -0,0 +1,104 @@
|
|||
import numpy as np
|
||||
np.seterr(divide='ignore', invalid='ignore')
|
||||
|
||||
from scipy.integrate import odeint
|
||||
from scipy.interpolate import interp1d
|
||||
import cvxpy as cp
|
||||
|
||||
from utils import road_curve, f, df
|
||||
|
||||
from mpc_config import Params
|
||||
P=Params()
|
||||
|
||||
def get_linear_model(x_bar,u_bar):
|
||||
"""
|
||||
"""
|
||||
|
||||
x = x_bar[0]
|
||||
y = x_bar[1]
|
||||
theta = x_bar[2]
|
||||
|
||||
v = u_bar[0]
|
||||
w = u_bar[1]
|
||||
|
||||
A = np.zeros((P.N,P.N))
|
||||
A[0,2]=-v*np.sin(theta)
|
||||
A[1,2]=v*np.cos(theta)
|
||||
A_lin=np.eye(P.N)+P.dt*A
|
||||
|
||||
B = np.zeros((P.N,P.M))
|
||||
B[0,0]=np.cos(theta)
|
||||
B[1,0]=np.sin(theta)
|
||||
B[2,1]=1
|
||||
B_lin=P.dt*B
|
||||
|
||||
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w]).reshape(P.N,1)
|
||||
C_lin = P.dt*(f_xu - np.dot(A,x_bar.reshape(P.N,1)) - np.dot(B,u_bar.reshape(P.M,1)))
|
||||
|
||||
return A_lin,B_lin,C_lin
|
||||
|
||||
|
||||
def optimize(state,u_bar,track):
|
||||
'''
|
||||
:param state:
|
||||
:param u_bar:
|
||||
:param track:
|
||||
:returns:
|
||||
'''
|
||||
|
||||
MAX_SPEED = 1.25
|
||||
MIN_SPEED = 0.75
|
||||
MAX_STEER_SPEED = 1.57/2
|
||||
|
||||
# compute polynomial coefficients of the track
|
||||
K=road_curve(state,track)
|
||||
|
||||
# dynamics starting state w.r.t vehicle frame
|
||||
x_bar=np.zeros((P.N,P.T+1))
|
||||
|
||||
#prediction for linearization of costrains
|
||||
for t in range (1,P.T+1):
|
||||
xt=x_bar[:,t-1].reshape(P.N,1)
|
||||
ut=u_bar[:,t-1].reshape(P.M,1)
|
||||
A,B,C=get_linear_model(xt,ut)
|
||||
xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)
|
||||
x_bar[:,t]= xt_plus_one
|
||||
|
||||
#CVXPY Linear MPC problem statement
|
||||
cost = 0
|
||||
constr = []
|
||||
x = cp.Variable((P.N, P.T+1))
|
||||
u = cp.Variable((P.M, P.T))
|
||||
|
||||
for t in range(P.T):
|
||||
|
||||
#cost += 30*cp.sum_squares(x[2,t]-np.arctan(df(x_bar[0,t],K))) # psi
|
||||
cost += 50*cp.sum_squares(x[2,t]-np.arctan2(df(x_bar[0,t],K),x_bar[0,t])) # psi
|
||||
cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
|
||||
|
||||
# Actuation rate of change
|
||||
if t < (P.T - 1):
|
||||
cost += cp.quad_form(u[:, t + 1] - u[:, t], 100*np.eye(P.M))
|
||||
|
||||
# Actuation effort
|
||||
cost += cp.quad_form( u[:, t],1*np.eye(P.M))
|
||||
|
||||
# Kinrmatics Constrains (Linearized model)
|
||||
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
|
||||
constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]
|
||||
|
||||
# sums problem objectives and concatenates constraints.
|
||||
constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition
|
||||
constr += [u[0, :] <= MAX_SPEED]
|
||||
constr += [u[0, :] >= MIN_SPEED]
|
||||
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
|
||||
|
||||
# Solve
|
||||
prob = cp.Problem(cp.Minimize(cost), constr)
|
||||
solution = prob.solve(solver=cp.OSQP, verbose=False)
|
||||
|
||||
#retrieved optimized U and assign to u_bar to linearize in next step
|
||||
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
|
||||
(np.array(u.value[1, :]).flatten())))
|
||||
|
||||
return u_bar
|
Before Width: | Height: | Size: 6.2 KiB After Width: | Height: | Size: 6.2 KiB |
Before Width: | Height: | Size: 559 KiB After Width: | Height: | Size: 559 KiB |
Before Width: | Height: | Size: 92 KiB After Width: | Height: | Size: 92 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 82 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 69 KiB After Width: | Height: | Size: 69 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 178 KiB After Width: | Height: | Size: 178 KiB |
Before Width: | Height: | Size: 84 KiB After Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
|
@ -0,0 +1,6 @@
|
|||
class Params():
|
||||
def __init__(self):
|
||||
self.N = 3 #number of state variables
|
||||
self.M = 2 #number of control variables
|
||||
self.T = 20 #Prediction Horizon
|
||||
self.dt = 0.25 #discretization step
|
|
@ -0,0 +1,207 @@
|
|||
#! /usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import animation
|
||||
|
||||
from utils import compute_path_from_wp
|
||||
from cvxpy_mpc import optimize
|
||||
|
||||
import sys
|
||||
import time
|
||||
|
||||
# Robot Starting position
|
||||
SIM_START_X=0
|
||||
SIM_START_Y=0.5
|
||||
SIM_START_H=0
|
||||
|
||||
from mpc_config import Params
|
||||
P=Params()
|
||||
|
||||
# Classes
|
||||
class MPC():
|
||||
|
||||
def __init__(self):
|
||||
|
||||
# State for the robot mathematical model [x,y,heading]
|
||||
self.state = [SIM_START_X, SIM_START_Y, SIM_START_H]
|
||||
|
||||
self.opt_u = np.zeros((P.M,P.T))
|
||||
self.opt_u[0,:] = 1 #m/s
|
||||
self.opt_u[1,:] = np.radians(0) #rad/s
|
||||
|
||||
# Interpolated Path to follow given waypoints
|
||||
#self.path = compute_path_from_wp([0,10,12,2,4,14],[0,0,2,10,12,12])
|
||||
self.path = compute_path_from_wp([0,3,4,6,10,13],
|
||||
[0,0,2,4,3,3],1)
|
||||
|
||||
# Sim help vars
|
||||
self.sim_time=0
|
||||
self.x_history=[]
|
||||
self.y_history=[]
|
||||
self.h_history=[]
|
||||
self.v_history=[]
|
||||
self.w_history=[]
|
||||
self.predicted=None
|
||||
|
||||
#Initialise plot
|
||||
plt.style.use("ggplot")
|
||||
self.fig = plt.figure()
|
||||
plt.ion()
|
||||
plt.show()
|
||||
|
||||
def predict_motion(self):
|
||||
'''
|
||||
'''
|
||||
predicted=np.zeros(self.opt_u.shape)
|
||||
x=self.state[0]
|
||||
y=self.state[1]
|
||||
th=self.state[2]
|
||||
for idx,v,w in zip(range(len(self.opt_u[0,:])),self.opt_u[0,:],self.opt_u[1,:]):
|
||||
x = x+v*np.cos(th)*P.dt
|
||||
y = y+v*np.sin(th)*P.dt
|
||||
th= th +w*P.dt
|
||||
predicted[0,idx]=x
|
||||
predicted[1,idx]=y
|
||||
|
||||
self.predicted = predicted
|
||||
|
||||
def run(self):
|
||||
'''
|
||||
'''
|
||||
|
||||
while 1:
|
||||
if self.state is not None:
|
||||
|
||||
if np.sqrt((self.state[0]-self.path[0,-1])**2+(self.state[1]-self.path[1,-1])**2)<1:
|
||||
print("Success! Goal Reached")
|
||||
return
|
||||
|
||||
#optimization loop
|
||||
start=time.time()
|
||||
self.opt_u = optimize(self.state,
|
||||
self.opt_u,
|
||||
self.path)
|
||||
|
||||
# print("CVXPY Optimization Time: {:.4f}s".format(time.time()-start))
|
||||
|
||||
self.update_sim(self.opt_u[0,1],self.opt_u[1,1])
|
||||
self.predict_motion()
|
||||
self.plot_sim()
|
||||
|
||||
def update_sim(self,lin_v,ang_v):
|
||||
'''
|
||||
Updates state.
|
||||
|
||||
:param lin_v: float
|
||||
:param ang_v: float
|
||||
'''
|
||||
|
||||
self.state[0] = self.state[0] +lin_v*np.cos(self.state[2])*P.dt
|
||||
self.state[1] = self.state[1] +lin_v*np.sin(self.state[2])*P.dt
|
||||
self.state[2] = self.state[2] +ang_v*P.dt
|
||||
|
||||
def plot_sim(self):
|
||||
|
||||
self.sim_time = self.sim_time+P.dt
|
||||
self.x_history.append(self.state[0])
|
||||
self.y_history.append(self.state[1])
|
||||
self.h_history.append(self.state[2])
|
||||
self.v_history.append(self.opt_u[0,1])
|
||||
self.w_history.append(self.opt_u[1,1])
|
||||
|
||||
plt.clf()
|
||||
|
||||
grid = plt.GridSpec(2, 3)
|
||||
|
||||
plt.subplot(grid[0:2, 0:2])
|
||||
plt.title("MPC Simulation \n" + "Simulation elapsed time {}s".format(self.sim_time))
|
||||
|
||||
plt.plot(self.path[0,:],self.path[1,:], c='tab:orange',
|
||||
marker=".",
|
||||
label="reference track")
|
||||
|
||||
plt.plot(self.x_history, self.y_history, c='tab:blue',
|
||||
marker=".",
|
||||
alpha=0.5,
|
||||
label="vehicle trajectory")
|
||||
|
||||
if self.predicted is not None:
|
||||
plt.plot(self.predicted[0,:], self.predicted[1,:], c='tab:green',
|
||||
marker=".",
|
||||
alpha=0.5,
|
||||
label="mpc opt trajectory")
|
||||
|
||||
# plt.plot(self.x_history[-1], self.y_history[-1], c='tab:blue',
|
||||
# marker=".",
|
||||
# markersize=12,
|
||||
# label="vehicle position")
|
||||
# plt.arrow(self.x_history[-1],
|
||||
# self.y_history[-1],
|
||||
# np.cos(self.h_history[-1]),
|
||||
# np.sin(self.h_history[-1]),
|
||||
# color='tab:blue',
|
||||
# width=0.2,
|
||||
# head_length=0.5,
|
||||
# label="heading")
|
||||
|
||||
plot_car(self.x_history[-1], self.y_history[-1], self.h_history[-1])
|
||||
|
||||
plt.ylabel('map y')
|
||||
plt.yticks(np.arange(min(self.path[1,:])-1., max(self.path[1,:]+1.)+1, 1.0))
|
||||
plt.xlabel('map x')
|
||||
plt.xticks(np.arange(min(self.path[0,:])-1., max(self.path[0,:]+1.)+1, 1.0))
|
||||
plt.axis("equal")
|
||||
#plt.legend()
|
||||
|
||||
plt.subplot(grid[0, 2])
|
||||
#plt.title("Linear Velocity {} m/s".format(self.v_history[-1]))
|
||||
plt.plot(self.v_history,c='tab:orange')
|
||||
locs, _ = plt.xticks()
|
||||
plt.xticks(locs[1:], locs[1:]*P.dt)
|
||||
plt.ylabel('v(t) [m/s]')
|
||||
plt.xlabel('t [s]')
|
||||
|
||||
plt.subplot(grid[1, 2])
|
||||
#plt.title("Angular Velocity {} m/s".format(self.w_history[-1]))
|
||||
plt.plot(np.degrees(self.w_history),c='tab:orange')
|
||||
plt.ylabel('w(t) [deg/s]')
|
||||
locs, _ = plt.xticks()
|
||||
plt.xticks(locs[1:], locs[1:]*P.dt)
|
||||
plt.xlabel('t [s]')
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plt.draw()
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
def plot_car(x, y, yaw):
|
||||
LENGTH = 1.0 # [m]
|
||||
WIDTH = 0.5 # [m]
|
||||
OFFSET = LENGTH/2 # [m]
|
||||
|
||||
outline = np.array([[-OFFSET, (LENGTH - OFFSET), (LENGTH - OFFSET), -OFFSET, -OFFSET],
|
||||
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
|
||||
|
||||
Rotm = np.array([[np.cos(yaw), np.sin(yaw)],
|
||||
[-np.sin(yaw), np.cos(yaw)]])
|
||||
|
||||
outline = (outline.T.dot(Rotm)).T
|
||||
|
||||
outline[0, :] += x
|
||||
outline[1, :] += y
|
||||
|
||||
plt.plot(np.array(outline[0, :]).flatten(), np.array(outline[1, :]).flatten(), 'tab:blue')
|
||||
|
||||
|
||||
|
||||
def do_sim():
|
||||
sim=MPC()
|
||||
try:
|
||||
sim.run()
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
if __name__ == '__main__':
|
||||
do_sim()
|
|
@ -0,0 +1,108 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import animation
|
||||
|
||||
from utils import compute_path_from_wp
|
||||
from cvxpy_mpc import optimize
|
||||
|
||||
from mpc_config import Params
|
||||
P=Params()
|
||||
|
||||
import sys
|
||||
import time
|
||||
|
||||
import pybullet as p
|
||||
import time
|
||||
|
||||
def get_state(robotId):
|
||||
"""
|
||||
"""
|
||||
robPos, robOrn = p.getBasePositionAndOrientation(robotId)
|
||||
linVel,angVel = p.getBaseVelocity(robotId)
|
||||
|
||||
return[robPos[0], robPos[1], p.getEulerFromQuaternion(robOrn)[2]]
|
||||
|
||||
def set_ctrl(robotId,v,w):
|
||||
"""
|
||||
"""
|
||||
L= 0.354
|
||||
R= 0.076/2
|
||||
|
||||
rightWheelVelocity= (2*v+w*L)/(2*R)
|
||||
leftWheelVelocity = (2*v-w*L)/(2*R)
|
||||
|
||||
p.setJointMotorControl2(robotId,0,p.VELOCITY_CONTROL,targetVelocity=leftWheelVelocity,force=1000)
|
||||
p.setJointMotorControl2(robotId,1,p.VELOCITY_CONTROL,targetVelocity=rightWheelVelocity,force=1000)
|
||||
|
||||
def plot(path,x_history,y_history):
|
||||
"""
|
||||
"""
|
||||
plt.style.use("ggplot")
|
||||
plt.figure()
|
||||
plt.title("MPC Tracking Results")
|
||||
|
||||
plt.plot(path[0,:],path[1,:], c='tab:orange',marker=".",label="reference track")
|
||||
plt.plot(x_history, y_history, c='tab:blue',marker=".",alpha=0.5,label="vehicle trajectory")
|
||||
plt.axis("equal")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
def run_sim():
|
||||
"""
|
||||
"""
|
||||
p.connect(p.GUI)
|
||||
|
||||
start_offset = [0,2,0]
|
||||
start_orientation = p.getQuaternionFromEuler([0,0,0])
|
||||
turtle = p.loadURDF("turtlebot.urdf",start_offset, start_orientation)
|
||||
plane = p.loadURDF("plane.urdf")
|
||||
|
||||
p.setRealTimeSimulation(1)
|
||||
p.setGravity(0,0,-10)
|
||||
|
||||
# MPC time step
|
||||
P.dt = 0.25
|
||||
|
||||
opt_u = np.zeros((P.M,P.T))
|
||||
opt_u[0,:] = 1 #m/s
|
||||
opt_u[1,:] = np.radians(0) #rad/s
|
||||
|
||||
# Interpolated Path to follow given waypoints
|
||||
path = compute_path_from_wp([0,3,4,6,10,13],
|
||||
[0,0,2,4,3,3],1)
|
||||
|
||||
for x_,y_ in zip(path[0,:],path[1,:]):
|
||||
p.addUserDebugLine([x_,y_,0],[x_,y_,0.33],[0,0,1])
|
||||
|
||||
x_history=[]
|
||||
y_history=[]
|
||||
|
||||
while (1):
|
||||
|
||||
state = get_state(turtle)
|
||||
x_history.append(state[0])
|
||||
y_history.append(state[1])
|
||||
|
||||
#track path in bullet
|
||||
p.addUserDebugLine([state[0],state[1],0],[state[0],state[1],0.5],[1,0,0])
|
||||
|
||||
if np.sqrt((state[0]-path[0,-1])**2+(state[1]-path[1,-1])**2)<1:
|
||||
print("Success! Goal Reached")
|
||||
set_ctrl(turtle,0,0)
|
||||
plot(path,x_history,y_history)
|
||||
p.disconnect()
|
||||
return
|
||||
|
||||
#optimization loop
|
||||
start=time.time()
|
||||
opt_u = optimize(state,opt_u,path)
|
||||
elapsed=time.time()-start
|
||||
print("CVXPY Optimization Time: {:.4f}s".format(elapsed))
|
||||
|
||||
set_ctrl(turtle,opt_u[0,1],opt_u[1,1])
|
||||
|
||||
if P.dt-elapsed>0:
|
||||
time.sleep(P.dt-elapsed)
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_sim()
|
|
@ -0,0 +1,84 @@
|
|||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
|
||||
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
|
||||
"""
|
||||
"""
|
||||
final_xp=[]
|
||||
final_yp=[]
|
||||
delta = step #[m]
|
||||
|
||||
for idx in range(len(start_xp)-1):
|
||||
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
|
||||
|
||||
interp_range = np.linspace(0,1,np.floor(section_len/delta).astype(int))
|
||||
|
||||
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
|
||||
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
|
||||
|
||||
final_xp=np.append(final_xp,fx(interp_range))
|
||||
final_yp=np.append(final_yp,fy(interp_range))
|
||||
|
||||
return np.vstack((final_xp,final_yp))
|
||||
|
||||
def get_nn_idx(state,path):
|
||||
"""
|
||||
"""
|
||||
dx = state[0]-path[0,:]
|
||||
dy = state[1]-path[1,:]
|
||||
dist = np.sqrt(dx**2 + dy**2)
|
||||
nn_idx = np.argmin(dist)
|
||||
|
||||
try:
|
||||
v = [path[0,nn_idx+1] - path[0,nn_idx],
|
||||
path[1,nn_idx+1] - path[1,nn_idx]]
|
||||
v /= np.linalg.norm(v)
|
||||
|
||||
d = [path[0,nn_idx] - state[0],
|
||||
path[1,nn_idx] - state[1]]
|
||||
|
||||
if np.dot(d,v) > 0:
|
||||
target_idx = nn_idx
|
||||
else:
|
||||
target_idx = nn_idx+1
|
||||
|
||||
except IndexError as e:
|
||||
target_idx = nn_idx
|
||||
|
||||
return target_idx
|
||||
|
||||
def road_curve(state,track):
|
||||
"""
|
||||
"""
|
||||
|
||||
POLY_RANK = 3
|
||||
|
||||
#given vehicle pos find lookahead waypoints
|
||||
nn_idx=get_nn_idx(state,track)-1
|
||||
LOOKAHED = POLY_RANK + 1
|
||||
lk_wp=track[:,nn_idx:nn_idx+LOOKAHED]
|
||||
|
||||
#trasform lookahead waypoints to vehicle ref frame
|
||||
dx = lk_wp[0,:] - state[0]
|
||||
dy = lk_wp[1,:] - state[1]
|
||||
|
||||
wp_vehicle_frame = np.vstack(( dx * np.cos(-state[2]) - dy * np.sin(-state[2]),
|
||||
dy * np.cos(-state[2]) + dx * np.sin(-state[2]) ))
|
||||
|
||||
#fit poly
|
||||
return np.polyfit(wp_vehicle_frame[0,:], wp_vehicle_frame[1,:], POLY_RANK, rcond=None, full=False, w=None, cov=False)
|
||||
|
||||
def f(x,coeff):
|
||||
"""
|
||||
"""
|
||||
return round(coeff[0]*x**3 + coeff[1]*x**2 + coeff[2]*x**1 + coeff[3]*x**0,6)
|
||||
|
||||
# def f(x,coeff):
|
||||
# return round(coeff[0]*x**5+coeff[1]*x**4+coeff[2]*x**3+coeff[3]*x**2+coeff[4]*x**1+coeff[5]*x**0,6)
|
||||
|
||||
def df(x,coeff):
|
||||
"""
|
||||
"""
|
||||
return round(3*coeff[0]*x**2 + 2*coeff[1]*x**1 + coeff[2]*x**0,6)
|
||||
# def df(x,coeff):
|
||||
# return round(5*coeff[0]*x**4 + 4*coeff[1]*x**3 +3*coeff[2]*x**2 + 2*coeff[3]*x**1 + coeff[4]*x**0,6)
|
After Width: | Height: | Size: 77 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 32 KiB |
|
@ -13,32 +13,36 @@ P=Params()
|
|||
def get_linear_model(x_bar,u_bar):
|
||||
"""
|
||||
"""
|
||||
L=0.3
|
||||
|
||||
x = x_bar[0]
|
||||
y = x_bar[1]
|
||||
theta = x_bar[2]
|
||||
v = x_bar[2]
|
||||
theta = x_bar[3]
|
||||
|
||||
v = u_bar[0]
|
||||
w = u_bar[1]
|
||||
a = u_bar[0]
|
||||
delta = u_bar[1]
|
||||
|
||||
A = np.zeros((P.N,P.N))
|
||||
A[0,2]=-v*np.sin(theta)
|
||||
A[1,2]=v*np.cos(theta)
|
||||
A[0,2]=np.cos(theta)
|
||||
A[0,3]=-v*np.sin(theta)
|
||||
A[1,2]=np.sin(theta)
|
||||
A[1,3]=v*np.cos(theta)
|
||||
A[3,2]=v*np.tan(delta)/L
|
||||
A_lin=np.eye(P.N)+P.dt*A
|
||||
|
||||
B = np.zeros((P.N,P.M))
|
||||
B[0,0]=np.cos(theta)
|
||||
B[1,0]=np.sin(theta)
|
||||
B[2,1]=1
|
||||
B[2,0]=1
|
||||
B[3,1]=v/(L*np.cos(delta)**2)
|
||||
B_lin=P.dt*B
|
||||
|
||||
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w]).reshape(P.N,1)
|
||||
f_xu=np.array([v*np.cos(theta), v*np.sin(theta), a,v*np.tan(delta)/L]).reshape(P.N,1)
|
||||
C_lin = P.dt*(f_xu - np.dot(A,x_bar.reshape(P.N,1)) - np.dot(B,u_bar.reshape(P.M,1)))
|
||||
|
||||
return A_lin,B_lin,C_lin
|
||||
return np.round(A_lin,4), np.round(B_lin,4), np.round(C_lin,4)
|
||||
|
||||
|
||||
def optimize(state,u_bar,track):
|
||||
def optimize(state,u_bar,track,ref_vel=1.):
|
||||
'''
|
||||
:param state:
|
||||
:param u_bar:
|
||||
|
@ -47,14 +51,15 @@ def optimize(state,u_bar,track):
|
|||
'''
|
||||
|
||||
MAX_SPEED = 1.25
|
||||
MIN_SPEED = 0.75
|
||||
MAX_STEER_SPEED = 1.57/2
|
||||
MAX_STEER = 1.57/2
|
||||
MAX_ACC = 1.0
|
||||
|
||||
# compute polynomial coefficients of the track
|
||||
K=road_curve(state,track)
|
||||
|
||||
# dynamics starting state w.r.t vehicle frame
|
||||
x_bar=np.zeros((P.N,P.T+1))
|
||||
x_bar[2,0]=state[2]
|
||||
|
||||
#prediction for linearization of costrains
|
||||
for t in range (1,P.T+1):
|
||||
|
@ -72,16 +77,16 @@ def optimize(state,u_bar,track):
|
|||
|
||||
for t in range(P.T):
|
||||
|
||||
#cost += 30*cp.sum_squares(x[2,t]-np.arctan(df(x_bar[0,t],K))) # psi
|
||||
cost += 50*cp.sum_squares(x[2,t]-np.arctan2(df(x_bar[0,t],K),x_bar[0,t])) # psi
|
||||
cost += 30*cp.sum_squares(x[3,t]-np.arctan(df(x_bar[0,t],K))) # psi
|
||||
cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
|
||||
cost += 10*cp.sum_squares(ref_vel-x[2,t]) # desired v
|
||||
|
||||
# Actuation rate of change
|
||||
if t < (P.T - 1):
|
||||
cost += cp.quad_form(u[:, t + 1] - u[:, t], 100*np.eye(P.M))
|
||||
cost += cp.quad_form(u[:, t + 1] - u[:, t], 10*np.eye(P.M))
|
||||
|
||||
# Actuation effort
|
||||
cost += cp.quad_form( u[:, t],1*np.eye(P.M))
|
||||
cost += cp.quad_form( u[:, t],10*np.eye(P.M))
|
||||
|
||||
# Kinrmatics Constrains (Linearized model)
|
||||
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
|
||||
|
@ -89,9 +94,10 @@ def optimize(state,u_bar,track):
|
|||
|
||||
# sums problem objectives and concatenates constraints.
|
||||
constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition
|
||||
constr += [u[0, :] <= MAX_SPEED]
|
||||
constr += [u[0, :] >= MIN_SPEED]
|
||||
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
|
||||
constr += [x[2, :] <= MAX_SPEED]
|
||||
constr += [x[2, :] >= 0.0]
|
||||
constr += [cp.abs(u[0, :]) <= MAX_ACC]
|
||||
constr += [cp.abs(u[1, :]) <= MAX_STEER]
|
||||
|
||||
# Solve
|
||||
prob = cp.Problem(cp.Minimize(cost), constr)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
class Params():
|
||||
def __init__(self):
|
||||
self.N = 3 #number of state variables
|
||||
self.N = 4 #number of state variables
|
||||
self.M = 2 #number of control variables
|
||||
self.T = 20 #Prediction Horizon
|
||||
self.T = 10 #Prediction Horizon
|
||||
self.dt = 0.25 #discretization step
|
||||
|
|
|
@ -11,9 +11,11 @@ import sys
|
|||
import time
|
||||
|
||||
# Robot Starting position
|
||||
SIM_START_X=0
|
||||
SIM_START_X=0.
|
||||
SIM_START_Y=0.5
|
||||
SIM_START_H=0
|
||||
SIM_START_V=0.
|
||||
SIM_START_H=0.
|
||||
L=0.3
|
||||
|
||||
from mpc_config import Params
|
||||
P=Params()
|
||||
|
@ -24,24 +26,25 @@ class MPC():
|
|||
def __init__(self):
|
||||
|
||||
# State for the robot mathematical model [x,y,heading]
|
||||
self.state = [SIM_START_X, SIM_START_Y, SIM_START_H]
|
||||
self.state = [SIM_START_X, SIM_START_Y, SIM_START_V, SIM_START_H]
|
||||
|
||||
self.opt_u = np.zeros((P.M,P.T))
|
||||
self.opt_u[0,:] = 1 #m/s
|
||||
self.opt_u[0,:] = 0.5 #m/ss
|
||||
self.opt_u[1,:] = np.radians(0) #rad/s
|
||||
|
||||
# Interpolated Path to follow given waypoints
|
||||
#self.path = compute_path_from_wp([0,10,12,2,4,14],[0,0,2,10,12,12])
|
||||
self.path = compute_path_from_wp([0,3,4,6,10,13],
|
||||
[0,0,2,4,3,3],1)
|
||||
self.path = compute_path_from_wp([0,3,4,6,10,12,14,6,1,0],
|
||||
[0,0,2,4,3,3,-2,-6,-2,-2],1)
|
||||
|
||||
# Sim help vars
|
||||
self.sim_time=0
|
||||
self.x_history=[]
|
||||
self.y_history=[]
|
||||
self.h_history=[]
|
||||
self.v_history=[]
|
||||
self.w_history=[]
|
||||
self.h_history=[]
|
||||
self.a_history=[]
|
||||
self.d_history=[]
|
||||
self.predicted=None
|
||||
|
||||
#Initialise plot
|
||||
|
@ -56,11 +59,15 @@ class MPC():
|
|||
predicted=np.zeros(self.opt_u.shape)
|
||||
x=self.state[0]
|
||||
y=self.state[1]
|
||||
th=self.state[2]
|
||||
for idx,v,w in zip(range(len(self.opt_u[0,:])),self.opt_u[0,:],self.opt_u[1,:]):
|
||||
v=self.state[2]
|
||||
th=self.state[3]
|
||||
|
||||
for idx,a,delta in zip(range(len(self.opt_u[0,:])),self.opt_u[0,:],self.opt_u[1,:]):
|
||||
x = x+v*np.cos(th)*P.dt
|
||||
y = y+v*np.sin(th)*P.dt
|
||||
th= th +w*P.dt
|
||||
v = v+a*P.dt
|
||||
th = th + v*np.tan(delta)/L*P.dt
|
||||
|
||||
predicted[0,idx]=x
|
||||
predicted[1,idx]=y
|
||||
|
||||
|
@ -73,7 +80,7 @@ class MPC():
|
|||
while 1:
|
||||
if self.state is not None:
|
||||
|
||||
if np.sqrt((self.state[0]-self.path[0,-1])**2+(self.state[1]-self.path[1,-1])**2)<1:
|
||||
if np.sqrt((self.state[0]-self.path[0,-1])**2+(self.state[1]-self.path[1,-1])**2)<0.5:
|
||||
print("Success! Goal Reached")
|
||||
return
|
||||
|
||||
|
@ -89,7 +96,7 @@ class MPC():
|
|||
self.predict_motion()
|
||||
self.plot_sim()
|
||||
|
||||
def update_sim(self,lin_v,ang_v):
|
||||
def update_sim(self,acc,steer):
|
||||
'''
|
||||
Updates state.
|
||||
|
||||
|
@ -97,18 +104,20 @@ class MPC():
|
|||
:param ang_v: float
|
||||
'''
|
||||
|
||||
self.state[0] = self.state[0] +lin_v*np.cos(self.state[2])*P.dt
|
||||
self.state[1] = self.state[1] +lin_v*np.sin(self.state[2])*P.dt
|
||||
self.state[2] = self.state[2] +ang_v*P.dt
|
||||
self.state[0] = self.state[0] +self.state[2]*np.cos(self.state[3])*P.dt
|
||||
self.state[1] = self.state[1] +self.state[2]*np.sin(self.state[3])*P.dt
|
||||
self.state[2] = self.state[2] +acc*P.dt
|
||||
self.state[3] = self.state[3] + self.state[2]*np.tan(steer)/L*P.dt
|
||||
|
||||
def plot_sim(self):
|
||||
|
||||
self.sim_time = self.sim_time+P.dt
|
||||
self.x_history.append(self.state[0])
|
||||
self.y_history.append(self.state[1])
|
||||
self.h_history.append(self.state[2])
|
||||
self.v_history.append(self.opt_u[0,1])
|
||||
self.w_history.append(self.opt_u[1,1])
|
||||
self.v_history.append(self.state[2])
|
||||
self.h_history.append(self.state[3])
|
||||
self.a_history.append(self.opt_u[0,1])
|
||||
self.d_history.append(self.opt_u[1,1])
|
||||
|
||||
plt.clf()
|
||||
|
||||
|
@ -156,16 +165,16 @@ class MPC():
|
|||
|
||||
plt.subplot(grid[0, 2])
|
||||
#plt.title("Linear Velocity {} m/s".format(self.v_history[-1]))
|
||||
plt.plot(self.v_history,c='tab:orange')
|
||||
plt.plot(self.a_history,c='tab:orange')
|
||||
locs, _ = plt.xticks()
|
||||
plt.xticks(locs[1:], locs[1:]*P.dt)
|
||||
plt.ylabel('v(t) [m/s]')
|
||||
plt.ylabel('a(t) [m/ss]')
|
||||
plt.xlabel('t [s]')
|
||||
|
||||
plt.subplot(grid[1, 2])
|
||||
#plt.title("Angular Velocity {} m/s".format(self.w_history[-1]))
|
||||
plt.plot(np.degrees(self.w_history),c='tab:orange')
|
||||
plt.ylabel('w(t) [deg/s]')
|
||||
plt.plot(np.degrees(self.d_history),c='tab:orange')
|
||||
plt.ylabel('w(t) [deg]')
|
||||
locs, _ = plt.xticks()
|
||||
plt.xticks(locs[1:], locs[1:]*P.dt)
|
||||
plt.xlabel('t [s]')
|
||||
|
@ -177,9 +186,9 @@ class MPC():
|
|||
|
||||
|
||||
def plot_car(x, y, yaw):
|
||||
LENGTH = 1.0 # [m]
|
||||
WIDTH = 0.5 # [m]
|
||||
OFFSET = LENGTH/2 # [m]
|
||||
LENGTH = 0.3 # [m]
|
||||
WIDTH = 0.1 # [m]
|
||||
OFFSET = LENGTH # [m]
|
||||
|
||||
outline = np.array([[-OFFSET, (LENGTH - OFFSET), (LENGTH - OFFSET), -OFFSET, -OFFSET],
|
||||
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
|
||||
|
|
Before Width: | Height: | Size: 6.2 KiB After Width: | Height: | Size: 6.2 KiB |
Before Width: | Height: | Size: 6.2 KiB After Width: | Height: | Size: 6.2 KiB |